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Abstract — In this paper we introduce some properties and results for trans-Sasakian structures on
indefinite Finsler manifolds and give the examples of such manifolds. These structures are established
on the (M®)" and (M°)” vector subbundles, where M is an (2n + 1) dimensional C* manifold, M° =
(MO" @ (M°)? is a non-empty open submanifold of TM. F* is the fundamental Finsler function
B —Kenmotsu manifold,  5nq pan+1 = (M, M° F*) is an indefinite Finsler manifold. We use the Sasaki Finsler metric G =
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Pseudo-Finsler metric, G + G = gl dx' @ dx’ + gf; 6y' ® Sy'. Furthermore, we give some formulas for o —Sasakian
Indefinite Finsler and B —Kenmotsu Finsler manifolds with pseudo-Finsler metric. Finally, it is shown that the
manifold conformally flat trans-Sasakian indefinite Finsler manifolds ((M®)", ¢H, &H nH,GH) and

(M%7, ¢V, &Y, 1",GY) are the n — Einstein manifolds if and only ifa.§ = 0, where «,f are
constant functions defined on (M®)" and (M°)?.

Subject Classification (2020): 53B30, 53B35, 53B40

1. Introduction

Oubina introduced the idea of trans-Sasakian manifold of classification (a,3). Indefinite Sasakian
manifold is a notable category of indefinite trans-Sasakian manifold for a=1, =0. Also, indefinite
cosymplectic manifold is the other category of indefinite trans-Sasakian manifold for a=0, B=0.
Indefinite Kenmotsu manifold is given with a=0, f=1. M. D. Siddiqi, A. N. Siddiqui and O. Bahadir study
the trans-Sasakian manifolds with a quarter-symmetric nonmetric connection [12]. R. Prasad, U. K.
Gautam, J. Prakash and A. K. Rai study (¢)—Lorentzian trans-Sasakian manifolds [16].

The papers interested in contact structures with Riemannian metric or pseudo-Riemannian metric but
in this paper, we are also related to the contact structures with pseudo-Finsler metric.

After Finsler published his thesis about curves and surfaces, a lot of articles are dedicated to Finsler
geometry, see references [4, 5, 10, 13, 14, 15] but the theory of indefinite Finsler manifold has been
investigated by few researchers [1, 2, 7, 8, 9]. We also make reference to the reader to the recent
monograph for detailed information in this field.

Hence, our aim is to present trans-Sasakian indefinite Finsler manifolds and to obtain the formulas for
a —Sasakian and f —Kenmotsu indefinite Finsler manifolds. The paper is organized as follows: after

laysefunda.saglamer@dpu.edu.tr (Corresponding Author); 2 hilalfidan43@gmail.com
12 Department of Mathematics, Faculty of Art and Science, Dumlupinar University, Kiitahya, TURKEY
Article History: Received: 26.10.2023 — Accepted: 19.02.2024 — Published: 28.04.2024


mailto:aysefunda.saglamer@dpu.edu.tr
https://orcid.org/0000-0001-5162-6378
https://orcid.org/0000-0003-3418-6627
https://dergipark.org.tr/tr/pub/ikjm
https://doi.org/10.54286/ikjm.1378951

A.F, Saglamer et al. / IKIM/ 6(1) (2024) 9-20 10

introduction and background, we give some preliminaries about indefinite Finsler manifolds. Then, we
deal with the trans-Sasakian indefinite Finsler manifolds, @ —Sasakian and f —Kenmotsu indefinite
Finsler manifolds. Finally, it is shown that the conformally flat trans-Sasakian indefinite Finsler
manifolds (MO, pH, 1 pH, GH) and (M%7, ¢V, &V, nY,G") are then —
Einstein manifolds if and only if @. § = 0, where aandf are constant functions defined on
(M%" and (M%)V.

2. Preliminaries

2.1. Indefinite Finsler Manifolds

Let M be a real (2n + 1) — dimensional smooth manifold and TM be the tangent bundle of M. A
coordinate system in M can be stated with {(U, ¢):x}, ..., x?2™*1}, where U is an open subset of M; for
anyx € U, p: U - R?"*1 js a diffeomorphism of U onto ¢ (U),and ¢(x) = (x1,...,x2"*1).0n M, denote
by 7 the canonical projection of TM and by T, M the fibre, at x € M, i.e., T,M = m~1(x). Through the
coordinate system {(U,¢):x'} in M, we can describe a new coordinate system
{(U", @); x, ..., x2"*1 y1, ., y2"* 1} or shortly {(U*, ®):x',¥' } in TM, where U* = n=1(U) and &: U* -
R*"*2 js a diffeomorphism of U* on ¢(U) x R?™*! and ®(y,) = (x3,...,x2"*1,y1, .., y2**1) for any
x € U and y, € T, M. Let M° be a non-empty open submanifold of TM such that r(M°) = M and 8(M) N
M° = @, where 6 is the zero section of TM. Assume that M2 = T, M n M° is a positive conic set, for any
k >0 andy € M2. we have ky € MQ. Obviously, the largest M° holding the above circumstances is
TM \ 8(M), ordinarily given with the description of a Finsler manifold.

We now consider a smooth function F: M® - (0,) and take F* = F2. Then suppose that for any
coordinate system {(UO, ®02); xt,yt } in MY, the following conditions are fulfilled:

(F1) F is positively homogenous of degree one regarding (y?, ..., y?™*1),i.e., we get, for all k > 0 and
(x,y) € ®°(UY),

F(Oxl, o, x? L kyt, L ky? ) = Kk F(xL, . x2 L ) L, y20t )

(F2) At any point (x,y) € ®°(U?),

ZF*

gij(x,y) =5 (x,y), i,j €{1,2,..,2n+ 1}

are the components of a positive definite quadratic form on R?"**+1,

We say that the triple F2"**1 = (M, M° F) is a Finsler manifold, and F is the fundamental function of
F2n+1_

Certainly, condition (F2) is not appropriate for some applications of Finsler geometry. To remove this
inconvenience we consider a positive integer 0 < ¢ < 2n+ 1, and a smooth function F*: M? - R,
where M°is as above. Moreover, suppose that for any coordinate system {(U°, ®°); x,y* } in M°, the
following conditions are fulfilled:

