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Abstract 

In random experiments, most analyses are based on interpretation of the difference between the 

means of experiment and control groups. Therefore, studying the difference between the 

variances of the experiment and control groups may also be useful in interpreting the analysis 

results. This study focuses on interval estimation with sample variance estimators based on 

Winsorized Mean and Trimmed Mean for the difference of the variances of two nonnormal 

populations. In the simulation study, confidence intervals based on robust estimators for the 

difference of the variances of two non-normally distributed populations were compared in terms 

of coverage probabilities and average length widths. According to simulation study, it was 

determined that the coverage probabilities of confidence intervals based on robust estimators were 

very close to the nominal confidence level in any case. However, it was seen that the average 

length widths of confidence intervals obtained with sample variance estimator based on Trimmed 

Mean were narrower compared to the average length widths of confidence intervals obtained with 

sample variance estimator based on Winsorized Mean. In addition, it was determined that these 

results were the same when the Type I error is different. According to these results, it will be 

appropriate to prefer interval estimations obtained with sample variance estimator based on 

Trimmed Mean since it provides narrower confidence interval for the difference of the variances 

of two nonnormal populations. 
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1. INTRODUCTION 

 

In randomized experiments or randomized trials with continuous outcomes, the focus of analysis is often 

on the difference in the mean outcomes of experimental and control groups. However, the difference in the 

variances of outcomes of experimental and control groups may also have a useful interpretation. In clinical 

experiments, the difference between variances equals to the variance of the effects of interventions [1]. Bell 

et al. [2] have used the difference between the variances of the treatment and control groups to test the 

quantitative change of treatment impacts on patients. Cojbasic and Tomovic [3] have obtained non-

parametric confidence intervals based on Bootstrap method for the difference of the variances of two 

populations when the data is received from exponential family. Niwitpong [4] has studied coverage 

probabilities and average length widths of the generalized confidence interval and closed form confidence 

interval for the difference of two normal population variances. Later, Niwitpong [5] has presented an 

analytic definition of coverage probabilities and average length widths of closed form confidence interval 

and compared it to the confidence interval suggested in Niwitpong [4]. Herbert et al. [6] have obtained 

confidence intervals based on estimator of difference of sample variances for the difference of variances of 

two normal populations. Suwan and Niwitpong [7] have studied the interval estimation methods for a linear 

function of variances of nonnormal populations using the kurtosis coefficient. 

 

In estimation of variances of normal populations, sample variance estimator 
2S  is used. Sample variance 

estimator is the Maximum Likelihood Estimator of the population variance and the distribution of this 
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estimator converges to asymptotically normal distribution [6]. In addition, it is known that 
2
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Chi-square distribution is a special form of Gamma distribution with parameters ( 1) / 2n    and 2  . 

When the sample sizes and the variances of two normal populations are equal, it is known that the difference 

of two random Gamma variable with  parameters  ,   have McKay Type II distribution with parameters 

 0.5a   , 
2b   and 0c  . This distribution is close to normal distribution even if the sample size 

is too small [6]. Confidence interval for difference of variances of two normal populations based on 

estimator  2 2

1 2   – S S  is suggested by Herbert et al. [6] as follows: 
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The variance of distribution of the estimator 
2S  under normal distribution assumption is defined as [8]; 
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  and   is fourth central moment. With this information, provided that 

kurtosis coefficient is 
4


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
 , the variance of the difference between the sample variances of two 

independent normal populations is [6]: 
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Instead of unknown parameters, estimation values obtained from the sample are used here. 

 

It is known that sample variance estimator 
2S  does not display robust statistics features in the estimation 

of nonnormal population variance and the coverage probabilities of the confidence intervals obtained with 

this estimator have much lower values compared to the nominal confidence interval [9, 10]. In such cases, 

it is necessary to use robust scale estimators for estimation of population variance. 

