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Abstract 

In this article, standardized likelihood ratio test is proposed for the homogeneity of variances 

under normality. The proposed method was compared with some of the existing methods via 

Monte Carlo simulation for various parameter combinations, different group sizes and sample 

sizes in terms of type I error rate and power of test. According to numeric results, the proposed 

method performs quite well according to its alternatives. 

 

Received: 20/04/2017 

Accepted: 12/06/2017  

 

 

Keywords 

Standardized likelihood 

ratio test 

Homogeneity of 
variances 

Type I error 

 

 

1. INTRODUCTION  

Testing the homogeneity of variances is one of the main assumptions of some common statistical 

procedures and also it has been broadly used in many scientific application areas. The assumption of 

homogeneity of variances is required in many experimental design models such as analysis of variance 

(ANOVA). Testing the homogeneity of variances is also of interest as data from different sources is pooled 

to yield an improved estimated variance [12]. Besides, it is important to determine uniformity in the quality 

control of manufacturing processes, in biology, in agricultural production systems and in the development 

of educational methods [3]. Taguchi [28] demonstrates that reducing variability is an integral part of 

improving quality. In robust designs, experimentation is used to determine the factor levels so that the 

product or production processes is insensitive to potential variations in operating, environmental, and 

market conditions [25]. Besides, in quality control work, testing the homogeneity of variances is often a 

useful endpoint in analysis [12]. Biologists are interested in differences in the variability of populations for 

several reasons, for instance, as an indicator of generic diversity and in the investigation of mechanisms of 

adaptation [3]. Furthermore, testing the homogeneity of variances is used as a prelude to dose response 

modeling or discriminant analysis [6]. 

In the literature, there are many methods for testing the homogeneity of variances. Neyman and Pearson 

[26] suggested a statistic which is the ratio of a weighted geometric mean to a weighted arithmetic means 

of the mean squares. Bartlett [1] proposed an analogous test in which the sums of squares are weighted with 

their associated degrees of freedom instead of with the numbers of observations as in Neyman Pearson 

criterion [20]. Box and Andersen [4] modified the Bartlett test under permutation distribution for 

homogeneity of variances [18]. Cochran [11] proposed a test statistic in which the variance of only one 

group is greater than others. Hartley [19] suggested the F-max statistic which is the ratio of the maximum 

variance to the minimum variance of groups. Levene [22] gave a testing procedure based on ANOVA which 

uses the absolute difference of observations from their means. Brown and Forsythe [5] modified the Levene 

test using sample medians instead of sample means. Recently, Bhandary and Dai [2] proposed a test based 

on Bonferroni type adjustment procedure on the ordered p values to control the family wise type I error 

rate. Liu and Xu [23] proposed a test, using the generalized p value approach, and compared it with the 

Bartlett test. For homogeneity of variances, Gökpınar and Gökpınar [16] proposed a test statistic based on 

computational approach test (CAT) which is a special case of parametric bootstrap. The CAT method based 
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on simulation and numerical computations uses the maximum likelihood estimates (MLEs), and does not 

require the knowledge of any sampling distribution. Some papers regarding the CAT are given as Chang 

and Pal [8], Chang et al. [7-9], Gökpınar and Gökpınar [13,16, 17], Gökpınar et al. [14], Mutlu et al. [24], 

etc. The likelihood ratio test (LRT) for homogeneity of variances performs poorly with respect to the type 

I error rate. Recently, Chang et al. [10] suggested a CAT version based on LRT for homogeneity of 

variances. Krishnamoorthy and Oral [25] proposed the standardized likelihood ratio test (SLRT) to improve 

the LRT for  testing the equality of means of several log-normal distributions. In this study, by taking an 

idea from Krishnamoorthy and Oral [21], we proposed the SLRT for homogeneity of variances. 

The rest of this study is organized as follows. For the homogeneity of variances, Bartlett test [1], Bhandary 

and Dai test [2], generalized p value approach given by Liu and Xu [23] and CAT given by Gökpınar and 

Gökpınar [16] were presented in Section 2. In Section 3, we developed the SLRT for homogeneity of 

variances. In Section 4, simulation results based on estimated Type I errors and powers of tests were 

presented. Concluding remarks were summarized in Section 5. 