(F1*) F* is positively homogenous of degree two regarding (v, ...,y?"*1), we get, for all k > 0 and
(x,y) € ®°(U®),

F*(xl, o, x? L kyt, L ky?™ ) = k2F*(xt, L, x2 Lyt L 2D

(F2*) Atall point (x,y) € ®°(U?),

0°F*
gij(x,y) =5

(x,y), i,je{1,2,..2n+ 1}
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are the components of a quadratic form on R?"*1 with (2n + 1) — q positive eigenvalues and q negative
eigenvalues (0 < g < 2n + 1). In this state F2"*1 = (M, M°, F*) is called indefinite Finsler manifolds
with index q. Particularly, if chosing g = 1, we get Lorentzian indefinite Finsler manifolds [2].

Consider the structure of F2"*1 = (M, M°, F*) indefinite Finsler manifold with index g. Then the tangent
mapping m,: TM® - TM of the submersion m: M°—>M and define the vector bundle (TM°)V = kerm,. As
locally, mh(x,y) = xt, we obtain

% (aa]) &} and m! (aa]) =0, on the coordinate neighborhood U° c M°. Thus, {il} is a basis of

ay

r ((TMO)Vluo). We call (TM®)V the vertical vector bundle of F2"*1, Locally, on a coordinate
neighborhood U c M°. we have
XV =Xi(x,y) 3
of (TM®)V. Thus a Finsler 1-form is smooth section of (T*M°)V. Assume {8y?, ..., 5y?™*1}is a dual basis

to {aiyl’“ ayfnﬂ} ie., 8y! ( ) 5‘ Then each forw € (T*M°)V, w” = wi(x,y) 6y‘, where wi(x, y) =

w (%) 1, 2].

The complementary distribution (TM®)¥ to (TM°)" in TM? is said a horizontal distribution (non- linear
connection) on M°. Thus we can write

TM® = (TM®)* @ (TM°)"

where X! smooth functions on U°. After we denote by (T*M°) the dual vector bundle

) 1)
Sxl’ ) §x2ntl
5 9 ;0

Sxi oxt ¢ 6_yJ

The set of the local vector fields { is a basis in T((TM°)*). Then

Let X be a vector field on M°. Then locally we get

X=X— d + X — o
Sxt ayt
Clearly, for X!(x,y) = 0, we obtain the subbundle of (M®)"* c M° and for X(x,y) = 0, we obtain the
s s s
subbundle of (M°)” c M°. Suppose {dx?,...,dx?"*1} is a dual basis to {5 -, .. ’W} ie, dx! (5 1) =

&}. Then eachw € I'(T*M®)" is locally written as w/ = W;(x, y)dx', where W; = w; — N/w;. Thus we

can write
Syt = dy' + Nji(x, y)dx’
Consider a w, 1-form, then
w = W;(x, y)dx'+w;(x,y) 6y’
Also, w(XV) = 0,w¥(X") = 0, wherew = wf + w¥ [2].
Definition 2.1. A Finsler connection is a linear connection V= FT with the property that the horizontal
linear space (T(x_y)MO)H, (x,y) € MP° of the distribution N is parallel with respect to V.

Similarly, a Finsler connection is called linear connection V= FI' with the vertical linear space

(T(x,y)MO)V, (x,y) € MP° of the distribution N parallel relative to V.

Necessary and sulfficient condition for linear connection V on M° to be Finsler connection is

(WYY =0, (")
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VyY = VEYH + 7)YV
foreach X,Y € T(y,,)M°.
Vyw = VEWH + 7Y wY

forallw € T(, ... M°[15].

Let V be a Finsler connection and the curvature of this connection is given with the below equation.
R(X,Y)Z = VyWyZ — VyVxZ — Vixy)Z = RE(X", Y ZH + RV (X", YV)Z"
where X,Y,Z € T(,, M° [14].

Theorem 2.1. The curvature of a Finsler connection V on T(x,y)MO is totally stated with the following
Finsler tensor fields equations:

RHE(XH,YMZH = VynVynZH — VynVynZ" = Viyn yuy 2%
RV XV, Y)Z" = VyVyZ" = VyVywZ" = Viyv 2"
[14].
2.2. Almost Contact Pseudo-Metric Finsler Structures

Consider tensor field ¢, 1-form n and vector field ¢ given as below:

="+ 0" = ¢/ (x,) ;- @ dxl + ] (x,) 7 ® 5y @1)
n=n"+n"=n(x,y)dx" +7,(x,y)8y" (2.2)
i S & a
f=§H+fv=f(x'Y)5—m+f(x'3’)a—yi (2.3)
Then, we can write the following statements.

(@")2xXH = X" + 9" (X") &1, ()XY = X" + " (X") &Y (2.4)

@M =n"¢" =1 (2.5)

"M =¢"E")=0 (2.6)

nfeph=n"op" =0 2.7)

rank(¢pt) = rank(¢pV) = 2n (2.8)

Thus, (¢, &%, nM) and (¢",£Y,n") are called the almost contact Finsler structures on vector bundles
(MH"  and  (M°)Vrespectively,  where M° = (MO D (M®)¥. Also, we call
that (MO, ¢, &%, n")and ((M°)",¢Y,¢Y,n") are almost contact Finsler manifolds [3].

Let F2n+1 = (M, MO, F*) be an indefinite Finsler manifold. Then, we define
g7 :T(TM®)Y x T(TM®)Y - F(MP),

* * a a
95 6 3) = 9" G5, 0 0.

Obviously, gF" is a symmetric Finsler tensor field. g7 is called the pseudo-Finsler metric of F2"*1, Thus,

g% is thought to be a pseudo-Riemannian metric on (TM®)".

