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1. Introduction

In order to research the logical system whose propositigakle is given in a lattice from the
semantic viewpoint, Xu proposed the concept of lattice iogplon algebras in [13] and discussed
some of their properties. Since then, many researchersshadied this important logic algebra.

The theory of hyper structures, which is a generalizatioimefconcept of algebraic structures was
introduced by F. Marty in 1934 at the eighth congress of Sicewéhn mathematicians [7]. The
composition of two elements is an element in a classicabadge structure, while the composition
of two elements is a non-empty subset of elements in an agebyper-structure. F. Marty intro-
duced the concept of hyper-group. Since then, many resaartlave worked on and developed
hyper-structure theory. There are extensive applicaiionsany branches of mathematics and ap-
plied sciences, such as Euclidian and non-Euclidian getesegraphs and hyper-graphs, binary
relations, lattices, fuzzy and rough sets, automata, ocgypphy, codes, probabilities, information
sciences and so on. Some interesting applications of hyetgres can be found in the book [2].

R. A. Borzooei et al. introduced and studied hyper K-algelid and S. Ghorbani et al. [3],
applied the hyper structures to MV-algebras and introdubecconcept of a hyper MV -algebra,
ISSN 1309-6788C) 2017 Cankaya University
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which is a generalization of the MV-algebra. In [8], Mittasat applied the hyper structures to
lattices and introduced the concepts of a hyper lattice. &oRli and B. Davvaz proved that a
hyper MV-algebra induced a hyper lattice in [10].

In this paper, we introduce the notion of hyper lattice iroglion algebras as an application of
hyper structures to lattice implication lattices.

This paper is organized as follows. In Section 2, some baiaitlons are mentioned. In section
3, we introduce the notion of hyper lattice implication ddgges as a generalization of lattice impli-
cation algebras and give some discrete examples. We igagstsome properties of hyper lattice
implication algebras. In section 4, we characterize hyagick implication algebras in which 1 is
an implication scalar. Also, we obtain conditions underahha hyper implication operation in a
hyper implication algebra is an implication operation. éetion 5, we characterize hyper implica-
tion algebras of order 2 and we obtain three non-isomorpygehlattice implication algebras of

order 2 such that 1 is an implication scalar element and ynveight non-isomorphic hyper lattice

implication algebras of order 2 such that 1 is not an impiicascalar element.

2. Preliminaries

Definition 1. ([13]) A lattice implication algebra is a structute= (L,Vv,A,—,",0,1) of type
(2,2,2,1,0,0) such that:

(L1) L=(L,Vv,A,—,,0,1) is a bounded lattice with an order reversing involutioh and 0 are
the greatest and the smallest elemenit ofspectively,

(L2) x—>(y—=2=y— (X— 2),

(L3) x = x=1,

(L4) x—y=Yy =X,

(L5) x—=y=y—x=1impliesx=Yy,

(L6) (Xx—=y) =y=(y—=X =X

(L7) (xVy) = z=X—=2)A(Yy—2),

(L8) (xAYy) = z=(X—=2)V(y—2),

forall x,y,z€ L.

Definition 2. ([9]) A fuzzy implication algebra, Fl-algebra for short,as algebraX,—,0) of
type (2,0) satisfying the following conditions for ak,y,z € X:

(FI1) x—= (y—2) =y — (X— 2),

(FI2) (x—=y)—= (y—2 — (x—2) =1,
(FI3) x—x=1,

(FI4) x —-y=y—x=1impliesx=Yy,
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(FI5) 0— x=1,

where 1=0— 0.

An Fl-algebra(X,—,0) is called regular, ifCC(x) = x for all x € X, whereC(x) =x— 0. Itis
called commutative, itx — y) — y = (y — x) — x holds for allx,y € X (see [11]).

Definition 3. ([7]) Let H be a non-empty set and™be a function fromH? to P(H)\{0}. Then
“ 0" is called a hyper operation dA.

Note that if 0# A.B C H , then byAoB we mean the subset{aob:ac Ab c B} of H,
aoB:={a}oBandAob:=Aoc{b} foralla,bec H.

Definition 4. ([8]) Let L be a nonempty set endowed with hyper operationand V. Then
(L,A,V) is called a hyper lattice if for any,y,z € L,the following conditions are satisfied:

(HL1) X € XAX, XE XV X,

(HL2) XAY=YAX, XVY=YVX,

(HL3) XA (YyAZ) = (XAY)AZ XV (YVZ)=(XVYy)VZ
(HL4) x e XA (XVY), XE XV (XAY).