2.  TEST STATISTICS 

We consider the problem of testing the homogeneity of variances of k populations given random samples 

 : 1,..., , 1,...,ij iX j n i k  from 
2( , )i iN    where 
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2
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 The null hypothesis of interest is 

2 2 2
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2 2

1 : i lH    for at least one i l . 

In the rest of this section, for testing Eq. (2), the Bartlett’s test (BT), Bhandary and Dai’s test (BDT), 

generalized p value approach (GPA) and CAT were given briefly. 

2.1. Bartlett’s Test 

Bartlett [1] test statistic, B, is given by 
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For a given level  , and an observed value 
hB  of B , 

0H  is rejected if 
2

1,h kB    where 
2

1k  is  the 

Chi-square distribution with degrees of freedom 1k   under the null hypothesis. 

2.2. Bhandary and Dai's test 

In this section, simplified algorithm of Bhandary and Dai [2] test based on Bonferroni type adjustment 

procedure is given as follows: 

1. Calculate the pooled sample variance on the merged data except ith group as follows: 

2 2 2

: (( ) ( 1) ) / ( ( 1))p i p i i iS N k S n S N n k      
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2.3. The generalized p value approach 

In this section the algorithm of GPA obtained by Liu and Xu [23] is given as follows: 

1) For a given data  1 2, ,...,
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6) Repeat step 2-5 a total m  times and calculate p-value as  2 2

# /j jp D d m   , 1,...,j m . In the 

case of p  , 
0H  is rejected 

2.4. The Computational Approach Test Approach 

Gökpınar and Gökpınar [16] proposed a test based on the CAT for the homogeneity of variances under 

normality. The test statistic, , is given as 
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2. Under 
0H , the restricted MLEs (RMLEs) of parameters  are obtained as   
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  3. Generate artificial sample 1 2, ,...,
ii i inX X X  , 1,...,i k  i.i.d from 

2

( )
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4. Calculate the p -value as 
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MLE MLEp m    . In the case of p   , 
0H  is rejected. 

3. THE TESTS BASED ON LIKELIHOOD RATIO TEST FOR HOMOGENEITY OF 

VARIANCES 

To obtain LRT statistic, we need to give the likelihood functions under 
1H and 

0H  respectively. Under 
1H

, log-likelihood function can be written as follows: 
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The LRT can be given as follows: 
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  has an approximate chi-square distribution with k-1 degrees of freedom under the null hypothesis. 

3.1. The CAT Approach Based On The Likelihood Ratio Test 

Chang et al. [10] suggested a CAT approach based on likelihood ratio test for homogeneity of variances. 

The test procedure is given as below: 

1. Compute the LRT statistic  in Eq. (5)

 
2. Obtain the RMLEs of parameters  

2and    in Eq. (4). 

3. Generate artificial sample 1 2, ,...,
ii i inX X X  , 1,...,i k  i.i.d from 

2

( )
ˆ ˆ( , )i RMLE RMLEN    a large of number 
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( )l  ( 1,..., )l m  . 

4. Calculate the p -value as 
( )#( )lp m    . In the case of p   , 

0H  is rejected. 

3.2. The Proposed Test: The Standardized Likelihood Ratio Test 

We proposed the standardized likelihood ratio test (SLRT) for testing the equality of variances of several 

normal distributions. The SLRT is defined as 
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where    andm SD   are the mean and standard deviation of , respectively. S
 has an approximate 

chi-square distribution with k-1 degrees of freedom under the null hypothesis. Krishnamoorthy and Oral 

[21] estimated the expressions of    vem SD   through simulation because they are difficult to obtain. 

The proposed SLRT can be computed through the following steps. 

1. Calculate the LRT statistic   in Eq. (5). 

2. Generate artificial sample 1 2, ,...,
ii i inX X X  , 1,...,i k  i.i.d from 

2

( )
ˆ ˆ( , )i RMLE RMLEN    a large of number 

of times (say, m times), that is, 
2

( )
ˆ ˆ( , )
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N  ijX . For each of these replicated samples, 

recalculate the values of the LRT statistic  in Eq. (5). 

3. Calculate the mean   m   and standard deviation   SD   of these simulated LRT, and find the 

SLRT statistic S
   in Eq. (6).  