Similarly, @—we  define the metric for horizontal distrubituon as  following:
g™ :T(TMO" x T(TM*)* - F(MO),



A.F, Saglamer et al. / IKIM/ 6(1) (2024) 9-20 13

5 6
Sxt’ 8xi

95 @) = g" ( )% Y)
[1, 2]. A Finsler vector can be described with below statements.

g7 (X, X) = 0and X # 0 = light-like

gF (X, X) > 0 or X = 0 = space-like

9" (X, X) < 0 = time-like,
where X € T, ,yM°, (x,y) € M°. The Finsler norm of X is a nonnegative number and || X|| is described
(x.y) 8

with following equation:

X 1
1l = |7 @, 20|

If gF" (X, X) = 1, X is called unit space-like Finsler vector or gF" (X, X) = —1, X is called unit time-like
Finsler vector. gF*(X, X) = € and ¢ is said the signature of X when X is a unit Finsler vector.

Also,
G: F(TMO) X F(TMO) N %(MO)
GX,Y)=GHX,Y)+G"(X,Y).

is defined. Obviously, G is a symmetric tensor field of type (0,2), non-degenerate and pseudo-
Riemannian metric on M°® with index 2q. Then, G is called Sasaki Finsler metric on M°. Then, G can be
defined as below.

G =G"+G" =gl dx' @ dx/ + gf; 6y' ® &y
[1,2].

Definition 2.2. Suppose that (¢, &, n") and (¢",&V,n") are almost contact structures on horizontal
and vertical Finsler vector bundles (M®)" and (M°)?. If the G¥ and G satisfy the following conditions,

GH (X", pY™) = GH(X™,YH) — en™ (X")n™ (¥H)
G"(pXV,¢Y") = GV(XV,YV) —enV (X")n"(Y")
nf (X" = e GH(XH, M), 0" (XV) = e 6V (X",¢Y)

where £ = 1, then (¢, &%, 91,G") and (¢",£Y,n",G") are called almost contact pseudo-metric
Finsler structures on (M°)" and (M°)".

Now, we define
NX,)Y)=G6X,¢Y), QH(xH yH) = GH(XH, ¢pYH), 0V(XV,YV)=GY(XY,pY")
and call it the fundamental 2-form [4].
The fundamental 2-form, defined above, satisfies the following equations:
QF(pXH, pYH) = QF(XH,YH), 0Y(px", pY") = ' (X", Y")
NHYH X1 = —HXH, YH), QV(YY, XV) = -Q"X",YV)
Proposition 2.1. Let V be a Finsler connection on M?and {2 be the fundamental 2-form which satisfies
dn’ (xV,YV) = Q" (X", YY), dnf (XH, yH) = QH (xH yH),
QX" Y ") = (Vi) (™) — (WX + 9 (T(XT, YH)),
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Q'Y YY) = (Vi) @Y) — (W)Y + V(T (XY, Y9)).

Then the almost contact pseudo-metric Finsler structure is called almost € —Sasakian Finsler structure
on MO,

(pH, &M, nH, 6" and (¢",&Y,1Y,GV) are called almost & —Sasakian Finsler structures on (M°)"

and (M°)Y, respectively [4].

Theorem 2.2. Let 2 be the fundamental 2-form and almost € —Sasakian Finsler connection V on MO is
torsion free then

Qf (X", y") = (Vi) (rH) — (Viin)(xH)
Q"X YY) = (Vin"H(Y) — (vynV)(XY)

[4].

Definition 2.3. An almost £ —Sasakian Finsler structure on MO is said to be an & —Sasakian Finsler
structure if the 1-form 7 is a killing vector field, i.e.,

(VEHY (Y™ + (Vi) (X" = 0, (Vin")(YY) + (Vin")(XY) =0
QF (xH, Yy = 2(vint(Y™), Q¥ (XY, YY) = 2(Vin") (YY)
[4].

3. Trans- Sasakian Indefinite Finsler Manifolds

We introduce trans-Sasakian indefinite Finsler manifolds in our main results. Also, we give the special
case of these structures @ —Sasakian and f§ —Kenmotsu indefinite Finsler manifolds.

The almost contact pseudo-metric Finsler manifolds ((M%)", ¢, &H,nf, G and (M®)?, ¢", &Y, 1", G")
are said to be trans-Sasakian indefinite Finsler manifolds if and only if the following conditions are hold.

(VHo™YH = 2{GH XM, yM)eH — ent! (Y X!} + L {eG (px™, Y)gH — nH (Y xH} 3B.1)
(V5 IV = S{GY (X, Y")E = en” (V)XV} + £ {eGY (9X”,Y")E" =0V ()X} (3.2)

where a and 8 are smooth functions on (M®)"* and (M°)” then we say such a structure the trans-
Sasakian pseudo-metric Finsler structure of type (a,f). If «,f =constant, then the getting
a, f =constant from (3.1) and (3.2) we get

(Vje) = —e 2 pxH + L et —pit (xtyety (3.3)
(V5") = —e5 oxV + L (xV =1V (xV)e¥) (3.4)
(Vinf)(YH) = 2GH(XH, pYH) + e £.6H (XM, pYH) (3.5)
V() =567 (X", ¢YV) +e£67 (9XV,p1") (3.6)

Theorem 3.1. In the trans-Sasakian indefinite Finsler manifolds ((M°)", ¢, ", 0", G") and
(M%), ¢",&Y,1Y,GV) the following relations hold.
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RI(xt, yiygH = CoBD it (X — (Y + e ! (Y px — ' (e )y )
RY(XV,y")g" =BV (rxY — V)YV + e L (rVgxY —n¥ (XV)pr")

2 p2
R et iy = D o, yiyen g iy

+ e S (KT — G (X, )
RV, XV)YY = @{scﬂ(ﬂ. YE — ' (r)x"}
+e DL (r)gx” — eV (XY, Y)Y}
N RH (XM, Y ZH) = S GH (v, 2t (et — GH (e, 2 (r )
+ L H (XF)G(PYH, ) — 1 (Y)GH (px ™, 2H))
0’ (RY (X, ¥)2%) = e CE2(GY (vV, 20’ (V) — 6V (xV, 2"V (v}
+L 0" (X)G(PYY,Z") — 1" (YV)GY (pXV, 2)
n"(RA(XH, Y)EM) = 0,77 (RY (X7, ¥")E")=0
SH e, gy = n B pH (), sV (xV ) = n v (xY)
s, e=n S sV Y,y = i)

