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 The integration of blockchain and machine learning technologies has the potential to enable 
the development of more secure, reliable, and efficient autonomous car systems. Blockchain 
can be used to store, manage, and share the large amounts of data generated by autonomous 
vehicle various sensors and cameras, ensuring the integrity and security of these data. 
Machine learning algorithms can be used to analyze and fuse these data in real time, allowing 
the vehicle to make informed decisions about how to navigate its environment and respond to 
changing conditions. Thus, the combination of these technologies has the potential to improve 
the safety, performance, and scalability of autonomous car systems, making them a more 
applicable and attractive option for consumers and industry stakeholders. In this paper, all 
relevant technologies, such as machine learning, blockchain and autonomous cars, were 
explored. Various techniques of machine learning were investigated, including reinforcement 
learning strategies, the evolution of artificial neural networks and main deep learning 
algorithms. The main features of the blockchain technology, as well as its different types and 
consensus mechanisms, were discussed briefly. Autonomous cars, their different types of 
sensors, potential vulnerabilities, sensor data fusion techniques, and decision-making models 
were addressed, and main problem domains and trends were underlined. Furthermore, 
relevant research discussing blockchain for intelligent transportation systems and internet of 
vehicles was examined. Subsequently, papers related to the integration of blockchain with 
machine learning for autonomous cars and vehicles were compared and summarized. Finally, 
the main applications, challenges and future trends of this integration were highlighted. 
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1. Introduction  
 

Blockchain and machine learning are two advanced 
technologies that researchers are exploring as possible 
ways to enhance the safety and effectiveness of self-
driving cars and vehicles. Blockchain, a decentralized and 
distributed digital ledger, can provide secure and 
transparent tracking of data and transactions in 
autonomous vehicle networks. Machine Learning (ML) 
algorithms can enable autonomous vehicles to learn from 
and adapt to their environments in real time, equipping 
them with required Artificial Intelligence (AI) 
capabilities. Together, these technologies have the ability 
to make self-driving cars safer and more efficient so that 
can coordinate and communicate with other vehicles and 
infrastructure.  

The blockchain technology can provide safe and open 
record-keeping, and it can maintain data across several 
distributed nodes using encryption to ensure its 
consistency. Due to its potential applications in several 

industries, such as banking, healthcare, transportation, 
and logistics, the blockchain technology has attracted a 
lot of interest nowadays. It can offer safe and effective 
solutions for data interchange and management and it is 
being investigated by the scientific research community. 
Because of its decentralized nature, blockchain enables 
the development of reliable systems that may be used to 
reduce the risk of data breaches, prevent fraud, and to 
simplify business operations. Several aspects of the 
blockchain technology, such as scalability, security, and 
privacy implications, are now being widely researched 
[1, 2]. 

On the other hand, the ways how we work, live, and 
interact with the environment are all being redefined by 
emerging machine learning algorithms and techniques. 
Moreover, machine learning has created a plenty of new 
opportunities in several industries, such as 
transportation, banking, healthcare, and cybersecurity. 
Machine learning and its various algorithms can learn 
efficiently from available data and then come to the best 
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decision/solution for the addressed problem. The 
subfield within machine learning, called reinforcement 
learning, focuses on the decision-making process within 
an environment where an agent can receive rewards or 
penalties based on its taken actions. The most important 
objective for the agent is to enhance its performance over 
time by attaining knowledge from its experienced errors 
and maximizing the overall reward it receives. At 
present, intensive research has been carried out for 
reinforcement learning that has brought about the 
development of application fields, such as robotics, 
control systems, and games [3]. Moreover, the Neuro 
Evolution Augmenting Topology (NEAT) algorithm [4], 
one of the genetic algorithm variants designed to evolve 
neural networks both structures, i.e. the number of 
neurons in the layers and the number of connections, and 
the weights of individual connections. The NEAT 
algorithm and its extensions, like HyberNEAT [5], can be 
implemented for programming new autonomous cars 
with increased experiences along the way. This has the 
ability not only to develop complex neural networks, but 
also to compact and enhance their effective use, thereby 
minimizing the computational burdens and the training 
time of autonomous cars particularly. 

To put it in other words, applications of blockchain 
and machine learning to vehicles can be a new, uprising 
field of research, resulting in innovative projects and 
solutions. The integration and adoption of machine-
learning technology algorithms that allows learning from 
data as well the management of data information 
securely and transparently of the blockchain technology 
appear to be a potential disruptor in various scientific 
fields such as autonomous vehicles/cars. To sum up, the 
combination of blockchain and machine learning may 
create the technology of the future with regards to 
autonomous vehicles, and as the technology develops, we 
just might get to experience the benefits soon enough. 

The main contributions of this survey include an 
overview of blockchain, machine learning, and 
autonomous cars technologies. It also summarizes 
relevant research papers that explore the integration of 
blockchain in intelligent transportation systems, internet 
of vehicles and autonomous cars. The paper highlights 
potential applications of this integration, such as secure 
data management, decision-making, and coordination 
among vehicles and infrastructure. Finally, the paper 
addresses and discusses the challenges associated with 
this integration and anticipates the future directions of 
this integration. 

 
2. Overview of relevant technologies 

 
2.1. Machine learning 
 

Machine learning is the process of enabling 
machines/computers to learn and make decisions 
independently, eliminating the need for explicit 
programming. It constitutes a main subfield of the 
artificial intelligence and utilizes statistical models and 
techniques to assist computers in learning from data 
inputs, which in turn, facilitates predictions or decision-
making. There is a lot of research in this domain, covering 
various topics and methodologies. Among the central 

types of machine learning are supervised learning, 
unsupervised learning, semi-supervised learning, 
reinforcement learning, and deep learning. In the process 
called supervised learning, a model articulated by an 
algorithm gets fitted using a dataset that has correct 
outputs or labels for every training sample. The target is 
to get sufficient estimation from the given data, and apply 
it on fresh, unseen data, for getting accurate predictions. 
Contrarily, in unsupervised learning, the algorithm 
doesn't have access to labeled training examples. Instead, 
it has to figure out the inherent structure of the data 
through methods such as clustering or dimensionality 
reduction. Semi-supervised learning bridges supervised 
and unsupervised learning, where the algorithm learns 
from a dataset that includes both labeled and unlabeled 
data. During the reinforcement learning [3], a machine is 
being trained to make sequence wise choices in a 
particular environment to get the highest possible 
reward. The training process takes place through a 
procedure of trial and error, in which rewards occur in 
case of correct actions, while penalties apply when the 
actions are wrongly performed. This method is 
extensively utilized in robotics and autonomous driving. 