4. If 2

1;1S k 
 

  , then H0 is rejected. 
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4. SIMULATION STUDY 

In this section, the proposed SLRT was compared with GPA, BDT, BT, CAT test [17] and CATLR by 

means of simulation based on 5000 Monte Carlo runs. These tests were evaluated in terms of the type I 

error rate and power of test. The study includes different combination of sample sizes, number of groups 

and population variances. The samples were generated from the normal distribution. Without loss of 

generality,    was taken to be equal to 0. For the specified nominal level of 0.05  , the estimated type 

I error rates of five tests were presented in from Table 1 to Table 4. 

Table 1. The estimated type I error rates  for 05.0 and k=3 

1 2 3( , , )n n n  BT GPA BDT CAT CATLR SLRT 

3,5,7 0.050 0.050 0.042 0.049 0.050 0.052 

3,6,9 0.046 0.047 0.040 0.049 0.047 0.051 

3,8,13 0.055 0.058 0.045 0.054 0.058 0.055 

10,15,20 0.048 0.044 0.044 0.045 0.047 0.052 

20,25,30 0.050 0.051 0.047 0.051 0.051 0.052 

10,20,30 0.053 0.054 0.050 0.053 0.055 0.046 

15,25,35 0.046 0.046 0.044 0.044 0.046 0.054 

20,30,40 0.047 0.047 0.043 0.049 0.050 0.046 

3,3,3 0.046 0.050 0.048 0.049 0.049 0.047 

5,5,5 0.051 0.053 0.048 0.053 0.052 0.050 

7,7,7 0.048 0.050 0.046 0.051 0.050 0.047 

9,9,9 0.047 0.049 0.043 0.049 0.048 0.055 

15,15,15 0.048 0.047 0.045 0.045 0.047 0.051 

20,20,20 0.050 0.051 0.045 0.050 0.050 0.050 

25,25,25 0.048 0.047 0.045 0.048 0.048 0.046 

30,30,30 0.047 0.046 0.043 0.046 0.047 0.051 

 

Table 2. The estimated type I error rates for 05.0 and k=5 

1 2 3 4 5( , , , , )n n n n n  BT GPA BDT CAT CATLR SLRT 

3,3,5,7,7 0.050 0.052 0.052 0.051 0.053 0.053 

3,3,6,9,9 0.047 0.048 0.049 0.048 0.049 0.048 

3, 3, 8,13,13 0.052 0.051 0.051 0.048 0.049 0.053 

10,10,15,20,20 0.051 0.051 0.049 0.054 0.051 0.055 

20,20,25,30,30 0.050 0.051 0.047 0.049 0.050 0.048 

10,10, 20,30,30 0.047 0.045 0.048 0.045 0.046 0.050 

15, 15, 25,35,35 0.050 0.052 0.053 0.051 0.050 0.047 

20, 20, 30,40,40 0.048 0.051 0.054 0.050 0.049 0.054 

3,3,3,3,3 0.045 0.051 0.051 0.051 0.050 0.047 

5,5,5,5,5 0.045 0.044 0.048 0.043 0.045 0.049 

7,7,7,7,7 0.049 0.049 0.046 0.048 0.049 0.051 

9,9,9,9,9 0.051 0.049 0.052 0.052 0.051 0.047 

15,15,15,15,15 0.056 0.054 0.052 0.054 0.055 0.048 

20,20,20,20,20 0.051 0.051 0.046 0.051 0.051 0.051 

25,25,25,25,25 0.049 0.046 0.046 0.045 0.049 0.051 

30,30,30,30,30 0.050 0.052 0.051 0.053 0.050 0.050 

 

Table 3. The estimated type I error rates for 05.0 and k=7 

1 2 3 4 5 6 7( , , , , , , )n n n n n n n  BT GPA BDT CAT CATLR SLRT 

3, 3, 5, 5, 5, 7, 7 0.050 0.052 0.051 0.052 0.053 0.051 

3, 3, 6, 6, 6, 9, 9 0.049 0.050 0.055 0.052 0.052 0.049 

3, 3, 8, 8, 8, 13,13 0.050 0.050 0.047 0.053 0.051 0.047 



 