(aZ_BZ) EV

2_p2 2_p2 2_p2
Qxt=en By oxV =en XV, Qet = n @ el g = n O

Proof:

RIKH,Y)ER = VinVing! = VinVing! = Vou, yu_gn yné"

=V {=e5 oY + 2 (VH —nH(H)E ] = Vil {~eF X +2(XH —nH (x)g)

_gH H H H
vaHYHE +Vv;’Hfo

B

= eS{VYPMXH - (WY + 2

then we get following equation

15

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
(3.13)

(3.14)
(3.15)

(3.16)

{(V¥nXHER — (Vin)YHER + nH (XH)ViEH —nH (YH) VY EH}
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= eZ{—eSn (XY + eBGH (@Y, XH) = S (XY™ + £y (XM + S () px ] +
Ll (rH, gxtet — e nt (x)GrH + Znt (xHyyH —EnH (X ynH (YH)eH + e SnH () pxH -

Lt (rmyxH + Sy (xHymH (r)eH ),
If we rearrange last equation, then we have the following one and the proof is completed

2 _ p2
ROt ynye = B gty ety e S g (it - gt ot ypry

By using similar processing steps, we can obtain the proof for vertical distribution.

Using the equations G# (RH(XH, YH)¢H, wH) = GH(RH(EH, WH) XH,YH)and GV (RV(XV,Y)EV,WV) =
GY(RV(EV, W)XV, YY), we get

RH(gH, W) xH =SB (e GH WM, XM)EH — (W} + e L (e pwH — eGY (gWH, XEM,
and
RY(€" WYY X7 =B e 6V WY XV — " WY+ e L0 (X)W — 6V (gWY, XV)E")
We have from equations (3.7) and (3.8), we get
" (RH(XH,YH)ZH) = eG(RP (XM, YH)ZH, &1y = —eG(RM (X", YH)EH, ZH)
(a?-

— G (TBZ){nH(yH)XH — " (XH)YHY + go;_ﬁ{nH(YH)¢XH — " (XH)pYH} ’ZH)

= e B (GH (v H, 2y () — GH (XM, 2t (v H))

+ X Gy, 2y — (e GH (9", )

and
1’ (RV(XV,YV)Z") = eG(RV (X", Y")Z",&") = —G(RV (X", Y")§",Z")
=—gG( (‘xzz—ﬁz){nV(yV)XV _ T]V(XV)YV} + gg{nV(YV)¢XV _ nV(XV)quV}i}, ZV)

2 _ p2
= s%{cvm, ZV VX" - 6cV (XY, Z"n" (YV)}
+ L Y XV)G(pYY,Z") 1" (V)G (pX", 2"},
Putting 2% = ¢ and 2" = £V, we getn! (R (X", yH)¢H) = 0,7" (RV (X", Y")§")=0.

For the trans-Sasakian indefinite Finsler manifolds (M%), ¢, &H, nH,GH) and ((M®),¢",E",n¥,G"),
the Ricci tensor S and scalar curvature r is defined by

SHXH,YH) = Y2 & 6P (RH(EF,XH)YH EF) + £ GH(RH (&9, x")YH, M),
rH = y2n i GHEH EHY ¢V = y2n i gV(EY EY),

SY(XV, YY) = X7 & GY(RV(E!,XV)YVE)) + e GV (RV(EY,XV)YV,&Y),
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where { Efl,EJ, ...,E}L, &%} is orthonormal basis field in (M®)*and G (EF,Ef) = ¢
(similarly, { EY ,EY,...,EY,, €'} is orthonormal basis field in (M®)”and GY(E},E}) = ¢).
Replacing Y¥ by &#, we get

SH(XH, §M) = Xy & M (RM(E, XT)EH E[) + & G (RM(EH, X)EM, &)
=y g GH ((a B ){ H(XH)EH — H(EiIJ)XH}+€‘xZ_B{nH(XH)¢E{-I_nH(EiH)d)XH}’EiH)+
e GH (B g (xy g — i (£)XHY 4 £ XL [ (XH) g — P (EM)$XHY, 61,
where, since GH (RH (&, XH)EH, £H) =0 we get
SH(XH, i) = n L&) B (22282 (g, sH(gH, gH) = 2—,’32)_
The Ricci operatdr Qgiven by
SH(XH, YH) = GH(QX",Y") and SV(X",YV) = GV (QX",Y").
By using SH(XH,&1) = GH(QX", &%) and SV (X",&Y) = GV(QX",£&"), we obtain
Q¥ = e M)y, et e MEE) et ang x7 = £ M) (xv), eti= e M gy,

Example 3.1. Consider the structure of F3 = (R3, (R?)°, F*) indefinite Finsler manifold. (R3)%= R® \
{0} is a real 6-dimensional C* manifold and TR? is the tangent bundle of R3. A coordinate system in
R3can be stated with {(U, ): x,x2,x3}, where U is an open subset of R3; for any x € U, ¢: U » R3 is
a diffeomorphism of U onto ¢(U),and ¢(x) = (x1,x2,x3).0n R3, denote by 7 the canonical projection
of TR? and by T, M the fibre, at x € R3, i.e, TyR® = w~1(x). Through the coordinate system {(U, ¢): x'}
inR3 , we can describe a new coordinate system {(U* ®);x% x2 x3;y,y% 3} or shortly
{(U",®):x%,y" } in TR®, where U* = n~}(U) and ®: U* - R® is a diffeomorphism of U* on ¢ (U) X R,
and ®(y,) = (x%,x2%,x3;y1,y2,y3) for any x € U and y, € T,R3. Let (R®)° be a non-empty open
submanifold of TR3? such that m((R3)%) = R3 and 8( R3) n (R3)? = @, where 6 is the zero section of
TR3. Assume that (R3)2 =T,R3n (R3)° is a positive conic set, for any k >0 andy € (R%)2.
we have ky € (R3)2. Obviously, the largest (R3)° holding the above circumstances is TR3 \ (M),

ordinarily given with the description of a Finsler manifold. The set of the local vector fields {661 6; , 5‘; }
a 9. o
is abasisin (T(R3)%)# and {ayl V37 ’6y3} is a basis in (T( R3)%)V. We get
5
XV X}’(xy)—+X¥(xy)—+Xé’(xy)a3,XH=X{'(xy)—+X£'(xy) +X§(xy)53, or

any XV € (T(R3)%"and X# € (T(R®)®)?. Thus, for any X T(R3)?, X = X/ (x, y) -+ X! (x, y)

( i =1, 2, 3). Consider a 7, 1-form, n =n" +n" =" (x,y)dx + n;" (x,y)6y" ( i =1, 2, 3),
n" € (T"(R*)°)" and " € (T*(R*)")".