As a popular reinforcement learning algorithm, 
known as Q-learning [6], an agent will be ready to select 
the best action to resolve the Markov Decision Process 
(MDP) issue even before a model outlines the system 
dynamics. This is done by reinforcement learning which 
is discovering their action-value function, known as Q-
function. It does by taking an action-value function, also 
known as a Q function, as an integral part of the machine. 
The function helps calculate the expected cumulative 
benefit of performing each action a in each state s under 
this perfect policy. The Q-function is represented as 
Q(s, a) and can be updated using the Temporal Difference 
(TD) [6] learning rule (Equation 1):  
 

TD(a, s) = R(s, a) +  γ ∑ P(s, a, s′) Q(s′, a′) − Q(s, a)a′
max

a′

 (1) 

 
Where R(s, a) represents reward of applying action a 

on state s, P(s, a, s′) illustrates the to-from transition 
between a state 𝑠  and an arising state 𝑠′ after action a, 
and 𝛾 is the discount factor that belongs to [0,1] range. 
The equation represents how the environmental sectors 
are Q-value fair [6] which further gives insights of how 
and in what ways the environment may change over 
time. The updated Q(s,a) is then represented as follows 
(Equation 2): 
 

Qt(s, a) = Qt−1(s, a) +  αTDt(a, s) (2) 
 

The Learning rate, 𝛼 in this expression, determines 
the time of adaptation the system requires to get 
informed about the inconstant changes that the 
environment imparts on it. The Qt(s, a) here stands for 
the Q-value at time t. The recorded Q-value if we replace 
TDt(a, s) with its full-form Equation 2 [6], we should get 
(Equation 3): 
 

Qt(s, a) = Qt−1(s, a) +  α(R(s, a) + γ Q(s′, a′) − Qt−1(s, a))a′
max  (3) 

 
Additionally, Deep Q-Network (DQN) is a Q-learning 

extension that combines deep neural networks with the 
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Q-learning technique. The agent in DQN can manage 
high-dimensional state spaces and complicated 
situations because a deep neural network roughly 
approximates the Q-function, which is commonly used in 
autonomous cars. Furthermore, deep learning, a 
specialized area within machine learning, focuses on the 
training of artificial neural networks on extensive 
datasets. These algorithms have the capability to 
recognize various patterns and characteristics in 

provided data, resulting in their success across 
numerous applications and fields. This includes areas, 
such as image and speech recognition, natural language 
processing, and even in game-playing scenarios. There 
are many other topics and approaches within the field of 
machine learning, and new research is constantly being 
published [7]. Figure 1 highlights the intersections and 
differences among the various types and techniques of 
machine learning. 

 

 
Figure 1. Different types of machine learning [8]. 

 
One of the basic algorithms of machine learning is the 

artificial neural network (ANN) [9], inspired by the 
structure and function of biological neural networks in 
the human brain. The ANN models consist of 
interconnected layers of nodes, artificial neurons, 
responsible for processing and transmitting information. 
The basic unit of an ANN is the artificial neuron, which 
receives input from other neurons or external sources, 
performs a mathematical computation on the input, and 
produces an output signal that is transmitted to other 
neurons or output nodes. The equation for the output of 
a single neuron in an ANN can be written as (Equation 4): 

 

𝑌 = 𝐹(∑ 𝑊𝑖 ∗ 𝑋𝑖) + 𝑏 (4) 

 
Where Y is the output, F is the activation function 

applied to the neuron, e.g., ReLU, LeakyReLU, sigmoid, or 
tanh [10-12], Wi are the weights of the connections, Xi 
are the input values presented to the neuron, and b is the 
bias associated with the unit [9]. 

Furthermore, the neural networks are very accurate 
in many of the learning algorithms and the development 
of neural networks has been and is still a very important 
area of research in artificial intelligence and machine 
learning. One paper which has specialized on this field by 
Stanley and Miikkulainen [4] sheds light on the NEAT 

algorithm. In contradistinction to previous methods that 
only exploited weight tuning as an optimization tool, 
NEAT gives rise to both weight and structure 
optimization. This invention has given rise to neural 
networks, which unlike before can modify to respond to 
changes. Such networks can therefore be utilized in some 
tasks, including object detection, lane keeping, and 
decision-making. Along with NEAT, another remarkable 
paper that influenced the growth of large networks was 
by Stanley et al., [5]. They tackled the problem of 
matching neural networks for the high level of scalability 
by proposing a new variant called Hypercube-based 
NEAT (HyperNEAT). By means of this method, direct 
encoding is not used. Instead, the encoding exploits 
domain specific patterns leading evolution towards big 
neural networks having millions of connections able to 
display made up of modules, hierarchy, and regularity. 
Such tricks have opened an entirely new field of 
investigation into the fields of gentle learning methods 
and have become one of the leading applications in 
solving more and more complicated problems. They have 
motivated AI and ML researchers to explore new 
approaches for evolving neural networks and improving 
their structures.  

However, some other machine learning techniques 
and approaches need to be taken into account while 
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considering machine learning and its relevant 
technologies: 

• Active learning: In this approach, the algorithm 
can request labels for specific examples to improve its 
performance. This can be more efficient than labeling the 
entire dataset in a supervised learning setting [13]. This 
type of learning is primarily associated with supervised 
learning. 

• Online learning: Here, the algorithm receives a 
stream of data, and it should make predictions or updates 
on the same data, without the ability to go back and 
process old data [14]. It is associated with various types 
of learning, such as supervised learning, unsupervised 
learning, and reinforcement learning 

• In multi-task learning model, a single model is 
taught how to perform multiple tasks that are 
interconnected and are at the same time using 
mathematical processing which is back propagation [15]. 
It might be associated with both supervised learning as 
well as unsupervised learning. 

• Explainable artificial intelligence: This part of 
research aims at building machine learning models that 
bring out the explanations for their prediction or 
decisions thereby making transparent and humane the 
whole process [16]. To begin with, it is not deeply 
coupled to a particular learning kind; rather, it is an 

approach that is attuned to making AI decisions clearer 
and more comprehensible across learning paradigms. 

• Federated learning: This is a distributed 
machine learning paradigm that helps parties to jointly 
train a machine learning model without such entities' 
direct access to their data [17]. It might refer to many 
kinds of learning, such as, but not limited to, supervised 
learning and unsupervised learning. 

• Imitation learning: The purpose of such 
replication is to train a model to imitate the behavior of 
others, normally resulting in the identical actions or 
results as ones who are being imitated. It is mostly about 
supervised learning. 