 Esra GÖKPINAR / GU J Sci, 30(3):223-235(2017) 229 

10,10,15, 15, 15, 20,20 0.050 0.050 0.048 0.049 0.049 0.048 

20,20,25,25,25, 30,30 0.053 0.055 0.053 0.053 0.053 0.054 

10,10, 20, 20, 20, 30,30 0.057 0.056 0.051 0.053 0.055 0.051 

15, 15, 25, 25, 25, 35, 35 0.046 0.045 0.052 0.049 0.046 0.049 

20, 20, 30, 30, 30, 40,40 0.050 0.048 0.049 0.048 0.050 0.054 

3, 3, 3, 3, 3, 3, 3 0.042 0.050 0.051 0.046 0.047 0.051 

5, 5, 5, 5, 5, 5, 5 0.045 0.051 0.049 0.050 0.047 0.053 

7, 7, 7, 7, 7, 7, 7 0.052 0.054 0.052 0.055 0.053 0.048 

9, 9, 9, 9, 9, 9, 9 0.045 0.049 0.046 0.048 0.044 0.050 

15,15,15,15,15,15,15 0.049 0.049 0.046 0.049 0.049 0.053 

20,20,20,20,20,20,20 0.043 0.041 0.040 0.041 0.043 0.051 

25,25,25,25,25,25,25 0.054 0.053 0.049 0.052 0.054 0.050 

30,30,30,30,30,30,30 0.050 0.050 0.048 0.051 0.050 0.054 

 

Table 4. The estimated type I error rates for 05.0 and k=9 

1 2 3 4 5 6 7 8 9( , , , , , , , , )n n n n n n n n n  BT GPA BDT CAT CATLR SLRT 

3, 3, 3, 5, 5, 5, 7, 7,7 0.047 0.050 0.047 0.051 0.049 0.050 

3, 3, 3, 6, 6, 6, 9, 9,9 0.053 0.054 0.054 0.055 0.053 0.046 

3, 3, 3, 8, 8, 8, 13,13,13 0.050 0.048 0.049 0.045 0.051 0.053 

10,10,10, 15, 15,15,20,20,20 0.049 0.052 0.050 0.054 0.050 0.049 

20,20,20,25,25,25, 30,30,30 0.048 0.047 0.049 0.046 0.048 0.051 

10,10, 10, 20, 20,20, 30,30,30 0.048 0.047 0.054 0.048 0.048 0.053 

15, 15, 15, 25, 25,25, 35, 35,35 0.051 0.049 0.050 0.048 0.051 0.048 

20, 20, 20, 30, 30,30, 40,40,40 0.047 0.047 0.048 0.048 0.047 0.051 

3, 3, 3, 3, 3, 3, 3,3,3 0.040 0.046 0.047 0.048 0.045 0.054 

5, 5, 5, 5, 5, 5, 5, 5,5 0.055 0.055 0.051 0.054 0.055 0.054 

7, 7, 7, 7, 7, 7, 7, 7,7 0.047 0.052 0.051 0.050 0.048 0.048 

9, 9, 9, 9, 9, 9, 9, 9,9 0.052 0.052 0.050 0.052 0.051 0.052 

15,15,15,15,15,15,15,15,15 0.052 0.051 0.044 0.052 0.052 0.049 

20,20,20,20,20,20,20,20,20 0.050 0.050 0.049 0.050 0.049 0.055 

25,25,25,25,25,25,25,25,25 0.049 0.050 0.048 0.050 0.050 0.049 

30,30,30,30,30,30,30,30,30 0.048 0.048 0.051 0.048 0.050 0.048 

 

From the numerical results in Table 1-Table 4, it appears that the estimated type I error rates of six tests are 

close to the nominal level for all cases. 

For specified nominal level of 0.05   , Table 5-Table 8 present the estimated powers of the six tests. 