G is a symmetric tensor field of type (0,2), non-degenerate and pseudo-Riemannian metric on ( R3)°.
Then, G is called Sasaki Finsler metric on ( R3)° . Then, G can be defined as below:

G=G"+G" =gf dx' @ dx/ + gf; 6y' ® 6y’ (i=1,2,3).

The vector fields
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s H _ g H _ S _:H
s 0 B =xaga o By =xaps =4

Efl = x;
are linear independent at every point of ((R®)°)". Let G be the Sasaki Finsler pseudo-metric given by
GH(EY,§") = GM(Ef ES) = GM(Ef,§") =0
GY(E{,Ef") = G"(EJEf) = 1,61 (§",§") = e=-1,
Let n be the 1-form derscribed by
nf(Z") = =G (Z", §") = —GH(zEf + 2B + 238", §") =25, v Z7 € (T(R*)D.
Consider ¢* the (1, 1) tensor field stated by
o (EM) = — Ef' ,¢"(ES) =Ef', ¢" (") =0.
Then using the linearity of ¢, we have
ZH =z Ef + 2,E¥ + 2, &% ,WH = w EF + woEY + wy EH
" (Z") = " (2 Ef + 2,EF + 238" ) = 2" (Ef) + 2,07 (EF) + 25 p" (&)
¢"(Z") = —z B} + 2B
o (WH) = oM (WET + WES + w3 &) = wigH (B + wa " (E]) + ws ¢ (§7)
o (WH) = —w, B} + wyEf!
(¢™?(Z") = —z,Ef — zEfl = -Z+n"(Z")¢"
Thus we get
GH(@M(Z™), ¢ W) = GH(Z", W) +n"(Z") n" (W)

v ZH e (T(R*)9H and v WH € (T(R3)%)H. Thus the structure (((R*)®)", ¢!, &H,nt,GH) define the
almost contact pseudo-metric Finsler structure on ((R3)%)",

Let V be the Levi-Civita connection with respect to pseudo-metric G*. Then we have
[Ef,Ef1=0, [E,§"] = —Ef', [E],§"] = — E].
The connection V of the pseudo-metric G¥ is given by
261 (VynYH, ZH) = XHGH(YH, ZH) + YHGH (xH, ZH) — ZHGH (X1, YH)
—GH(XxH,[YH, ZH]) —GH(YH, [XH, ZH]) + cH(zH, [xH,YH]) (3.17)
Which is known as Koszul’s formula. Using this formula, we have
26¥ (Vpnd®, E) = —GH (BL, [§, EI' 1) —GH(§%, [ EY, E)) + G¥ (Bf [ E, "))
=2GH(—E{, E).
Thus,
VE{@H = —Ef', VenE{' = 0.
Again by using Koszul's formula we obtain
26H (Vpng®, EY') = —GH (BY, 1§, B 1) -G (5", L EY, ES]) + G (EY [ B4, ¢"])
=267 (- Ef, E).
Thus,
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VEZHfH = —E' |, VenE}' =0,
Also by using Koszul’s formula we obtain
26H (Vyp BY, §7) = GH(EL, (€%, EY 1) +GH (&%, [ EY, ES]) — GM (B} [ Ef, §"])=0.

Thus,

VenEf' =0, Ve E[=0
Similarly we get

264 (Vgn Bf!, §) = — GH(EL [EN,§7 1) +G" (§™, [ B, E']) — G (Bf' [ B, §))

=261 (E, Ef) = -26"(¢", &),

Thus,
Vpn Eff = = ¢
(3.17) further yields
Ven Ef' = — &M, Ven Ef' =0, Vou Eff = 0,Vp Eff = 0.
If we use the equations we found
(V)I?S(H) = xlvgffH + XZVEZHS(H = (—x1) Ef = (x2 )EzHr

v X1 e (T(R3)%)H,

The above equations tell us the almost contact pseudo-metric Finsler manifold
(RO, pH, e, M, GH) satisfy (3.3) for a =0, =-2, e = —1.

With the help of the above results it can be verified that
RUCEY, N Ef = EY,  RMQEM, ENEF =¢%, RUCE(, §M)¢M = —Eff
RU(EF, §") " =—Ef,  RY(EY, EfDE{f'= Ej, RY({" EfNE! = ¢
SHEH, ¢ = GHRY(ET, §™) ¢, EfY) + G (RM(ES, §) &%, EX)=G" (—E{, E{)+G" (—E5, E5)
2_p2
steh, gty =n )= 2

Example 3.2. Consider the structure of F3 = (R3, (R?)°, F*) indefinite Finsler manifold. (R3)%=R® \
{0} is a real 6-dimensional C* manifold and TR3 is the tangent bundle of R3. A coordinate system in
R3 can be stated with {(U, ¢): x1, x2, x3}, where U is an open subset of R3 ; forany x € U, ¢: U - R3 is
a diffeomorphism of U onto ¢(U),and ¢(x) = (x1,x2,x3).0n R3, denote by m the canonical projection
of TR? and by T, M the fibre, at x € R3, i.e, T,R® = 7~ (x). Through the coordinate system {(U, ¢): x'}
inR3 , we can describe a new coordinate system {(U* ®);x! x2 x3;y,y% 3} or shortly
{(U*, ®): xt, yt } in TR3, where U* = n~1(U) and ®: U* - R® is a diffeomorphism of U* on ¢ (U) X R3,
and ®(y,) = (x1,x2%,x3;y1,y2,y3) for any x € U and y, € T,R3. Let (R3)° be a non-empty open
submanifold of TR3? such that ((R3)%) = R3 and 8( R3) n (R3)? = @, where 6 is the zero section of
TR3. Assume that (R%)% =T,R3n (R is a positive conic set, for any k >0 andy € (R®)J.