 

In this study, it was aimed that robust estimators are used to estimate the difference of variances of two 

nonnormal populations. These estimators are sample variance estimators based on Winsorized and 

Trimmed Mean which are robust estimators used instead of sample mean. Confidence intervals based on 

these estimators were obtained for the difference of variances of two nonnormal populations.  

 

A simulation study was conducted in the following section for the distribution of these estimators. 

 

2. ROBUST ESTIMATORS FOR VARIANCE 

 

In this section, sample variance estimators based on Winsorized and Trimmed Mean and simulation results 

on distribution of these estimators are included. 
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2.1. Sample Variance Estimator Based on Winsorized Mean 

 

When there are outliers in a data set, Winsorized Mean, which a robust estimator, may be used as the 

estimator of the population mean instead of sample mean. Winsorized Mean defines the centre of 

distribution for skew distributions better than the sample mean. This estimator was used for the first time 

in the field of sampling to reduce the effect of extreme values in the sample [11]. When Winsorized Mean 

is obtained, the lowest 
nl  number of observations is replaced with  1nl  th observations and the largest 

nu  number of observations is replaced with  nn u th observations. If random sample of size n  is 

1 2,Y ,...,YnY , ith order statistics is defined with ( )iY . While replacement is made only on the high end of 

the consecutive data in operations performed with sample data produced from positively skewed 

distributions, replacement is made on both ends for the sample data produced from symmetric distributions 

[12]. When replacement is made only on the high end, Winsorized Mean is defined as follows [13]: 
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where 
nu  is the number of terms to be removed from the high end of the consecutive data. In that case, 

sample variance based on Winsorized Mean is expressed as; 
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where  0.5nu n  ,   is replacement percentage and  .  expression indicates the largest integer 

function [14]. When replacement is made on both ends of the consecutive data, Winsorized Mean is 

obtained as [13]; 
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where nl  is the number of terms to be removed from the low end of the consecutive data and 
nu  is the 

number of terms to be removed from the high end of the consecutive data. In that case, sample variance 

based on Winsorized Mean is as follows; 
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In order to determine the distribution of estimator 
2

WS , a simulation study based on 10000 replications was 

realized for 0.05   with different sample sizes and distributions using the program written in Matlab 

R2009a. Although it is visually understood from the histograms obtained that the distribution of this 

estimator in various situations roughly resemble the normal distribution, it is necessary to use a Goodness 

of Fit test which is used for this fitting. In the simulation study, random samples are generated from 

Exponential, Gamma, Chi-square and t-distributions with the sample sizes of 10,20,50,100n   and 

Kolmogorov-Smirnov and Shapiro-Wilk Goodness of Fit tests are used to determine whether the 

distribution of this estimator complies with normal distribution. While replacement is made only on the 

high end of the consecutive data in operations conducted with sample data generated from Exponential, 
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Gamma and Chi-square distributions, which are positively skewed distributions; replacement was made on 

both ends in the sample data generated from t-distribution. The average p-values for 10000 replications 

with 5%  replacement proportion in these test operations are given in Table 1. 

 

Table 1. The average p-values of the Kolmogorov-Smirnov (KS) and Shapiro-Wilk (SW) Goodness of Fit 

tests for the 
2

WS  estimator 

Sample 

sizes 

Exponential (0.5) Gamma (2, 0.5) Chi-Square (1) t (3) 

KS SW KS SW KS SW KS SW 

10 0.2108 0.3210 0.2460 0.3502 0.1594 0.2099 0.2351 0.3369 

20 0.2060 0.3206 0.2301 0.3500 0.1534 0.2045 0.2341 0.3310 

50 0.2041 0.3099 0.2313 0.3278 0.1482 0.2000 0.2364 0.3299 

100 0.2038 0.3060 0.2310 0.3214 0.1479 0.1999 0.2360 0.3269 

 

When the average p-values of Kolmogorov Smirnov and Shapiro-Wilk Goodness of Fit tests in Table 1 are 

studied, it is seen that p value    in all cases for 0.05  . Hence, the distribution of estimator 
2

WS  

complies with the normal distribution regardless of the sample size.  