 

Table 5. The estimated powers of the tests for k=3 
2 2 2

1 2 3( , , )    1 2 3( , , )n n n  BT GPA BDT CAT CATLR SLRT 

(0.25, 0.5, 1) 

3,5,7 0.129 0.126 0.131 0.156 0.163 0.157 

3,6,9 0.149 0.150 0.146 0.179 0.192 0.167 

3,8,13 0.177 0.169 0.177 0.185 0.213 0.213 

10,15,20 0.539 0.530 0.523 0.585 0.569 0.572 

20,25,30 0.847 0.848 0.835 0.862 0.857 0.848 

10,20,30 0.634 0.633 0.608 0.697 0.676 0.666 

15,25,35 0.788 0.792 0.774 0.830 0.812 0.822 

20,30,40 0.887 0.886 0.875 0.908 0.899 0.896 

3,3,3 0.083 0.078 0.085 0.081 0.091 0.094 

5,5,5 0.164 0.149 0.161 0.155 0.166 0.169 

7,7,7 0.269 0.253 0.259 0.260 0.270 0.243 

9,9,9 0.356 0.345 0.340 0.349 0.356 0.350 

15,15,15 0.595 0.587 0.578 0.588 0.594 0.601 



 

230 Esra GÖKPINAR / GU J Sci, 30(3):223-235(2017)  

20,20,20 0.753 0.749 0.738 0.750 0.750 0.764 

25,25,25 0.849 0.849 0.836 0.848 0.849 0.854 

30,30,30 0.921 0.920 0.913 0.921 0.921 0.914 

(0.25,0.75, 2.25) 

3,5,7 0.270 0.252 0.263 0.316 0.332 0.332 

3,6,9 0.315 0.294 0.296 0.357 0.378 0.382 

3,8,13 0.404 0.380 0.373 0.401 0.465 0.461 

10,15,20 0.927 0.926 0.914 0.943 0.937 0.938 

20,25,30 0.997 0.998 0.996 0.998 0.998 0.999 

10,20,30 0.972 0.973 0.963 0.982 0.980 0.977 

15,25,35 0.995 0.995 0.993 0.997 0.996 0.997 

20,30,40 0.999 0.999 0.999 0.999 0.999 0.999 

3,3,3 0.149 0.132 0.162 0.143 0.162 0.157 

5,5,5 0.372 0.342 0.369 0.355 0.375 0.382 

7,7,7 0.599 0.581 0.587 0.591 0.601 0.601 

9,9,9 0.738 0.729 0.725 0.733 0.737 0.744 

15,15,15 0.950 0.949 0.943 0.949 0.949 0.954 

20,20,20 0.990 0.989 0.988 0.989 0.989 0.989 

25,25,25 0.998 0.998 0.997 0.998 0.998 0.997 

30,30,30 0.999 0.999 0.999 0.999 0.999 1.000 

 
Table 6. The estimated powers of the tests for k=5 

2 2 2 2 2

1 2 3 4 5( , , , , )      1 2 3 4 5( , , , , )n n n n n  BT GPA BDT CAT CATLR SLRT 

 

(0.25,0.25,0.5,1,1) 

3,3,5,7,7 0.160 0.140 0.141 0.200 0.217 0.218 

3,3,6,9,9 0.182 0.158 0.143 0.219 0.249 0.262 

3, 3, 8,13,13 0.208 0.185 0.152 0.233 0.280 0.284 

10,10,15,20,20 0.753 0.738 0.584 0.802 0.792 0.792 

20,20,25,30,30 0.971 0.968 0.905 0.974 0.973 0.976 

10,10, 20,30,30 0.827 0.816 0.631 0.880 0.867 0.865 

15, 15, 25,35,35 0.945 0.944 0.850 0.964 0.957 0.956 

20, 20, 30,40,40 0.986 0.986 0.944 0.991 0.988 0.989 

3,3,3,3,3 0.112 0.085 0.119 0.097 0.125 0.119 

5,5,5,5,5 0.243 0.187 0.203 0.205 0.245 0.240 

7,7,7,7,7 0.391 0.329 0.306 0.347 0.391 0.408 

9,9,9,9,9 0.526 0.472 0.406 0.481 0.527 0.532 

15,15,15,15,15 0.817 0.798 0.693 0.800 0.817 0.820 

20,20,20,20,20 0.935 0.930 0.852 0.929 0.936 0.936 

25,25,25,25,25 0.981 0.979 0.934 0.980 0.980 0.982 

30,30,30,30,30 0.994 0.993 0.975 0.994 0.994 0.994 

(0.25,0.25,0.75,2.25,2.25) 