we have ky € (R3)%. Obviously, the largest (R3)? holding the above circumstances is TR3 \ 6(M),
ordinarily given with the description of a Finsler manifold. The set of the local vector fields {% , & , %}
a a a

isabasisin (T(R*)?)# and {B_yl R

} is a basis in (T( R3)%)V. We get
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)
&x3’

d d d s s
XV = Xil(xJ’)a—yl+X¥(XIJ’)6—3,2+X§/(XJ}’)6—3,3 , X=X 00y) s+ X (0 y) 55+ X4 ()

any XV € (T(R3)%"and X# € (T(R®)®)?. Thus, for any X T(R3)?, X = X/ (x, y)% + X7 (x, y)aiyi

for

( i=1, 2, 3). Consider a 1, 1-form, n=7n" +1" =0 (x,y)dx' +n (x,y)6y" ( i=1, 2, 3),
77H € (T*(R3)O)H and T]V € (T*(R3)0)V

G is a symmetric tensor field of type (0,2), non-degenerate and pseudo-Riemannian metric on ( R?)°.
Then, G is called Sasaki Finsler metric on ( ]R3)0 . Then, G can be defined as below:

G=G"+G" =gl dx'@dx) + gl 6y' ® 6y (i=1,2,3).
The vector fields

H_%1 6 H_ %2 6 H 5_€H

1T T xgexl 2 72 T xgexz 0 73 Sx3

are linear independent at every point of ((R3)%)". Let G be the Sasaki Finsler pseudo-metric of index
2 given by

GH(Ef, ") = GH(Ef ES) = G"(Ef,§") =0
GH(E! ET = GM(EY ES) = 1,67 ("¢ =e=1.
Let n! be the 1-form derscribed by
(") =G"(Z", ¢) = GM (2 Ef' + 2B + 258", §M) =23, v Z" € (T(R*)%)".
Consider ¢* the (1, 1) tensoér field stated by
o™ (Ef) = E5 ,¢"(E]) =—Ef, ¢" (") =0.
Then using the linearity of ¢!, we have
ZH = 2.EFf + z,EY + 2, &0, WH = w EF + woEll + wy EH
" (Z") = " (2 Ef' + 2,Ef + 2387 ) = 2" (Ef) + 2,0" (EF) + 25 " (&)
¢"(Z") = 2B} — 2Bl
" W) = wip" (EY) + wo 9" (ES) + w3 9" (&) = wiEf — w,Ef
(¢™2*(2") = —z,Ef — zEY' = -Z+n"(Z")¢"
Thus we get
GH (" (™M), " W) = 6H(zH, wH) —n" @) n" W)
v ZH € (T(R»)OH and v W € (T(R®)?)H. Thus the structure ((R*)O",¢H, &M, nH, G1) define the
almost contact pseudo-metric Finsler structure on ((R3)%)",

Let V be the Levi-Civita connection with respect to pseudo-metric G*. Then we have

[Ef Ef1 =0, [Ef, §"] = B, [E}, €] = - Ef.

X3
The connection V of the pseudo-metric G¥ is given by
261 (VynYH, ZH) = XHGH(YH, ZH) + YHGH (X", Z") — ZHGH (X", YH) — GH (X!, [YH, ZH])
—g(YH, [XH,ZH]) + cH(zH, [xH,YH])

Which is known as Koszul’s formula. Using this formula, we have
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26" (Vyug", E) = —GM(BL, (6", Ef' 1) —GM (€™ [ Ef!, E)) + GM (B [Ef, €"])
= 26" (=El, EfY).
X3
Thus,
1
VE{IfH = x—SEf’, VenEfl = 0.
Again by using Koszul's formula we obtain
26¥ (Vpé®, EY) = —GH (BY, 1€, BY 1) —GH(§%, [ EY, ES]) + G¥ (Bf [ EY, ¢"])
=26%(= E}, ES).
X3
Thus,
1
VE£-I€H = EE VSeHEé'I =0.
Also by using Koszul’s formula we obtain
26" (Vgn EY, €7) = G (B [€7, Ef 1) +(£", [ B, ES) - GM (&Y [ EX, €"D)=0.
Thus,
VE{qEéi =0, VEng{’:O
Similarly we get
26" (Vy EYf, €7) = — GH(BI, [EX, €7 1) +(€™ [ Y, EX']) — 6" (B, [ EY, €"])
— 9cH(LXpH pHY__ 2 _9opH( L zH
- ZG (XgEl’El)__x:;_ZG (96'3f ’f )
Thus,

1
vEfIE1H=£fH.

If we use the equations we found
1 1
(ViEh) = x1VEfS(H + xZVEé'IfH =X E{' + x, x_sEfll
v X1 e (T(R3)%)H,
The above equations tell wus the almost contact pseudo-metric Finsler manifold
(RO, pH, &1, M, GH) satisty (3.3) fora =0, B = xi, e= 1.
3
3.1. a —Sasakian Indefinite Finsler Manifolds

F?2n*1 = (M, M°, F*) be an indefinite Finsler manifold. The almost contact pseudo-metric Finsler structures
(pH, &M, pH, 61 and (¢V,¢V,1V,GY) on (M®)" and (M°)V are the a —Sasakian pseudo-metric Finsler
structures if and only if

(VMY = Z{GH (xH, YH)gH — ent (YH)xH} (3.18)

(Vxp" YV = 2{GV (X", Y)§" —en’ (Y")X"} (3.19)
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and
HgHY @ H Vely — @ v
(Vx¢ )——SE(PX , (Vx¢ )——€E¢X :
Moreover, from (3.18) and (3.19) we obtain

(Vi) = SR, Y = Z6M (X, ¥

(Vi)"Y = S0 (XY, YY) = 26V (XY, 1)

Thus, these structures are the a —Sasakian pseudo-metric structures in the a —Sasakian indefinite Finsler
manifolds ((M®)", ¢, &1, nH,GH) and (M°)Y, ¢, &Y, 1", G"). Also, the following relations hold.