• Transfer learning: The point of this approach is 
that a model trained on the first task is repurposed and 
used as the model for a related task. The objective is that 
knowledge will transfer from the original task to the 
target task to the end that the model will perform better 
than if it was trained by scratch [18]. It relates to various 
ways of learning, such as supervised learning, 
unsupervised learning and reinforcement learning. 

Moreover, familiarization with deep learning (DL) 
algorithms is becoming trending lately as it is already 
adopted in several fields of technology including the field 
of autonomous cars. In Table 1, the basic properties of 
the most employed deep learning algorithms are shown.

 
Table 1. Main deep learning algorithms.  

Network Type Features Pros Cons Reference 

Convolutional Neural 
Networks (CNNs) 

Spatial hierarchies’ 
recognition, Weight 

sharing, Feature 
extraction 

Excellent for image and 
video analysis, Reduced 
parameters, Translation 

invariance 

Computationally intensive, 
Limited sequential 

processing 
[19] 

Long Short-Term 
Memory Networks 

(LSTMs) 

Sequential data 
modeling, Memory 

retention 

Effective for timeseries data, 
Longterm dependencies 

capture 

Training complexity, 
Computational demands 

[20] 

Recurrent Neural 
Networks (RNNs) 

Sequential 
information 
processing 

Suitable for sequential data 
modeling, Variable input 

lengths 

Vanishing and exploding 
gradient problems, Training 

instability 
[21] 

Generative 
Adversarial Networks 

(GANs) 

Generative modeling, 
Image synthesis 

Produces realistic data, 
Creative content generation 

Training instability, Mode 
collapse 

[22] 

Radial Basis Function 
Networks (RBFNs) 

Nonlinear mapping, 
Pattern recognition 

Fast training on fixed data 
sets, Good for radial 

symmetry 

Limited generalization, 
Sensitivity to kernel 

selection 
[23] 

Multilayer 
Perceptrons (MLPs) 

Universal function 
approximation 

Versatile and widely 
applicable, Good for complex 

problems 

Prone to overfitting, 
Sensitive to 

hyperparameters 
[24] 

Self-Organizing Maps 
(SOMs) 

Unsupervised 
learning, Topological 

mapping 

Dimensionality reduction, 
Clustering and visualization 

Fixed structure and size, 
Limited to input topology 

[25] 

Deep Belief Networks 
(DBNs) 

Layerwise 
unsupervised 

pretraining 

Effective feature learning, 
Probabilistic inference 

Computationally intensive, 
Training complexity 

[26] 

Restricted Boltzmann 
Machines (RBMs) 

Stochastic, generative 
learning 

Feature learning in 
unsupervised manner, 

Efficient pretraining 

Training complexity, 
Sensitive to 

hyperparameters 
[27] 

 
2.2. Blockchain 

 

Blockchain is a public database which can be adopted 
by several parties to record transaction activity on the 
distributed ledger. Record keeping for each entity is done 
through a cryptographic protocol. In each case, the 

transaction is recorded as a block, and then the chains of 
the blocks are connected to form an unbroken record of 
all the transactions on the blockchain. One of the crucial 
factors for blockchain is its distributed feature [1]. 
Instead of relying on a central authority to verify and 
validate transactions, a blockchain network relies on a 
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peer-to-peer network of computers to reach consensus 
on the state of the digital ledger. This makes it difficult to 
manipulate the record. 

Another important aspect of blockchain technology is 
its use of smart contracts, Figure 2. Smart contracts 
represent a key element of blockchain technology. They 
are autonomous contracts, with the terms of the 
agreement between the involved parties, such as a buyer 
and seller, encoded directly into the lines of code. This 
code, along with the enclosed agreements, is stored and 
duplicated within the blockchain network [28]. 

Among mathematical representations and 
equations widely used in smart contracts is 
cryptographic hash function [1] that takes an input and 
produces a fixed-size output. Mathematically, it can be 
represented as (Equation 5): 

 
ℎ = 𝐻(𝑚) (5) 

 
Where h is the hash value, and m is the input message. 
Furthermore, there are several different blockchain 

applications, such as the financial industry, supply chain 
management, and voting systems. Some of the key 
benefits of using blockchain technology include 
increased security, transparency, and efficiency. There 
has been a lot of research conducted on blockchain 

technology in recent years, with numerous papers being 
published on the subject. Some of the key areas of focus 
in these papers include the technical aspects of 
blockchain systems, their potential applications, and 
their economic and social impacts. Blocks and 
transactions are fundamental elements of blockchain 
technology, where blocks are digital containers of data, 
primarily consisting of transactions that document value 
exchanges across the network. Table 2 provides a 
comparison of the data elements included in blockchain 
blocks and transactions. 

 

 
Figure 2. Smart contracts. 

 
Table 2. Differences between blocks and transactions. 

 

 
Figure 3. Different types of Blockchain [29]. 

Feature Blocks Transactions 

Definition  
Collection of transactions bundled together and 

added to blockchain 
Record of specific exchange or transfer of data 

or value on blockchain 
Size  Larger than transactions Smaller than blocks 

Frequency of creation Created less frequently than transactions Created more frequently than blocks 
Data stored Hash of previous block, timestamp, transaction data Data specific to transaction being recorded 
Examples  Bitcoin block, Ethereum block Bitcoin transaction, Ethereum transaction 
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Blockchains can be classified into four types, Figure 3, 
based on their accessibility and control: 

• Public blockchains are open and decentralized, 
allowing anyone to participate and are secure.  

• Private blockchains are for a specific group or 
organization and access is restricted to authorized 
members.  

• Consortium blockchains are controlled by a pre-
selected group of organizations. 

• Hybrid blockchains combine the features of both 
public and private blockchains for a balance of security, 
privacy, and decentralization.  

In a blockchain network, participants are typically 
referred to as nodes. Blockchain nodes vary as users, 
miners, validators, or other participant types. The 
specific blockchain and consensus algorithm determine 
the node types. A consensus algorithm ensures network 
agreement on the shared ledger state. All blockchain 

network nodes must agree on the current state. Having 
the same blockchain copy across nodes is crucial. Any 
new added blocks require most nodes' agreement. This 
maintains a tamper-proof, secure, and accurate 
transaction record. When adding a new block, the 
consensus algorithm determines the allowed node. It 
also ensures other nodes validate the block. The process 
may involve complex math problem-solving. A majority 
vote approach could be used. A combination of methods 
is also possible [30]. Once a block is added, the consensus 
algorithm ensures that all nodes in the blockchain 
network have the same blockchain copy and reach a 
consensus on its current state. This mechanism is, hence, 
crucial for ensuring the blockchain's overall authenticity 
and trustworthiness, irrespective of the individual 
node's particular intentions to modify the blockchain at 
will or introduce fake information. Table 3 presents a 
comparison of main blockchain consensus algorithms. 