 

2.2. Sample Variance Estimator Based on Trimmed Mean 

 

If there are outliers in a data set, another robust estimator for the estimation of population mean is Trimmed 

Mean. Trimmed Mean can be defined as the mean obtained after observation values at certain ratios are 

removed from the high/low end or both ends of the consecutive sample of size n If random sample of size 

n  is 1 2,Y ,...,YnY , ith order statistics is defined with ( )iY . Trimming is made from the high end of the 

consecutive data in positively skewed distributions and both ends in symmetric distributions [12]. When 

trimming is made only on the high end, Trimmed Mean is defined as follows [13]: 
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where 
nu  is the number of terms to be removed from the high end of the consecutive data. In that case, 

sample variance based on Trimmed Mean is expressed as follows: 
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When trimming is made on both ends, Trimmed Mean is expressed as; 
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In that case, sample variance is as follows; 
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It is understood from the histograms obtained as a result of simulation study that distribution of estimator
2

TS  resembles the normal distribution. Trimming is made from the high end of the consecutive data for  

random samples of size 10,20,50,100n   generated from Exponential, Gamma and Chi-square 

distributions and on both ends for random samples generated from t-distribution. When 0.05  , the 

average p-values of the Kolmogorov-Smirnov and Shapiro- Wilk Goodness of Fit test for 10000 

replications are given in Table 2. 

 

Table 2. The average p-values of the Kolmogorov-Smirnov (KS) and Shapiro-Wilk (SW) Goodness of Fit 

tests for the 
2

TS  estimator 

Sample 

sizes 

Exponential (0.5) Gamma (2, 0.5) Chi-Square (1) t (3) 

KS SW KS SW KS SW KS SW 

10 0.2247 0.3369 0.2636 0.3564 0.1702 0.2099 0.2265 0.3256 

20 0.2074 0.3321 0.2440 0.3509 0.1660 0.2069 0.2250 0.3244 

50 0.2027 0.3301 0.2427 0.3498 0.1681 0.2013 0.2253 0.3202 

100 0.2023 0.3299 0.2423 0.3479 0.1671 0.2004 0.2251 0.3197 

 

From the results in Table 2, it is understood that the distribution of estimator 
2

TS  complies with normal 

distribution even in small sample sizes since p value    for both Goodness of Fit tests  while 0.05   

 

3. INTERVAL ESTIMATION METHODS FOR DIFFERENCE OF THE VARIANCES OF TWO 

NONNORMAL POPULATIONS 

 

In this section, interval estimation methods for the difference of the variances of two nonnormal populations 

are included based on the difference of robust scale estimators. These estimators are discussed as 

 
1 2

2 2

W WS S  and  
1 2

2 2

T TS S  respectively.  

 

3.1. Confidence Interval with Scale Estimator Based on Winsorized Mean  

 

The result was obtained that the distribution of estimator 
2

WS  with the sample data produced from 

distributions with different parameters and replacement 5% complied with the normal distribution even in 

small sample sizes. Given that the distribution of the difference of two estimators with normal distribution 

is also normal, the confidence interval based on estimator  
1 2

2 2

W WS S  for the difference of two nonnormal 

population variances is obtained as follows: 

 

1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2

2 1 2 2(S S ) (S S ) (S S ) (S S ) 1W W W W W W W WP z Var z Var              
 

.         (12) 

 

When the populations are nonnormally distributed, there is not a theoretical formula for 
1 2

2 2( )W WVar S S in 

Equation (12). For that reason, for 
1 2

2 2( )W WVar S S , the variance estimation value obtained from the 

distribution of estimator  
1 2

2 2

W WS S  with Monte Carlo Simulation Method or the variance estimation value 

obtained with Bootstrap Method can be used [15]. For 
1 2

2 2( )W WVar S S , Monte Carlo Simulation Method 

can be expressed as follows: 

 

Provided that the value of the difference estimator obtained in the ith replication of the T repeated 

simulation study with sample data of size n  is  
1 2

2 2

1 , 1,2,...,
i ii W WD S S i T   , the variance of the 

estimator  
1 2

2 2

W WS S  is expressed as; 
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where the 
1D  expressed in Equation (13) is the arithmetic mean of the differences. 