3. Hyper Lattice Implication Algebras

Definition 5. A hyper lattice implication algebrd_, A,V,—.",0,1) is a non-empty sdt equipped
with three hyper operations, v and —, a unary operation and two constants 0 and 1 which
satisfy the following axioms:

(HLI1) (L,Vv,A)is a hyper lattice such that& 1 and 1= 0,
(HLI2) 1 € x— X,

(HLI3) 1ex—1,

(HLI4) (X) =X,

(HLI5) x—»y=Y —X,

(HLIB) (x—=y) —=y=(y—X) =X,

(HLI7) x—= (y—2 =y— (X— 2),

(HLI8) (xAY) —»z=(X—2)V(y— 2),

(HLI9) (xVy) = z=(X—2) A(y— 2),

(HLI10) 1 € x— yand 1le y — ximpliesx =,

forall x,y,z€ L.
Now, we give some examples of hyper lattice implication bfge. From the following exam-

ple, we know that the concept of hyper lattice implicatiogeddra is a generalization of lattice
implication algebras.
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Example 3.1. Each lattice implication algebra is a hyper lattice imgdiica algebra.

Example 3.2. Supposd. = {0,a,b,1} and consider the following tables:

0 a b 1 0

v
{0y {0a {0} {0} O
{0,a} {0a} {0} {0a} a|{a
{0y {0y {b} {b} D
{0y {0a} {b} {b1} 1

R T ® Of>

{1}

{0,a} {a} {b1} {1}

{b1} {1} {b1} {1}

Then,(L,A,V,—/,0,1) is a hyper lattice implication algebra.

0 abl1

— |0 a b 1
0|{0,a,b,1} {0,ab,1} {0,ab,1} {0,ab,1}
a| {0,a} {0,a,b,1} {0,a,b} {0,a,b,1}
b | {0,b} {0,a,b} {0,a,b,1} {0,a,b,1}
1| {0} {0,a} {0,b} {0,a,b,1}

13

Proposition 1. Let (L, A,V,—,",0,1) be a hyper lattice implication algebra. Then fonait,z€ L

andA, B,C C L the following hold:

(1) 1€1— ximpliesx=1,

(2) xel— xandxX € x— 0,
B)x—=(y—=z2=x—=Yy) =z
(4) xe 1— 0impliesx # X,
(5) 1— 0= {0},

6) 1-(1—-x)=1—Xx,

(7) ye 1 — ximplies 1€y — X,
(8) 1—-x=1—yimpliesx=y,
9) (A) =A

(10) A= x=xX — A,

(11) ACAAA ACAVA,

(12) AAB=BAA AVB=BVA,

(13) (AAB)AC=AA(BAC), (AVB)VC=AV (BVC),

(14) ACAV(AAB),ACAA(AVB).

Proof. By (HLI3), we have 1 x — 1. So by assumption and (HLI10), we get that 1.
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(2) By (HLI2) and (HLI7), we obtain that
1lel-1C1— (x—=X)=x— (1—X).

Thus, there existg € 1 — x such that I x — y. On the other hand, we have
ley—-yCy—=(1—-x)=1—(y—X).

by (HLI2) and (HLI7). So there existse y — x such that 1€ 1 — z By part (1), we get that
z=1. Hence, e y — x. Thereforey = x by (HLI10) and sax € 1 — x. By (HLI5), (HLI4) and
(HLI1), we havexX € 1/ — X =x— 0.

(3) Applying (HLI5), (HLI4) and (HLI7), we obtain
X=Yy) —=z=Z = (x=Y)=x=(Z—=Y)=x—(y—2).
(4) Suppose that there exist& 1 — 0 such thak = x'. Then
lex—x=X—=>3xC(1—-0—=x=1-(1-x).

Therefore, there existsc 1 — xsuch that £ 1 —y. By part (1), we havg = 1. Hence, E 1 — Xx.
We getx = 1 which is a contradiction.

(5) Letxe 1 — 0. By (HLI2), (HLI7) and (HLI5), we have
1lex—XxCx—(1—-0=1-(1—X).

Thus, there existg € 1 — X' such that I 1 —y. By part (1), we havgg = 1. Thusx = 1. By
(HLI1), we havex = 0.

(6) By part (5) and part (3), we obtain
1-(1-x=(1-0—=>x=1—x
(7) Sinceye 1 — x, then 1-yC 1— (1 —x) =1— x by part (6). Applying (HLI2), (HLI7),

we obtain
1e1-1C1l—> (y—=y) =y—=>(1-y) Cy—(1—Xx).

Thus, there existg € y — x such that X 1 — z By part (1), we have = 1. Hence e y — x.