 
Table 3. Comparison of the main consensus algorithms. 

Algorithm Pros Cons 
Proof of Work (POW) [31] Widely used and well-known Energy-intensive 
Proof of Stake (POS) [32] Energy-efficient Can be subject to “nothing at stake” issue 

Delegated Proof of Stake (DPOS) [32] Fast transaction speeds Centralized decision-making 
Byzantine Fault Tolerance [33] Fast transaction speeds Requires a relatively small and known group of nodes 

 
2.3. Autonomous cars  

 
An autonomous vehicle has sensors that allow its 

environment to be perceived without the need of a 
human operator. The array of sensors and complex 
machine learning algorithms that the autonomous car is 
equipped with helps in discerning the immediate 
surroundings and predicting the road ahead. Based on 
the perception, the machine then navigates the road 
accordingly. The efforts of developing self-driving cars 
have been driven by several goals, such as lowering 
traffic accidents, enhancing fuel efficiency, and offering 
transport to the people who cannot drive. Potential 
economic benefits exist with autonomous car usage. Car 
ownership needs could reduce. More efficient road space 
utilization may occur. Significant research and 
development efforts are underway in this field. 

Intelligent transportation systems are a focus area. 
Currently, multiple companies test self-driving vehicles 
on public roads. However, there are also several 
technical and organizational challenges that must be 
overcome before autonomous cars can be widely 
deployed. These challenges include the need to improve 
the reliability and safety of autonomous systems, develop 
standards for their operation, and address concerns 
about cybersecurity and data privacy. One of the key 
technologies that enables autonomous cars to navigate 
their environment is sensors. These sensors include 
lidar, radar, and cameras, which are used to create a high-
resolution map of the car’s surroundings [34]. Figure 4 
provides a visual representation of the main tasks 
achieved by different sensors, while Table 4 summarizes 
the essential properties of the main sensors utilized in 
autonomous cars. 

 
Table 4. Sensor types in autonomous cars. 

Sensor Pros Cons Distance Reference 

Camera 
Wide field of view, high 

resolution, low cost 
Sensitive to lighting conditions, easily fooled 

by camouflage and other visual illusions 

Depends on 
camera 

resolution and 
zoom 

[36] 

Lidar High resolution and accuracy 
Relatively high cost, vulnerable to occlusion 

and interference from other lidar sources 
100-200 m [37] 

Infrared 
Camera 

Can operate in variety of 
lighting conditions, robust to 

visual illusions 

Limited range, sensitive to temperature 
changes, vulnerable to occlusion 

Depends on 
camera 

resolution 
[38] 

Ultrasound 
Can operate in variety of 

lighting conditions, relatively 
low cost 

Limited range, vulnerable to interference 
from other ultrasound sources 

1-5 m [39] 

Radio 
Frequency (RF) 

Wide range, relatively low 
cost 

Limited accuracy and resolution, vulnerable 
to interference from other RF sources 

Depends on 
antenna design 

[40] 

Dedicated 
Short-Range 

Communication 
(DSRC) 

Wide range, high accuracy, 
robust to interference 

Limited accuracy and resolution, vulnerable 
to interference from other RF sources 

1,000 m [41] 
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Figure 4. Different sensors used in autonomous cars [35]. 

 
Table 5. Sensor data fusion approaches for autonomous cars. 

Method Description Cons Pros Reference 

F-Cooper  

Uses fully convolutional neural network (FCN) to 
extract features from both camera and lidar data. 

Features are then fused using cooperative learning 
framework 

Not effective in complex 
environments 

Handles high-
dimensional data 

[42] 

V2VNet 

Uses RNN to model temporal dependencies 
between frames of camera data. RNN is then 

augmented with vehicle-to-vehicle (V2V) module 
that learns to fuse information from neighboring 

vehicles 

Computationally 
expensive 

Improves object 
detection and 

tracking 
[43] 

AttFuse 
Uses attention mechanisms to fuse features from 

camera, lidar, and radar data. The attention 
weights are learned in an end-to-end manner 

Sensitive to noise in 
data 

Improves object 
classification and 

localization 
[44] 

V2X-ViT 

Uses ViT (Vision Transformer) encoder to extract 
features from camera data and FiT (Fusion 
Transformer) decoder to fuse features with 

information from V2X communication 

Can be difficult to train. 
Improves situational 

awareness 
[45] 

CoBEVT 

Uses contrastive learning framework to learn 
representation of camera data that is invariant to 
ego-motion. Learned representation is then used 

for object detection and tracking 

Requires large amount 
of training data 

Improves robustness 
to ego-motion 

[46] 

No 
Fusion 

Simply concatenates features from camera, lidar, 
and radar data before feeding them into classifier 

or regressor 

Less effective than other 
fusion methods 

Simpler to 
implement. 

[47] 

Late 
Fusion 

Fuses features from camera, lidar, and radar data 
after they have been processed by separate 

networks 

More computationally 
expensive than early 

fusion. 

Preserves more 
information from 

original data sources 
[48] 

Early 
Fusion 

Fuses features from camera, lidar, and radar data 
at the raw data level before they are processed by 

any networks 

Less effective than other 
fusion methods when 
data sources are noisy 

or unreliable 

Less computationally 
expensive than late 

fusion 
[49] 

MACP 

Uses multi-attention fusion network to fuse 
features from camera, lidar, and radar data. The 
network uses multiple attention mechanisms to 
capture different types of relationships among 

features 

More complex to 
implement than other 

fusion methods 

Improves 
performance of 

autonomous vehicles 
in complex 

environments 

[50] 

 
Another important aspect required for autonomous 

cars is machine learning. Extensive efforts have been 
made in developing datasets of real driving scenarios for 
autonomous driving training, such as Kitti [51], Waymo 

Open [52] and V2V4Real [47] datasets. Other datasets, 
such as V2X-Sim [53] and OPV2V [54], are built using 
CARLA simulator [55] for different autonomous driving 
scenarios. Also, machine learning algorithms allow the 
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car to analyze and fuse data from its different sensors, 
and then make decisions accordingly. Table 5 shows 
some utilized approaches for sensor data fusion in 
autonomous cars. Machine learning and blockchain 
techniques can further contribute to countermeasures 
strategies against security vulnerabilities in autonomous 
cars and vehicles. These can be intra-vehicle threats 
associated with engine control, transmission units, 
temperature control, and various Electronic Control 
Units (ECUs), or Vehicle-to-everything (V2X) threats, 
which include a spectrum of cyber threats, including DoS 
attacks, black-hole attacks, replay attacks, Sybil attacks, 
malware infiltration, falsified-information attacks, 
timing attacks, and impersonation attacks in V2X 
communications. Recent surveys [56, 57] provide a 
detailed exploration of security vulnerabilities and their 
countermeasure strategies using blockchain and 
machine learning technologies in Connected 
Autonomous Vehicles (CAVs).  