 

In addition, variance estimation may also be determined with Bootstrap Method for 
1 2

2 2( )W WVar S S . For 

the variance of estimator  
1 2

2 2

W WS S , bootstrap samples of size n are generated by simple random sampling 

with replacement. For each Bootstrap sample, Bootstrap estimation is obtained for estimator  
1 2

2 2

W WS S . 

This operation is repeated for B  times. With the Bootstrap estimations obtained from B  replications, the 

Bootstrap estimator for the variance of  estimator  
1 2

2 2

W WS S  is given as [16]; 
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Obtaining the 
1 2

2 2( )W WVar S S  value with both methods yields quite similar results. In the case where the 

populations have Gamma distribution with parameters 3   and 1    and t- distribution with parameter 

5  , variance estimation values based on 10000 replications which are obtained with Monte Carlo 

Simulation Method and Bootstrap Method are as follows. 

 

 Table 3. Estimation values for 
1 2

2 2( )W WVar S S  

 Gamma (3,1)  t(5)  

Sample 

sizes 
MC* Bootstrap MC* Bootstrap 

10 3.5906 3.4099 0.3190 0.3867 

20 2.3024 2.2387 0.2048 0.2057 

50 1.7085 1.7012 0.1433 0.1435 

100 0.9915 0.9899 0.0911 0.0974 

*: Monte Carlo simulation method 

 

According to the results obtained in Table 3, the values of variance estimations based on Monte Carlo 

Simulation and Bootstrap Methods have provided quite close results in all of the sample sizes. 

 

3.2. Confidence Interval with Scale Estimator Based on Trimmed Mean 

 

It was presented with the findings in Table 2 that the distribution of 
2

TS  estimator complied with normal 

distribution in all sample sizes, even if the samples are not selected from normal populations. It is known 

that the distribution of the difference of two normally distributed estimator is normally distributed. For the 

difference of the variances of two nonnormal populations, confidence interval based on estimator 

 
1 2

2 2

T TS S  is obtained as follows using the normal distribution: 

 

1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2

2 1 2 2(S S ) (S S ) (S S ) (S S ) 1T T T T T T T TP z Var z Var              
 

.                  (15) 
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The value of 
1 2

2 2( )T TVar S S  in this confidence interval is found with the formula given in Section (3.1). In 

the case where the populations have Gamma distribution with parameters 3   and 1   and t-

distribution with parameter 5  , variance estimation values based on 10000 replications for 

1 2

2 2( )T TVar S S  which are obtained with Monte Carlo Simulation Method and Bootstrap Method are 

obtained as follows. 

 

Table 4. Estimation values for 
1 2

2 2( )T TVar S S  

 Gamma (3,1)  t(5)  

Sample 

sizes 
MC* Bootstrap MC* Bootstrap 

10 2.1390 2.1743 0.2035 0.2498 

20 1.5794 1.4027 0.1253 0.1177 

50 1.0791 1.0717 0.1030 0.1019 

100 0.9000 0.8851 0.0599 0.0574 

*: Monte Carlo simulation method 

 

According to the results obtained in Table 4, the values of variance estimations based on Monte Carlo 

Simulation and Bootstrap Methods for 
1 2

2 2( )T TVar S S  are quite similar to each other. 