2

RH(XH, YH)EH = S (r)xH — g (xtyvHy
2

RVGKY,YV)EY = (¥ (V)XY =’ (X)YY)

2
! RAK, YD ZH) = e (GM(rH, 2 (XM) = GH (X, 2" (v}

aZ

' RY(XY,YN)ZY) = {67 (", 2" (X") = 6" (X", 2" " (Y )}

a? 1
(VHRM) (X, YH)EH = e (GH (Y™, Z9)X" — G (X", Z#)Y ¥} — = RH (x¥, YH)Z"

a? 1
(VZRDXY, Y)Y = e {67 (VY. 2NDXY = 6V (XY, 2)Y"} =5 RV (XY, Y")Z¥

RH(XH yH)zH = S%Z{GH(YH,ZH)XH - GH(XH, zMYH}
RV(XV,Y"ZV = S%Z{GV(YV, ZINXV - G6V(XY,ZV)YV}
RA (X", My = %Z{HH(Y”)X” —eG™ (X", Y"EMy
RV(XV, &MYV = %Z{WV(YV)XV —eG" (X", Y")¢v}

2
RH(EH, XMYH = = (eGH (XM, Y — (v x!)

2
RV, XYY = (6" (¥, Y)E" = (Y)XV)

2n —
a? ( 2 q) ,&8 is a space — like vector

2(2n—q+1
* 4

SHEH,EM) =

), &H is a time — like vector
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2n —
a? ( q) ,&V is a space — like vector

VeV ZVy — 4
SELED=y g1y L,
a (T),E is a time — like vector
( 2(2M =\ popny ph ;
a ( 2 )n (X™),&" is a space — like vector
H(yH gHY —
STXEET) =4 S(2n—q+ 1\ o , ,
(@ (T>n (X™),&" is a time — like vector
2(2M =4\ v vy v ;
a ( 2 )n (X"),&" is a space — like vector
ViyV gVy —
S(le)_< Zzn_q+1 v v v ] ]
a (T>n (X"), &Y is a time — like vector

If £# and &V are the space-like vectors, then we get

q—2n
4

SH(@X, ¥™) = SHCXH, ) + o (T8t (X (v )

q—2n
4

SY@XY, YY) = $Y (X, V) + o () 0V e o),

If £ and & are the time-like vectors, then we get

q—2n-—1

SH(@X, Y)Y = S1CXH, M) + o (T2 et ()

SV (@xY, gr") = 70, vy 4 o (T2 e (e (o,

3.2. f —Kenmotsu Indefinite Finsler Manifolds

Let F2"*1 = (M,M° F*) be an indefinite Finsler manifold with the warped product space M?"*1 =

t
R X7 N2". We suppose that (N%)?" = TN?" \ 6 is a Kahlerian manifold and f(t) = cePz. For the almost
Kenmotsu pseudo-metric Finsler structures (¢, %, 7%, G%) and (¢",¢",nV,G") on (M°)"* and (M°)¥
resp., 1-forms n*’ and ¥ and 2-forms O and QV satisfy the below conditions.

dnfi=dn" =0, dnf =pnA0", dn¥ =pn"AQY
where [ being a non-zero real constant.

The almost contact pseudo-metric Finsler structures (¢, &H,nf,G") and (¢",¢",1n",G") on (M%)"
and (M°)Y resp., are the f-Kenmotsu pseudo-metric Finsler structures if and only if

(Vi)Y =L {eG (px", v)gH — nH (YH)pxH} (3:20)
(VEpIYY =L eV (9x",v)E" — ¥ (v")px"} (321)
and
HecHY ﬁ H H HN\cHY — ﬁ 2yvH
(V&™) =5 (X7 =" (X" = -5 ¢°X
Wiy =L —praneny = L pxr,

Moreover from (3.20) and (3.21) we obtain
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@iy =L enix, grty = £ o, v

i) Y) =267 (@x", ¢v") = L0V (¢x7,vV).
Thus, these structures are the § —Kenmotsu pseudo-metric Finsler structures.
In the § —Kenmotsu indefinite Finsler manifolds ((M°)", ¢#,&#,n¥, ") and((M°)¥,¢",€",1",GY),
the following relations hold.
ﬁz

RE(XH, YIEH = 2= (" (XY —nH (v ™)X ™)

2
RV, v E =t eyt — o)

2
R (KH, Y2 = €5 Gk, (v — 6 (v, 20 )

2
n'(R(X",YNZY) = e GV (YY, 2" m" (¥¥) = 67 (v",2")n" (X")}

ﬂZ

1
(VERM)(XH,yH)eH = e§{GH(XH,ZH)YH — GH(YH, zH)xH} — 3 RH(XH yH)zH

2
1
(VZROXY,Y)EY = e {GY (XY, Z)YY = 6V (¥Y, ZV)XV} — o RV (XY, Y")Z"

,82

RH(XH, YH)ZH - _ ST

{GH ", zMx" —¢"(x",zMy"}

2
RV(XV,Y")ZV = — ST{GV(YV,ZV)XV -G (XY, Z")Y"}

2
R, Xy = b e vy ¢ ent (v

2
RV XYY = e (6" (XY, Y")EY + en¥ (V)X

—2n
B> (q ).EH is a space — like vector

HezH zHY _ 4
G R
ﬁz (T),g‘H is a time — like vector
2 (4~ 2n\ ., . .
B ” ,€" is a space — like vector
VeV zVy —
S(glf)_ zq_zn_l . . '
B (T)'E is a time — like vector
—2n
Wt ey ﬁz(q ) )r]H(XH),fHisaspace—likevector
ST(XH,EM) =

—-2n-1
B2 (QT) nf (XM, &% is a time — like vector
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n
2 )nV(XV), &V is a space — like vector

32
SY(XY,¢) = (

—2n—-1
B2 (qT) nV(X"),&" is a time — like vector

SH(¢)XH,¢)YH) — SH(XH,YH) +,82 (2714—

L)ty (v
S (gxY,pr") = 7, vy + g2 () e (.