Furthermore, mathematical models play a crucial role 
in the decision-making processes of autonomous 
vehicles. There are several models employed in various 
aspects of decision-making, such as path planning, 
control, and prediction. Here are three prominent models 
used in autonomous vehicle decision-making: 
1. Probabilistic Models [58]: Probabilistic models 
are used to represent and reason about uncertain 
information, such as sensor noise, localization errors, 
and prediction of other road users’ behavior. Bayesian 
networks, Markov Decision Processes (MDPs), and 
Partially Observable Markov Decision Processes 
(POMDPs) are examples of probabilistic models 
employed in autonomous driving. For example, in an 
MDP, the decision-making problem is modeled as a tuple 
(S,A,P,R), where S is a set of states, A is a set of actions. 
P(s'|s,a) is the transition probability function, which 
represents the probability of reaching state s' from state 
s when taking action a. R(s,a) is the reward function, 
which assigns a numerical value to each state-action pair. 
The goal in an MDP is to find a policy (a mapping from 
states to actions) that maximizes the expected 
cumulative reward over time.  
2. Optimization-based Models: Optimization-
based models are used to find optimal trajectories and 
control actions that minimize a cost function while 
satisfying constraints, such as vehicle dynamics, road 
geometry, and traffic rules. Examples of optimization-
based models include Model Predictive Control (MPC), 
convex optimization, and Mixed-Integer Linear 
Programming (MILP). For example, in an MPC 
framework, the decision-making problem can be 
formulated as an optimization problem as follows 
(Equation 6-9). 

 

Minimize J(x, u) (6) 
Subject to  
x' = f(x,u) (7) 

  
g(x,u) ≤ 0 (8) 

  
h(x,u) = 0 (9) 

 

where x represents the state vector, u represents the 
control input vector, J(x,u) is the cost function to be 
minimized, f(x,u) represents the state dynamics equation 
that describes the evolution of the state vector over time, 
g(x,u) represents constraints on the states and control 
inputs, ensuring they satisfy certain conditions, and 
h(x,u) represents any additional problem-specific 
constraints that need to be satisfied. The optimization 
problem aims to find the values of x and u that minimize 
the cost function J while satisfying the given constraints. 
The specific form of the cost function, state dynamics 
equation, and constraints would depend on the 
optimization-based model being used. 

3. Graph-based Models [59]: Graph-based models 
are employed in path planning and route selection tasks 
in autonomous vehicles. The road network, traffic, and 
vehicle states are represented as graphs, and graph 
search algorithms, such as Dijkstra's, A*, or RRT (Rapidly 
exploring Random Trees), are used to find optimal paths 
or routes. 

Figure 5 provides a flowchart for high-level overview 
of the decision-making process used by an autonomous 
car. The process of autonomous driving involves several 
key steps, which can be broadly categorized into 
perception, prediction, planning, control, actuation, and 
monitoring. In the perception phase, data are collected 
from various sensors to identify and track objects in the 
environment. The motion of other road users and 
changes in traffic lights are estimated in the prediction 
phase. In the planning phase, the optimal route and path 
are determined, and the desired vehicle motion is 
calculated. In the control stage, control inputs are 
calculated to achieve the desired motion, and these 
inputs are applied to the vehicle's actuators in the 
actuation stage. Finally, the system is continuously 
monitored and updated in real-time based on sensor 
data, and errors or unexpected situations are detected 
and handled appropriately. Overall, the flowchart 
provides a valuable way for understanding how an 
autonomous car navigates the road and makes decisions 
that prioritize the safety of pedestrians and other drivers 
on the road. Moreover, such or similar decision-making 
process is utilized in most autonomous vehicles for 
different purposes, such as self-driving cars, small 
cleaner robots [60] or autonomous drones [61, 62].  

 Many studies have utilized different machine 
learning algorithms for autonomous cars and 
autonomous driving systems. In [63], the authors 
provide an in-depth discussion of various deep learning 
approaches such as Convolutional Neural Networks 
(CNNs), Long Short-Term Memory (LSTM) and 
Generative Adversarial Networks (GANs) and their 
application in self-driving cars through case studies. The 
paper provides a comprehensive overview of the 
considerations and challenges of developing self-driving 
car systems using deep learning techniques. However, 
this paper focuses specifically on the use of deep learning 
and does not provide a complete analysis of other 
technologies or approaches used in autonomous driving 
systems. Another paper [64] presents a system for real-
time obstacle detection and tracking for autonomous 
driving. This paper also talked about the sensors and 
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Figure 5. Flowchart of decision-making process in an autonomous car. 

 
algorithms used. However, this paper focuses specifically 
on the problem of obstacle detection and tracking in 

autonomous driving and does not provide a 
comprehensive overview of other aspects of autonomous 
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driving systems. When it comes to improving the 
autonomous driving systems, the bigger challenge is the 
amount of data required for learning. However, the 
authors in [65] discuss the problems such as overfitting 
and difficulty transferring models between different 
environments and to overcome these challenges, they 
provide an overview of several proposed solutions, 
including data augmentation, transfer learning, and 
active learning. Also, the authors suggest future 
directions of using deep learning techniques in 
autonomous driving by integrating other different 
technologies, such as edge computing and the internet of 
things. 

To improve the efficiency of lane changing, the 
authors in [66] provide a machine learning-based 
approach for lane change intention awareness in assisted 
and automated driving. An autonomous vehicle learns to 
predict the lane change intentions of surrounding 
vehicles by analyzing their motion patterns and 
contextual information. Kendall et al. [67] present 
another example of machine learning-based approaches, 
where an autonomous vehicle learns to drive through 
interaction with the environment, receiving rewards or 
penalties. The paper is devoted to assessing the abilities 
of machine learning-based autonomous driving system 
using situations, such as like lane switching, lane merging 
and intersection moving. In [68], the authors investigate 
about the use of Deep RL (DRL) in the driverless vehicle 
systems. They provide various applications of DRL for 
autonomous driving systems, such as perception, 
decision making, controlling systems. Nevertheless, the 
employment of DRL in autonomous driving would 
require quite a big amount of data and computational 
capability which can result in systems that are more 
complicated and expensive. Similarly, Ni et al. [69] 
review the key applications of DRL in autonomous 
driving and the various evaluation metrics used to 
improve their performance.  