 

4. SIMULATION STUDY 

 

A simulation study was conducted with the purpose of comparing the confidence intervals given in 

Equations (12) and (15). The confidence intervals for the difference of variances of two nonnormal 

populations were compared in terms of coverage probability and average length widths. In this simulation 

study, the data produced from Gamma and t-distributions with different parameters and it was used with 

the program written in Matlab R2009a. In obtaining confidence intervals based on  robust estimator 

 
1 2

2 2

W WS S , replacement was made only on the high end of the consecutive data for the sample data 

produced from Gamma distribution and on both ends of the consecutive data for the sample data produced 

from t-distribution. Similarly, trimming was made only on the high end of the consecutive data for the 

sample data produced from Gamma distribution and on both ends of the consecutive data for the sample 

data produced from t-distribution for obtaining confidence intervals based on  robust estimator  
1 2

2 2

T TS S

Simulation studies were conducted based on 10000 replications for 0.05   and 0.10   with different 

sample sizes, different replacement and trimming proportions. 

 

With the simulation study, coverage probabilities and average length widths of confidence intervals based 

on robust estimators  
1 2

2 2

W WS S  and  
1 2

2 2

T TS S  for the difference of the variances of two nonnormal 

populations are summarized in Table 5-12. In this study, Monte Carlo Simulation Method was used for 

obtaining the coverage probabilities and average length widths of confidence intervals for 
1 2

2 2( )W WVar S S  

and 
1 2

2 2( )T TVar S S . 

 

Average length widths are obtained by dividing the total differences of the lower limit and upper limits of 

intervals found for each replication to the number of replications. Coverage probabilities are determined by 

dividing the number of cases where the difference between the variances of two populations were between 

the lower and upper interval limit values in the simulation study to the number of replications.  expresses 

the replacement proportion for Winsorized Mean and trimming proportion for Trimmed Mean. 
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Table 5. Coverage probabilities and average length widths based on estimator  
1 2

2 2

W WS S  under Gamma 

distribution for 0.05   

 Gamma (2,3) Gamma (3,1) 

Sample 

sizes 
=5 =10 =20 =5 =10 =20 

10 
0.9424 

(46.4232) 

0.9424 

(46.4532) 

0.9447 

(31.7120) 

0.9440  

(7.1124) 

0.9440    

(7.1124) 

0.9430 

(5.1640) 

20 
0.9429   

(38.6091) 

0.9425 

(31.6777) 

0.9440 

(21.5799) 

0.9450 

(6.2467) 

0.9490 

(5.0183) 

0.9490 

(3.6295)     

50 
0.9441 

(22.5420) 

0.9456    

(19.1189) 

0.9463 

(13.0958)     

0.9520 

(3.3147) 

0.9490 

(2.9447) 

0.9460 

(2.1123)     

100 
0.9430  

(16.1841) 

0.9500 

(12.9285)         

0.9470 

(9.2551) 

0.9540 

(2.4928) 

0.9490 

(2.1391)         

0.9500 

(1.5663) 

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

In Table 5, it is seen that coverage probabilities of the confidence interval based on estimator  
1 2

2 2

W WS S  

are quite close to the nominal confidence level in all sample sizes and all of the replacement proportions 

5,10,20   when 0.05  . It is determined that the average length widths are reduced as the sample 

size increases. In each sample size, it is seen that average length widths increase as the replacement 

proportion  increases. 

 

Table 6. Coverage probabilities and average length widths based on  estimator  
1 2

2 2

W WS S  under Gamma 

distribution for 0.10   

 Gamma (2,3) Gamma (3,1) 

Sample 

sizes 
 =5 =10 =20 =5 =10 =20 

10 
0.9009 

(39.5071) 

0.9009 

(39.5071) 

0.9019 

(27.0066) 

0.9020  

(5.7853) 

0.9020 

(5.7853)         

0.9000 

(4.0574)    

20 
0.9055 

(31.6530) 

0.9018 

(25.2729) 

0.9024 

(17.3476) 

0.9010 

(5.0392) 

0.9014 

(4.1962)         

0.8990 

(2.9792)     

50 
0.9020    

(19.2433) 