3,3,5,7,7 0.382 0.315 0.243 0.430 0.491 0.486 

3,3,6,9,9 0.441 0.371 0.258 0.485 0.552 0.542 

3, 3, 8,13,13 0.518 0.440 0.288 0.535 0.629 0.639 

10,10,15,20,20 0.997 0.996 0.965 0.998 0.998 0.998 

20,20,25,30,30 0.999 0.999 0.999 1.000 0.999 1.000 

10,10, 20,30,30 0.998 0.997 0.982 1.000 0.999 1.000 

15, 15, 25,35,35 1.000 1.000 0.999 1.000 1.000 1.000 

20, 20, 30,40,40 1.000 1.000 1.000 1.000 1.000 1.000 

3,3,3,3,3 0.233 0.153 0.218 0.187 0.249 0.257 

5,5,5,5,5 0.587 0.488 0.440 0.528 0.590 0.595 

7,7,7,7,7 0.816 0.769 0.664 0.784 0.816 0.819 

9,9,9,9,9 0.932 0.913 0.825 0.918 0.932 0.936 

15,15,15,15,15 0.997 0.997 0.987 0.997 0.997 0.999 

20,20,20,20,20 0.999 0.999 0.998 0.999 0.999 1.000 

25,25,25,25,25 1.000 1.000 1.000 1.000 1.000 1.000 

30,30,30,30,30 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 7. The estimated powers of the tests for k=7 
2 2 2 2 2 2 2

1 2 3 4 5 6 7( , , , , , , )        1 2 3 4 5 6 7( , , , , , , )n n n n n n n  BT GPA BDT CAT CATLR SLRT 

(0.25,0.25,0.5,0.5,0.5,1,1) 

3, 3, 5, 5, 5, 7, 7 0.168 0.137 0.158 0.193 0.224 0.211 

3, 3, 6, 6, 6, 9, 9 0.192 0.160 0.172 0.217 0.255 0.254 

3, 3, 8, 8, 8, 13,13 0.256 0.208 0.202 0.248 0.318 0.315 

10,10,15, 15, 15, 20,20 0.714 0.672 0.549 0.746 0.749 0.752 

20,20,25,25,25, 30,30 0.959 0.955 0.883 0.965 0.963 0.965 

10,10, 20, 20, 20, 30,30 0.828 0.802 0.648 0.869 0.865 0.856 

15, 15, 25, 25, 25, 35, 35 0.936 0.927 0.821 0.951 0.947 0.950 

20, 20, 30, 30, 30, 40,40 0.975 0.973 0.918 0.982 0.979 0.981 

3, 3, 3, 3, 3, 3, 3 0.105 0.075 0.115 0.083 0.113 0.106 

5, 5, 5, 5, 5, 5, 5 0.203 0.142 0.187 0.162 0.206 0.220 

7, 7, 7, 7, 7, 7, 7 0.336 0.265 0.275 0.284 0.338 0.340 

9, 9, 9, 9, 9, 9, 9 0.468 0.407 0.366 0.421 0.470 0.468 

15,15,15,15,15,15,15 0.777 0.741 0.632 0.748 0.777 0.769 

20,20,20,20,20,20,20 0.902 0.887 0.786 0.892 0.902 0.895 

25,25,25,25,25,25,25 0.965 0.961 0.900 0.961 0.966 0.963 

30,30,30,30,30,30,30 0.983 0.982 0.951 0.982 0.982 0.988 

(0.25,0.25,0.75,0.75,0.75,2.25,2.25) 