However, all previous studies did not consider or 
benefit from blockchain technology for developing 
autonomous car systems or intelligent transportation 
systems. 

 
3. Integration of blockchain in intelligent 

transportation systems 
 

3.1. Blockchain and internet of vehicles 
 
The incorporation of blockchain technology into the 

Internet of Vehicles (IoV) yields comprehensive 
solutions to security, privacy, and trust related problems, 
which are all vital to lessen IT intricacies in this domain. 
In [70], Chen et al suggested a hybrid approach for data 
trading in IoV that is based on both blockchain as well as 
edge computing. Blockchain is the basis for security and 
decentralization while edge computing allows for faster 
data processing. This technique prefers blockchain to 
keep track of data consistency and provide dynamic data 
exchange support among vehicles. In the same way, the 
authors from [71] propose a blockchain-based 
information sharing scheme for IoV with a data storage 
module, a data sharing module and a data access control 
module. Through the utilization of smart contracts, they 

were able to increase the smartness within their existing 
data sharing processes and implement various access 
control policies that regulate who can access to the 
shared data. Employing the blockchain for building trust 
management can help establish trust management 
among members in vehicular ecosystem by making 
transaction data transparent as well as immutable. 
Applications of blockchain in trust management and 
challenges with blockchain for vehicular networks were 
explored in [72], including the use of public, private and 
consortium blockchain. However, using blockchain for 
trust management may not be the best way or it still 
needs more studies. This is because of the 
implementation and maintenance costs and the need to 
secure trust data privacy, which is provided in more 
detail in [73]. The authors also explore decentralized 
decision-making algorithms and reputation systems for 
determining the trustworthiness of vehicles using 
blockchain-stored data. Additionally, the authors in [74] 
proposed a decentralized blockchain-based trust 
management framework for the IoV that uses smart 
contracts to automate the trust management process. In 
terms of communication, blockchain technology has been 
proposed for enabling secure and trusted 
communication among vehicles in the IoV. 

While other work has elaborated the positive 
implications of blockchain technology for data sharing, 
Vattaparambil et al. [75] have also addressed the 
technical challenges and particularities of data sharing 
and trading among connected cars. The above paper 
discusses the improved connected car environment's 
new challenges, such as the data security and trust, which 
are vital for the whole system efficiency, and can be used 
for malicious attack purposes. Blockchain is a 
revolutionary technology that enables its application in 
the autonomous car’s ecosystem, like the management of 
computing resources. Lin, et al. [76] introduced the 
application of a blockchain-based platform for the 
sharing of on-demand computing resources between 
each other in the case of smart cities. Among others is the 
application of smart contracts to regulate the resource 
management between the cars and other devices 
thereby, as well the use of distributed ledgers for the 
security and transparency of the resource trading 
process. Additionally, they discussed different challenges 
and the solution limitations, and they made a 
performance analysis demonstrating the effectiveness of 
their system. 

To develop scalable, highly efficient, and highly safe 
blockchain-structured devices for IoV, it is imperative to 
develop the complete framework that allows the 
optimization of the blockchain use in IoV. The system 
utilizes a concept of technical optimization to solve 
issues of scalability, efficiency and the security, which 
typically crop up when we are designing the IoV 
blockchain. Being able to gain a perspective of the unique 
aspects that make the environment stand out like the 
need for scalability and interoperability and this 
framework can draw a solution that is specific to this 
application. Xu et al. [77] have applied edge servers to 
support the decentralized nature of blockchain-based 
communications in IoV to facilitate the local processing 
and help reduce the amount of data that needs to be 
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transmitted. This improves the overall performance of 
the system and also enables the secure and reliable data 
exchange among vehicles and other participants. The 
paper provides the proposed system architecture and 
each of its components, such as the blockchain, edge 
server deployment algorithms, and the performance 
optimization issues. 

Consequently, blockchain can also be leveraged for 
establishing systems that manage the charging stations 
for electric self-driving vehicles, as in [78]. The writers 
presented a framework of blockchain-powered software 
that would deliver charging electric cars in a secure way, 
and also allow sharing of charging resources among 
different vehicles. Smart contracts helped them to do the 
charging resources management in an automatic and 
direct manner. This reduces the need for manual 
intervention and improves the speed and accuracy of 
resource allocation. Also, the use of a consortium 
blockchain enables the system to scale to large numbers 
of charging stations and vehicles. It is worth noting that 
implementing a blockchain-based software system may 
require significant investment in terms of software 
development and infrastructure. There may also be 
regulatory or legal challenges associated with the 
utilization of blockchain in managing charging resources 
for electric self-driving cars. 

However, very few surveys are recently available in 
the literature that discuss the application of blockchain 
in IoVs and Intelligent Transportation Systems (ITSs) 
[79,80]. Mollah et al. [79] conducted a survey on the 
latest advancements in blockchain for IoVs, highlighting 
different application scenarios and investigating key 
challenges where blockchain is applied in IoVs. They also 
discussed future opportunities and further research 
directions. The article emphasizes that the underlying 
platform of IoVs for information exchange needs to be 
transparent, secure, and immutable to achieve its 
required objectives. In [80], the authors systematically 
reviewed applications of blockchain in ITSs and 
identified several challenges in the realm of vehicular 
networks and suggested potential future research 
directions. Future research paths outlined by the authors 
encompass enhancing security against Distributed 
Denial of Service (DDoS) attacks, thorough analysis of the 
architectures, limitations and challenges of the IoVs as a 
pivotal facilitator of ITSs, and a focus on data 
management in smart cars. They foresaw that enhancing 
blockchain performance will be a significant area of 
interest in the future, particularly as Blockchain-based 
IoV (BIoV), with broader applications. They also explored 
blockchain role in vehicular network cybersecurity and 
assessed the cybersecurity threats in these networks. 
However, recent advancements in fifth Generation (5G) 
technology, big data analytics, and machine learning 
were not considered.  