0.8970    

(16.4238) 

0.9000 

(10.8138) 

0.8990 

(2.9900) 

0.8990 

(2.5457)         

0.9020 

(1.8080)     

100 
0.9090     

(13.1040) 

0.9010  

(10.9875) 

0.8990 

(7.6307) 

0.9090  

(2.1737) 

0.9070 

(1.8423)         

0.9020 

(1.2522)    

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

 

In Table 6, the case where 0.10   is discussed. In this table, it is determined that coverage probabilities 

of the confidence interval based on estimator  
1 2

2 2

W WS S  are quite close to the nominal confidence level 

in all replacement proportions and sample sizes. In addition, it was seen that coverage probabilities increase 

and average length widths are reduced as the sample size increases. 

 

 

 

 

 

 

 

 



 

 Hayriye Esra AKYÜZ et al. / GU J Sci, 30(3): 117-129 (2017) 125 

Table 7. Coverage probabilities and average length widths based on  estimator  
1 2

2 2

W WS S  under Student-

t distribution for 0.05   

 t(5) t(10) 

Sample 

sizes 
=5 =10 =20 =5 =10 =20 

10 
0.9408 

(3.4069) 

0.9408 

(3.4069) 

0.9415 

(2.0866) 

0.9427 

(2.5529) 

0.9427 

(2.5529) 

0.9414 

(1.7317) 

20 
0.9474 

(3.0015) 

0.9475 

(2.2427) 

0.9419 

(1.3910) 

0.9453 

(2.1139) 

0.9464 

(1.7656) 

0.9442 

(1.2029) 

50 
0.9473 

(1.6238) 

0.9474 

(1.3235) 

0.9468 

(0.8580) 

0.9478 

(1.2485) 

0.9466 

(1.0759) 

0.9455 

(0.7499) 

100 
0.9471 

(1.2189) 

0.9481 

(0.9367) 

0.9454 

(0.5921) 

0.9455 

(0.9206) 

0.9467 

(0.7717) 

0.9458 

(0.5257) 

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

In this part of the simulation study, replacement was made on both ends since t-distribution is symmetric 

in calculation of Winsorized Mean. In terms of coverage probabilities for 0.05  , it is determined that 

confidence interval based on estimator  
1 2

2 2

W WS S  are quite close to the nominal confidence level in all of 

the sample sizes and replacement proportions and narrower intervals are obtained in replacement proportion 

20% . 

 

Table 8. Coverage probabilities and average length widths based on  estimator  
1 2

2 2

W WS S  under Student-

t distribution for 0.10   

 t(5) t(10) 

Sample sizes =5 =10 =20 =5 =10 =20 

10 
0.9005 

(2.7782) 

0.9005 

(2.7782)         

0.9026 

(1.7224)    

0.9031 

(2.1219) 

0.9031 

(2.1219) 

0.9011 

(1.4801) 

20 
0.9011 

(2.4330)     

0.9010  

(1.8429)        

0.9034 

(1.1730)     

0.9033 

(1.7920) 

0.9039 

(1.5043) 

0.9017 

(1.0212) 

50 
0.9016  

(1.3662)     

0.9018   

(1.1189)       

0.9014 

(0.7267) 

0.9035 

(1.0421) 

0.9036 

(0.9139) 

0.9014 

(0.6293) 

100 
0.9026  

(1.0264)     

0.9031 

(0.7915)         

0.9044 

(0.5081)    

0.9036 

(0.7635) 

0.9043 

(0.6389) 

0.9042 

(0.4393) 

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

In Table 8, it is seen that coverage probabilities of confidence interval based on estimator  
1 2

2 2

W WS S  for 

0.10   are quite close to the nominal confidence level even in small sample sizes. It is determined that 

the average length widths of confidence intervals are reduced as the sample size increases. 
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Table 9. Coverage probabilities and average length widths based on  estimator  
1 2