3, 3, 5, 5, 5, 7, 7 0.403 0.285 0.287 0.415 0.495 0.491 

3, 3, 6, 6, 6, 9, 9 0.497 0.373 0.329 0.488 0.586 0.581 

3, 3, 8, 8, 8, 13,13 0.608 0.492 0.409 0.562 0.696 0.710 

10,10,15, 15, 15, 20,20 0.993 0.991 0.950 0.995 0.995 0.994 

20,20,25,25,25, 30,30 0.999 0.999 0.999 1.000 1.000 1.000 

10,10, 20, 20, 20, 30,30 0.997 0.997 0.978 0.998 0.998 0.999 

15, 15, 25, 25, 25, 35, 35 1.000 1.000 0.998 1.000 1.000 1.000 

20, 20, 30, 30, 30, 40,40 1.000 1.000 1.000 1.000 1.000 1.000 

3, 3, 3, 3, 3, 3, 3 0.215 0.115 0.217 0.154 0.228 0.227 

5, 5, 5, 5, 5, 5, 5 0.529 0.400 0.410 0.446 0.535 0.544 

7, 7, 7, 7, 7, 7, 7 0.772 0.692 0.618 0.717 0.773 0.767 

9, 9, 9, 9, 9, 9, 9 0.906 0.875 0.782 0.882 0.905 0.900 

15,15,15,15,15,15,15 0.996 0.996 0.979 0.996 0.996 0.994 

20,20,20,20,20,20,20 0.999 0.999 0.997 0.999 0.999 1.000 

25,25,25,25,25,25,25 1.000 1.000 0.999 1.000 1.000 1.000 

30,30,30,30,30,30,30 1.000 1.000 1.000 1.000 1.000 1.000 

 

  



 

232  Esra GÖKPINAR / GU J Sci, 30(3):223-235(2017)      

 

Table 8. The estimated powers of the tests for k=9 
2 2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8 9( , , , , , , , , )          1 2 3 4 5 6 7 8 9( , , , , , , , , )n n n n n n n n n  BT GPA BDT CAT CATLR SLRT 

(0.25,0.25,0.25,0.5,0.5,0.5,1,1,1) 

3, 3, 3, 5, 5, 5, 7, 7,7 0.209 0.154 0.154 0.225 0.279 0.267 

3, 3, 3, 6, 6, 6, 9, 9,9 0.240 0.176 0.165 0.262 0.329 0.322 

3, 3, 3, 8, 8, 8, 13,13,13 0.300 0.234 0.184 0.297 0.393 0.393 

10,10,10, 15, 15,15,20,20,20 0.854 0.823 0.591 0.884 0.881 0.892 

20,20,20,25,25,25, 30,30,30 0.992 0.990 0.933 0.994 0.994 0.995 

10,10, 10, 20, 20,20, 30,30,30 0.923 0.906 0.665 0.953 0.948 0.948 

15, 15, 15, 25, 25,25, 35, 35,35 0.986 0.983 0.871 0.991 0.990 0.989 

20, 20, 20, 30, 30,30, 40,40,40 0.998 0.998 0.961 0.999 0.998 0.997 

3, 3, 3, 3, 3, 3, 3,3,3 0.122 0.082 0.136 0.096 0.131 0.136 

5, 5, 5, 5, 5, 5, 5, 5,5 0.287 0.191 0.226 0.218 0.290 0.299 

7, 7, 7, 7, 7, 7, 7, 7,7 0.451 0.357 0.319 0.382 0.452 0.468 

9, 9, 9, 9, 9, 9, 9, 9,9 0.603 0.523 0.417 0.542 0.602 0.623 

15,15,15,15,15,15,15,15,15 0.904 0.884 0.715 0.888 0.904 0.902 

20,20,20,20,20,20,20,20,20 0.973 0.969 0.876 0.970 0.973 0.979 

25,25,25,25,25,25,25,25,25 0.996 0.995 0.952 0.995 0.996 0.995 

30,30,30,30,30,30,30,30,30 0.999 0.999 0.986 0.999 0.999 0.999 

(0.25,0.25,0.25,0.75,0.75,0.75,2.25,2.25,2.25) 