 
3.2. Integration of blockchain and machine 

learning for autonomous cars 
 
The rise of autonomous cars and their intelligence 

capabilities has brought new challenges in data sharing 
and security. Blockchain, as decentralized and tamper-
proof technology, can address these challenges in a 

secure and efficient way. In [81,82], the authors propose 
the utilization of blockchain technology to accelerate the 
training of autonomous cars. Blockchain technology by 
itself can be used as an infrastructure for securing the 
storage devices to store the bulk data requirement of the 
self-driven vehicles. Moreover, blockchain has opened up 
new ways of trusting and reconciling the authenticity and 
integrity of the underlying data.  

In the context of supply chain management, the 
combination of reinforcement learning together with a 
heuristic search method was explored in [83]. Their 
purpose was improving the self-driving vehicles routing 
optimization in a supply chain management system, 
which would use blockchain technology. The paper has a 
different perspective which is the use of reinforcement 
learning and heuristic search for routing optimization of 
autonomous vehicles. The blockchain technology is going 
to be employed to create an infrastructure for the storage 
and sharing of data emanating from vehicles routing as 
well as for verification of their authenticity and integrity. 
In addition to this, Liu et al. [84] proposed a strategy 
based on blockchain technology and deep reinforcement 
learning to enhance the Industrial IoT (IIoT) systems in 
terms of data collection and sharing. An innovation with 
blockchain technology and deep reinforcement learning 
as a solution for data collection and sharing in industrial 
internet of things systems. Performance optimization of 
blockchain-integrated IIoT systems was the main 
concern of [85], which describes a DRL approach for 
improving the performance of blockchain-enabled IIoT 
systems. This paper focused on blockchain usage in IIoT 
rather than in vehicular networks. However, the use of 
deep reinforcement learning in such systems can be very 
useful to adjust the balance between decentralization 
and performance in IIoT systems. 

Furthermore, blockchain technology in the context of 
federated learning for connected and autonomous 
vehicles was considered by He et al. [86]. That is, an 
autonomous car learning from the combined collective 
data of any given car while retaining the privacy of each 
individual vehicle data. The smart contracts technology 
was used behind the scenes to offer an automatic and 
transaction neutral exchange of data among cars. 
Moreover, smart contracts were implemented to 
guarantee the integrity of the data exchange. The paper 
showed a predictable architecture of federated learning 
for connected and autonomous vehicles, covering its 
advantages and disadvantages. 

The authors in [87] examined the incorporation of 
Autonomous Vehicles (AVs) into our daily lives in 
numerous forms, such as autonomous drone delivery 
systems, driverless cars, automated vehicles in 
warehouses, autonomous home assistant devices, and 
Automated Eligibility Verification System (AEVS) for 
green energy solutions. The type, usage, and application 
of these vehicles largely depend on the level of their 
automation. The authors discussed the progression and 
feasibility of integrating advanced technologies like 
blockchain, Industry 4.0, AI, and IoT into these vehicles. 
They provided a comparative analysis of different types 
of autonomous vehicles and their various features, 
including private blockchain autonomous vehicles, 
public blockchain autonomous vehicles, and electric 
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vehicles. The study also investigated the potential of 
integrating blockchain technology with networked 
groups of Unmanned Aerial Vehicles (UAVs) and the 
application of blockchain-based mutual-healing group 
key distribution schemes in UAV ad-hoc networks. 

Overall, Table 6 summarizes the objectives, 
contributions, and important considerations of the 
relevant papers that propose blockchain-based 
techniques for solving privacy, trust and security issues 
in the internet of vehicles, vehicular networks, and 

autonomous car systems. The proposed solutions, as 
seen in Table 6, include secure and scalable 
communication protocols, trust management 
frameworks, data sharing schemes, and reinforcement 
learning-based optimization methods. Each paper in the 
table discusses important considerations, such as the 
trade-off between security and efficiency, the reliance on 
cloud computing, evaluation techniques, the scalability, 
and performance limitations of the blockchain 
technology. 

 
Table 6. Relevant research papers summary. 

Reference Objective Method Important considerations 

[75] 
Secure and scalable 

vehicular 
communication protocol  

Presents a protocol using blockchain to 
secure communication in vehicular 

networks and discusses its performance 

Protocol evaluated through simulations. 
Results-protocol outperforms existing 

approaches in terms of security and 
scalability 

[74] 
Decentralized 

blockchain-based trust 
management 

Uses decentralized blockchain network 
and trust evaluation model to enable 
secure and trusted communication 

among vehicles in IoV 

Effectiveness of proposed framework 
evaluated through simulations 

[71] 
Efficient and secure 

blockchain-based data 

Uses decentralized blockchain network 
to enable efficient and secure data 

sharing among vehicles in IoV 

Efficiency and security of proposed 
scheme evaluated through simulations 

[70] 
Secure and scalable data 
sharing scheme for IoV 

Uses blockchain-based trust model and 
cloud computing-based data storage and 

retrieval system 

Reliance on cloud computing. Availability 
and reliability of cloud may impact overall 

performance 

[81] 

Blockchain-based 
system for training 

autonomous cars using 
AI 

Uses blockchain to securely store and 
share data for training autonomous car 

AI model 

Efficiency of AI model should be carefully 
evaluated. Scalability and security of 

blockchain-based data sharing system 
should also be considered 

[82] 

Blockchain-based 
system for training 

autonomous cars using 
ML 

Proposes using blockchain to securely 
store and share data for training 

autonomous car ML model 

Efficiency of ML model should be carefully 
evaluated. No real model was given  

[83] 

Reinforcement learning 
(RL)-based method for 

optimizing routes of 
self-driving vehicles  

Uses RL to learn and adapt to changing 
conditions. Uses a heuristic search 

method to find optimal routes. Uses 
blockchain to store and share data in 

supply chain securely 

Performance of RL should be carefully 
evaluated. Scalability and security of 

blockchain-based data sharing system 
should also be considered 

[79] 

Overview of current 
research on blockchain 
in Internet of Vehicles 
(IoV) and intelligent 

transportation systems 
(ITS) 

Reviews various use cases, applications, 
architectures, challenges and future 
trends of blockchain in IoV and ITS 

Underlying platform of IoV for 
information exchange needs to be 

transparent, secure, and immutable to 
achieve required objectives 

[76] 
Blockchain-based data 
sharing and resource 

trading model  

Presents data sharing and trading model 
utilizes blockchain between connected 
cars and third parties. Model includes 

smart contract-based data trading 

Potential benefits of model, including 
security, privacy, and data ownership. 