2 2

T TS S  under Gamma 

distribution for 0.05   

 Gamma (2,3) Gamma (3,1) 

Sample 

sizes 
=5 =10 =20 =5 =10 =20 

10 
0.9440 

(34.8914) 

0.9440 

(34.8914) 

0.9450 

(23.4142) 

0.9450 

(5.6808) 

0.9450 

(5.6808) 

0.9430 

(3.8510) 

20 
0.9480 

(29.5252) 

0.9470 

(21.5476) 

0.9460 

(14.1125) 

0.9460 

(4.7855) 

0.9450 

(3.6900) 

0.9440 

(2.5371) 

50 
0.9440 

(15.8907) 

0.9460 

(12.6574) 

0.9470 

(8.2883) 

0.9490 

(2.7197) 

0.9490 

(2.2636) 

0.9480 

(1.5759) 

100 
0.9500 

(11.8213) 

0.9490 

(8.5550) 

0.9510 

(5.4862) 

0.9490 

(1.7942) 

0.9500 

(1.3996) 

0.9490 

(0.9947) 

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

In Table 9, trimming operation for coverage probabilities and average length widths based on estimator 

 
1 2

2 2

T TS S  was made only on the high end of the consecutive data with the random samples produced from 

two populations with Gamma distribution for 10,20,50,100n  . When 0.05   in terms of coverage 

probabilities, it is determined that coverage probabilities of the confidence interval based on estimator 

 
1 2

2 2

T TS S  are close to the nominal confidence level in all sample sizes and trimming proportions. It is 

observed that the confidence interval widths are reduced as the sample size increases. 

 

Table 10. Coverage probabilities and average length widths based on  estimator  
1 2

2 2

T TS S under Gamma 

distribution for 0.10   

 Gamma (2,3) Gamma (3,1) 

Sample 

sizes 
=5 =10 =20 =5 =10 =20 

10 
0.9010 

(27.4044) 

0.9010 

(27.4044) 

0.9030 

(18.1078) 

0.9010 

(4.5887) 

0.9010 

(4.5887) 

0.9020 

(3.1551) 

20 
0.9020 

(24.6182) 

0.9080 

(18.4344) 

0.9080 

(11.7004) 

0.9020 

(3.8028) 

0.9030 

(3.0102) 

0.9030 

(2.1635) 

50 
0.9030 

(13.7027) 

0.9080 

(11.0327) 

0.9060 

(7.1019) 

0.9030 

(2.3241) 

0.9040 

(1.8664) 

0.9050 

(1.2589) 

100 
0.9040 

(12.5890) 

0.9080 

(7.9106) 

0.9090 

(5.1991) 

0.9040 

(1.6655) 

0.9050 

(1.2847) 

0.9060 

(0.8783) 

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

In Table 10, coverage probabilities and average length widths based on estimator  
1 2

2 2

T TS S  with the 

random samples produced from Gamma distribution for different sample sizes when 0.10   are given. 

It is concluded that coverage probabilities of confidence intervals are quite close to the nominal confidence 

level in all cases. It is observed that average length widths are reduced as the trimming proportion increases. 
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Table 11. Coverage probabilities and average length widths based on  estimator  
1 2

2 2

T TS S  under Student-

t distribution for 0.05   

 t(5) t(10) 

Sample 

sizes 
=5 =10 =20 =5 =10 =20 

10 
0.9440 

(2.4306) 

0.9440 

(2.4306) 

0.9410 

(1.5173) 

0.9430 

(1.9331) 

0.9430 

(1.9331) 

0.9410 

(1.2553) 

20 
0.9430 

(2.1201) 

0.9440 

(1.5090) 

0.9430 

(0.9084) 

0.9430 

(1.6585) 

0.9430 

(1.2483) 

0.9410 

(0.8107) 

50 
0.9450 

(1.1246) 

0.9440 

(0.8493) 

0.9430 

(0.4896) 

0.9430 

(0.9111) 