3, 3, 3, 5, 5, 5, 7, 7,7 0.521 0.368 0.286 0.539 0.639 0.634 

3, 3, 3, 6, 6, 6, 9, 9,9 0.604 0.458 0.310 0.612 0.720 0.708 

3, 3, 3, 8, 8, 8, 13,13,13 0.733 0.593 0.359 0.695 0.828 0.833 

10,10,10, 15, 15,15,20,20,20 0.999 0.999 0.976 0.999 0.999 1.000 

20,20,20,25,25,25, 30,30,30 1.000 1.000 1.000 1.000 1.000 1.000 

10,10, 10, 20, 20,20, 30,30,30 1.000 1.000 0.993 1.000 1.000 1.000 

15, 15, 15, 25, 25,25, 35, 35,35 1.000 1.000 1.000 1.000 1.000 1.000 

20, 20, 20, 30, 30,30, 40,40,40 1.000 1.000 1.000 1.000 1.000 1.000 

3, 3, 3, 3, 3, 3, 3,3,3 0.286 0.146 0.243 0.194 0.307 0.313 

5, 5, 5, 5, 5, 5, 5, 5,5 0.694 0.538 0.469 0.592 0.696 0.694 

7, 7, 7, 7, 7, 7, 7, 7,7 0.909 0.853 0.700 0.869 0.909 0.909 

9, 9, 9, 9, 9, 9, 9, 9,9 0.972 0.959 0.854 0.963 0.973 0.978 

15,15,15,15,15,15,15,15,15 1.000 1.000 0.994 1.000 1.000 1.000 

20,20,20,20,20,20,20,20,20 1.000 1.000 0.999 1.000 1.000 1.000 

25,25,25,25,25,25,25,25,25 1.000 1.000 1.000 1.000 1.000 1.000 

30,30,30,30,30,30,30,30,30 1.000 1.000 1.000 1.000 1.000 1.000 
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As seen from Table 5, when the number of groups is k=3 and the sample sizes are small and different, the 

power of the CATLR is higher than the other tests. For example, when      
1 2 3( , , )n n n =(3,5,7) and  

2 2 2

1 2 3( , , )   =(0.25,0.5,1), powers of tests were obtained as BT=0.129, GPA=0.126, BDT=0.131, 

CAT=0.156, CATLR=0.163 and SLRT=0.157. As the sample sizes are getting larger, the powers of the 

CATLR and SLRT approach each other. For example, while 
1 2 3( , , )n n n =(3,8,13) and 

2 2 2

1 2 3( , , )  

=(0.25,0.5,1), the powers of the tests can be given as BT=0.177, GPA=0.169, BDT=0.178, CAT=0.186, 

CATLR=0.213 and SLRT=0.213. However, when all sample sizes are getting larger, the CAT is slightly 

more powerful than CATLR and SLRT. When sample sizes are equal, the powers of the CATLR and SLRT 

are higher than other tests, even the power of the SLRT is slightly higher than CATLR. However, when the 

equal sample sizes are getting larger, the powers of the CATLR, SLRT and BT approach each other. 

When differences between population variances are getting higher and the sample sizes are small, the 

powers of the CATLR and SLRT are getting higher than the other tests, especially in the case of different 

sample sizes. For example, while 
1 2 3( , , )n n n =(3,8,13) and 

2 2 2

1 2 3( , , )   =(0.25,0.75,2.25), powers of tests 

can be given as BT=0.405, GPA=0.380, BDT=0.374, CAT=0.401, CATLR=0.465, SLRT=0.461. When 

the equal sample sizes are getting larger, the powers of the CATLR, SLRT and BT approach each other.  

When the number of groups is k=5, for the small and different sample sizes, the powers of the CATLR and 

SLRT are close to each other and  are higher than the other tests. However, when all sample sizes are getting 

larger, the CAT is slightly more powerful than the CATLR and SLRT. For the equal sample sizes, the 

powers of the CATLR and SLRT are close to each other and are higher than other tests, however, for the 

large and equal sample sizes, the powers of the CATLR, SLRT and BT approach each other. When the 

differences between population variances are getting higher, the powers of the CATLR and SLRT are 

getting higher than the other tests, especially in the case of different sample sizes. 

As the number of group is getting larger, that is, while k=7 and the sample sizes are different, the CATLR 

and SLRT are more powerful than the other tests. For the equal sample sizes the powers of the CATLR and 

SLRT are better than the others. Besides, as the equal sample sizes increase, the CATLR, SLRT and BT 

approach each other. For k=9, the results are similar to the ones obtained for the number of group, k=7.  

All in all, the CATLR and SLRT are better than the others, especially in the cases of small sample 

sizes. In addition to this, the powers of other tests are close to the CATLR and SLRT as the sample 

size increases.  

5. CONCLUSION 

In this study, we proposed a standardize likelihood ratio test (SLRT) for the homogeneity of variances. We 

have compared this approach with existing approaches. Simulation study indicates that regardless of the 

number of group and sample sizes, the powers of the CATLR and SLRT are close to each other and are 

higher than the other tests. When the differences between population variances are getting higher, in case 

of large equal sample sizes, the powers of the CATLR, SLRT and BT are close to each other and are higher 

than the other tests. 
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