Challenges need to be addressed in 
practice 

[72] 

Comprehensive review 
of existing solutions for 

privacy, security and 
trust management 

issues 

Presents overview of challenges and 
opportunities in application of 

blockchain in vehicular networks. 
Discusses various techniques for 

addressing these challenges 

Further research in privacy-preserving 
blockchain design, and efficient and 
secure consensus mechanisms for 

vehicular networks needed. Does not 
consider scalability and performance 

limitations in large-scale vehicular 
networks 

[80] 
Systematic review for 

blockchain applications 
in ITSs 

Uses private blockchain and deep RL for 
secure content caching in vehicular 

networks 

Need for enhancing security against DDoS 
attacks, limitations and challenges of IoV, 

data management in smart cars, 
blockchain-based cybersecurity 

[87] 

Advances and trends of 
using blockchain in 

Autonomous Vehicles 
(AVs)  

Comparative analysis of different types 
of autonomous vehicles, potential 

utilization of blockchain technology in 
networked AVs 

Level of automation determining AV type, 
usage, and application of vehicles. Very 

wide spectrum of different AVs and 
application trends without focus on 

integration techniques  
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4. Challenges of integrating blockchain with 
autonomous cars 

 
Along with the blockchain technology prospective 

benefits for self-driven vehicles, there are some 
challenges and issues to consider as well to fully leverage 
their impact. The challenge of scaling and performing 
stage is resulted from the growth of vehicles in networks 
that eventually enlarges the size of the blockchain and 
the computational power necessary to compute 
transactions. In this case, the transactions are run so slow 
and the latency highly increased that autonomous 
vehicles are inefficient and even dangerous. Autonomous 
vehicles have a challenge in reliability too, where they 
should run virtually error-free and with continuous 
availability. In case of failures or hacks, the blockchain 
network used for the cars would undermine platform 

safety as well as the operation functionality. Privacy and 
security are also among the major issues, because the 
central system of autonomous vehicles stores a lot of 
critical data, which may become available for unreliable 
or malicious users. Privacy is needed in autonomous 
vehicles, as they utilize anonymity and confidentiality to 
shield passengers’ identity and location. The process of 
regulatory and legal compliance as well as maintaining 
the evolving standards and laws set in this integration is 
complex. This implies that those involved in the 
blockchain, and autonomous cars integration have to 
adhere to data protection laws and other cybersecurity 
regulations, among other road safety regulations. 

Figure 6 provides the major challenges and 
considerations of blockchain, artificial intelligence and 
the convergence between them for intelligent 
transportation systems [88]. 

 

 
Figure 6. Main challenges in the applications of blockchain, AI, and their convergence for ITSs [88]. 

 
Factors that make blockchain challenging include 

security and privacy as well as data storage, throughput, 
data consistency, scalability, mobility, interoperability, 
key management, and standardization. On the AI side of 
the matter, the related questions involve giving 
explanatory insights to stakeholders, directing the 
abilities of AI, guaranteeing data integrity, coordinating 
data aggregation and, lastly, trying to achieve the highest 
possible optimality solutions. Other issues, such as 

bringing computational costs under control, opting for 
the right strategies to be used alongside the autonomous 
vehicles, issues of security are among the few obstacles. 
Their convergence is a double-edged sword affecting 
both opportunities and the formulation of new 
challenges and considerations. Such complexity is 
concerned with among others, ensuring security and 
privacy of data as well as limited data accessibility in the 
same process, storage problem, and smart contract 
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system. Besides this, one must also examine the general 
implications in terms of the economy and policy and 
regulatory problems.  

In this context, researches are working out different 
alternatives by which blockchain and autonomous 
vehicle technologies can work together. As such, 
blockchain could be deployed as an imperative trust 
management system for vehicle components, e.g. 
sensors, control systems and networks. It will also 
contribute in enhancing the security and reliability of 
autonomous cars. Additionally, reinforcement learning 
in conjunction with heuristic search methods can be 
employed to enhance the routes that autonomy vehicles 
will take within the supply chain management system. 
This helps in improving efficiencies and reducing the 
related costs. Blockchain-facilitated data collection and 
access can drive the improvement in the quality and 
reliability of the data used for autonomous vehicle 
learning process, which in turn increases the safety and 
excellence of their performance. Blockchain is not only 
used in data management and sharing models but also in 
trading models for connected cars. This technology can 
enable IoV-based smart city, on-demand computing 
resource trading and edge deployment schemes. The 
directions for the usage of blockchain technology have 
the possibility to stimulate the understanding of the 
intelligent transportation systems and autonomous 
vehicles however the challenges and limitations of the 
integration of the blockchain with these complex and 
safety-critical systems must be taken very cautiously into 
consideration. 

 
5. Conclusion  
 

Integration of blockchain and machine learning for 
autonomous cars is the uprising field with the capability 
to bring revolution in the field of self-driving vehicles 
with respect to safety, efficiency and security. So, this 
survey was built around three technologies: machine 
learning, blockchain and self-driving cars, studying how 
they work and interconnect. The covered literature also 
revealed that such integrations shall be applied in a 
multitude of ways in various fields, such as the training 
of self-driving vehicles and optimizing transportation 
routes in the supply chain management. The integration 
of the last-mentioned technologies with blockchain was 
presented as an innovative approach to address the 
challenges peculiar to autonomous cars, the internet of 
vehicles and intelligent transport systems. Additionally, 
the study ventured into federal learning, offering a 
secure approach on how connected cars can 
collaboratively enhance their models whilst still 
individual user’s data privacy. Although the prospects 
were numerous, various challenges were encountered, 
such as operational challenges, technical issues, and the 
ideal balance between safety and efficiency. The 
blockchain technology has enabled transparency that 
raises privacy considerations for autonomous vehicles; 
they require anonymity and confidentiality for their 
operations. Besides the fact that legal space contributes 
to complexity, it is necessary to follow the changing rules 
and regulation in the field of data protection, 
cybersecurity, and road safety.The future research 

should be centered on creating scalable solutions that 
can be quickly replicated accordingly to fit the ever-
increasing number of vehicles in the network. During the 
process, safety and efficiency should be taken into 
consideration for the sake of development of smart 
transport systems. Moreover, to ensure service stability, 
unconditional failure prevention and security protection 
mechanisms should be deployed. In addition to the 
privacy-preserving blockchain designs tailored for large-
scale networks, further work on the vehicular network 
should be prioritized for the automobile industry. 
Alongside this is the need for cooperative efforts among 
researchers, industry representatives, and policymakers 
who can create awareness, and understanding of the 
broad aspects concerning the integration of technology, 
legality, and societal implications. 
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