0.9470 

(0.7367) 

0.9440 

(0.4447) 

100 
0.9490 

(0.9154) 

0.9460 

(0.6331) 

0.9440 

(0.3416) 

0.9520 

(0.6716) 

0.9520 

(0.5014) 

0.9460 

(0.2977) 

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

 

In Table 11, coverage probabilities and average length widths of confidence intervals based on  estimator 

 
1 2

2 2

T TS S  with the random samples produced from two populations Student-t distributed with parameters 

5   and 10   for different sample sizes when 0.05  . It is seen that coverage probabilities of 

confidence interval based on estimator  
1 2

2 2

T TS S  are quite close to 95% confidence level regardless of 

the sample size and also it has quite narrow intervals for 20% trimming compared to other trimming 

proportions. It is determined that average length widths are reduced as the sample size increases. 

 

Table 12. Coverage probabilities and average length widths based on  estimator  
1 2

2 2

T TS S  under Student-

t distribution for 0.10   

 t(5) t(10) 

Sample 

sizes 
=5 =10 =20 =5 =10 =20 

10 
0.9030 

(2.3225) 

0.9030 

(2.3225) 

0.9000 

(1.4091) 

0.8990 

(1.6702) 

0.8990 

(1.6702) 

0.8970 

(1.0929) 

20 
0.9070 

(1.7845) 

0.9010 

(1.2665) 

0.8990 

(0.7791) 

0.9010 

(1.3764) 

0.9010 

(1.0452) 

0.9000 

(0.6826) 

50 
0.9060 

(1.0148) 

0.9020 

(0.7449) 

0.9000 

(0.4172) 

0.9030 

(0.7663) 

0.9030 

(0.6183) 

0.8990 

(0.3842) 

100 
0.9070 

(0.7746) 

0.9030 

(0.5451) 

0.9010 

(0.2986) 

0.9040 

(0.5943) 

0.9050 

(0.4493) 

0.9020 

(0.2720) 

⃰ Values in the parenthesis are the average of the lengths of confidence interval. 

 

In Table 12, random samples are produced from t-distribution and the case where 0.10   is discussed. 

Coverage probabilities of the confidence interval based on estimator  
1 2

2 2

T TS S  are quite close to the 

nominal confidence level in all of the sample sizes and trimming proportions. 

 

5. CONCLUSION 

 

In the simulation study performed to determine the distribution of estimators 
2

WS  and 
2

TS , it is visually 

understood from the histograms that the distributions of this estimators in various situations roughly 

resemble the normal distribution. However, it is used the Goodness of Fit test for this fitting. Since 

p value    for 0.05   and the sample size 10,20,50,100n  , it is understood that the distributions 

of estimators 
2

WS  and 
2

TS  comply with the normal distribution regardless of the sample size. The 
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distribution of the difference of two estimators which have normal distribution is also normal. With this 

information, the confidence intervals based on estimators  
1 2

2 2

W WS S  and  
1 2

2 2

T TS S for the difference of 

two nonnormal population variances is obtained. For the difference of the variances of two nonnormal 

populations, confidence intervals based on robust estimators  
1 2

2 2

W WS S  and  
1 2

2 2

T TS S  are compared in 

terms of coverage probabilities. It is determined that these confidence intervals provide the results which 

are close to each other for the type I error is both 0.05 and 0.10. These probabilities are quite close to 

nominal confidence level even in small sample sizes. When these confidence intervals are compared in 

terms of average length widths, it is determined that confidence interval based on robust estimator 

 
1 2

2 2

T TS S  provided narrower intervals compared to the confidence interval based on robust estimator 

 
1 2

2 2

W WS S . In addition, it is determined that narrower confidence intervals are obtained as replacement 

and trimming proportions increase. According to this result, estimator  
1 2

2 2

T TS S  should be preferred if it 

is required to establish a narrower confidence interval for the difference of the variances of two nonnormal 

populations. 
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