4, Conformally Flat Trans-Sasakian Indefinite Finsler Manifolds

We consider conformally flat trans-Sasakian indefinite Finsler manifolds ((M°)", ¢H,&é#,n#,G") and
(M%), ¢",&Y,1Y,GV). The conformal curvature tensor field C is given by

CH(xH, yMzH = RH(xH, yHZH — [SH(YH, ZH)XH — SH(xH, ZHYYH + GH(YH, Z7H)QXxH —

(Zn 1)
GH (X", ZMQYH] +

— (2n SIGH (Y, ZM)x " — GH XM,z (4.1)

and
CY (XY, Y2V = RV (X", Y2V — s [SV (Y, ZV)XV SYXY, 2V + 6V (vY, 2)Qx¥ —

GV(XV, ZV)QYV]

Zn@n 1)[GV(YV ZNXV -GV (XY, ZV)YV] (4.2),

where RY, S#,Q" and r are the curvature tensor, the Ricci tensor, the Ricci operator and the scalar
curvature tensor of the (M%) respectively.(RY, S¥,Q" andr are the curvature tensor, the Ricci
tensor, the Ricci operator and the scalar curvature tensor of the (M°)?). If the trans-Sasakian indefinite
Finsler manifolds ((M®)", ¢, &%, 9", G") and (M°)¥,¢",€Y,n",G") are conformally flat,i.e.
CH =0and C” = 0,then from (4.1) and (4.2), we have

RH(XH, yHYzH = ——[SH(YH, ZH)XH SH(xH, zZyYH + gH(YH, zM)ox" — GH(xH, zH)QYH] —
[GH(YH, zH)xH — GH(xH, ZH)YH]

(Zn 1)

2n(2n 1)

RV(XV, Y7V = ——

@D [SV(YV ZV)XV _ SV(XV ZV)YV + GV(YV, ZV)QXV _ GV(XV, ZV)QYV] _

|4 |4 \%4 |4 4 14 4 vV
Zn(zn SI6Y (Y, ZNXY — 6V (X", 2V)Y]

Now, taking scalar product on both side of above equations with W and WV, we have
GH(RA(X™, Y)ZH, W)= G (5 [ST (Y™, Z2M)x™ — STXH, 2MY ™ + GH(Y", Z27)QX™ —

GH(XH, ZH)QYH] [GH(YH ZH)XH GH(XH, ZH)YH],WH)

2n(2n 1)
and

G (R (XY, Y)Z", W)= 6" (——I[S" (YY", Z)X" — s"(xV, Z)Y" + 6" (¥", 2V)QX" —

(Zn 1)
GV(XV, ZV)QYV] — (2 [GV(YV ZV)XV GV(XV, ZV)YV],WV)
GH(RM (X, Y ZH, WH) = = [SH(v™, ZM)GH (x, W) — "¢, ZH)GH(vH, wi) +

GH(YH, ZH)GH(QXH, WH) GH(XH, ZH)GH(QYH, WH)]
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Zn(Zn 1)[GH(YH ZHeHxH, why — gH(xH, zHeHyH, why,

on putting W = & we get
GH(RH(XH, YH)ZH, EH):(an_l) [SH(YH, ZH)ST]H(XH)— SH(XH ZH)EnH(YH)+GH(YH
ZM) SHxXH, &) — " (x™, ZM) SH(Y ™, M) — ¢ [G7(YH, ZH) n" (XT)—GT(XH, ZH) n"(YH)].

2n(2n 1)

Replacing Y¥ by é¥ in equation (3.11) we have

G (RM (¥, §1) 21, 61) = e ! (R (M, 1) 21)= S5 (et Gy (21 = G (X, 21)
—e L {GH (@K™, 2= [ ST (M, ZM) P (X — £ SHXH, Z) 4 e (Z)SH (X, M) -
GH(xH, ZH> sH(f”, §0 = s @ " (X) — e GH (x", ZM)].

by using equations (3.14), (3.15) and (3.16)

(a®=B*)

GH(xH, zH
2 ( )

SH(xH, 7H) = [ o (2n-1)

2+ T (4n — e (2n — D] (27 0 (X7) + L (20— 1){GH ($X*, 21

2n

and

(a® = B

VszV
2 GV (X",Z")

SY(xV,z") = [ St ((2n—1) —e(2n))

LG ‘B ) (4n— e @n— DI @) ¥ XV) + L (2n — D{GV(¢x",Z")}

2n

Hence we have the following theorem

Theorem 4.1. The conformally flat trans-Sasakian indefinite Finsler manifolds ((M%)", ¢!, &%, 9", G*)
and ((M°)?,¢",&V,n",GV) are the n — Einstein manifolds ifand only if «. # = 0, where «,f are
constant functions defined on (M°)"* and (M°)".

Corollary 4.1. The conformally flat & -Sasakian indefinite Finsler manifolds ((M°)", ¢, &%, 1, G") and
(M%7, ¢V, &Y,1nV,G") are the n — Einstein manifolds.

Corollary 4.2. The conformally flat 5 -Kenmotsu indefinite Finsler manifolds ((M°)", ¢, &%, 9", ") and
(M%7, ¢V, &Y,1nV,G") are the n — Einstein manifolds.

5. Conclusion

In this article, we study indefinite trans-Sasakian structures on indefinite Finsler manifolds by using
pseudo-Finsler metric. Also, @ —Sasakianand [ —Kenmotsu indefinite Finsler manifolds are presented.
The conformally flat trans-Sasakian indefinite Finsler manifolds ((Mo)h, ¢H, fH, r]H, GH) and
(M%7, ¢V, &Y,1Y,G") are the n — Einstein manifolds if and only if a. § = 0, where a,f are constant
functions defined on (M®)" and (M°)”.
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