(8) By (HLI2) and (HLI7), we get that
1el-1C1-5 (X=X =X—=>(1—=-X=Xx—=>(1-y)=1— (X—Y).

Thus, there existg € x — y such that k= 1 — z By part (1), we haveg = 1. Hence 1€ x — .
Similarly, we can show that & y — x. Hencex =y by (HLI10).

The proof of the other parts is straightforward. [
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Proposition 2. Let (L,M,,<.,",0,1) be a lattice implication algebra. Define three binary hyper
operationsh,V and— onL as follows: for any,y € L,

XAy =1[0,xMy],
xVy=[xuy,1],
X—y=[0,Xx—=Y].
Then(L,A,V,—.,",0,1) is a hyper lattice implication algebra.

Proof. The proof is straightforward. [

Proposition 3. Let (L,—,’,0,1) be a non-empty sét equipped with a hyper operatiea and a
unary operatiori such that 0=1 and 1= 0. If (L,—,,0,1) satisfies conditions (HLI2)-(HLI7)
and (HLI10), thenL, A, V,—.,",0,1) is a hyper lattice implication algebra, where

xXVy={xy},
XAY = {X,y},

forall x,y € L.

Proof. Itis easy to prove thal, A, V) is a hyper lattice. Lex,y,z € L be arbitrary. We have
(X=2AN(y—=2)=U{tAs:itex—zsecy—z}
=U{{t,s}:itex—zscy—z}
= (U{{t}itex—=2z})U(U{{s} :sey—z})
=X—2U(X— 2
={xyt =z
=(XVy) >z

Similarly, we can prove (HLI9). [

Example 3.3. LetL = {0,b,1} and consider the following tables:

—>‘0 b 1
0|{1} {b1} {1} 10 b 1
b|{0,b} {b,1} {b,1} 1 boO
1[{0} {ob} {1}

Then(L,—,,0,1) satisfies conditions (HLI2)-(HLI7) and (HLI10). By Proptien 3, (L,A,V,—
,/,0,1) is a hyper lattice implication algebra, wherey = {x,y} andxAy= {x,y} forall x,y € L.

Theorem 1. Let (L,—,’,0,1) be a non-empty sdt equipped with a hyper operatior and a
unary operatiori satisfying conditions (HLI2)-(HLI8) and’G= 1 and 1= 0. Define two binary
hyper operationg\, v onL as follows: for anyx,y € L,
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xVy=(X—=y) =y,
(xAy) =X Vvy.

Then (L,A,V) is a hyper lattice. Moreover, ifL,A,Vv,—,,0,1) satisfies conditions (HLI8) -
(HLI10), then it is a hyper lattice implication algebra.

Proof. We will show that(L,V,A,0,1) is a hyper lattice. Suppose thay,z < L. Then,

(HL1) By Proposition 1 part (2) and (HLI2), we have
Xel—-XC (X—X) > X=XVX

Sincex € X VX, thenx' € (xAx)’. By (HLI4), we getx € XA x.
(HL2) It follows from (HLI6) that Vv is commutative. By commutativity of, definition A and
(HLI4), we concludeA is commutative.
(HL3) Using (HIL4), (HLI7) and (HL2), we have

XV(yvz) = (x—=(yvz)—(yv2
(Z=y)=y) = (z2=y) =Y)
)= ((Z=y) = (x=Y)) =Y)
(Z=y) = (x=y) = (2=Y))

x=y) = (z=y))—=(z=Y))

~—~~ o~~~

x—y)' V(z=y))
(Z=y) = (x=Yy)) = (x=y))
(X—=y) = (z=y) = (x=y))

y) = (x=y) = (z2=Y) =)

—~
—~

(
=(Z=(xX=y) =y = (x=y) =y
= (z— (xVy)) = (xVy)
=zZV (XVy)

=(xVy)Vz
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It follows from associative of/, definition of A and (HLI4), thatA is associative.
(HL4) By (HLI4), Proposition 1 part (2) and (HLI6), we get tha

X) e (l—=X)

N

x= ((x—=y) =y) =X

(xvy) —=x)—x)

(
(x—
(x— (xvy)) = X)
((
=X

V(XVY)) =XA(XVY).

Remark 3.1. (1) The conditions (HLI8) and (HLI9) are necessary in thevahtheorem. Consider
(L,—,,0,1) in Example 3.3. If we define two hyper operationsv as in Proposition 3, then
(L,A,V,—,,0,1) is not a hyper lattice implication algebra, beca(®e0) -a=0—a={a, 1}
but(0—a)v(0—a)=L.

(2) We know that every hyper lattice implication algebrasfits the conditions (HLI2)-(HLI8)
butxVvy= (X —y)’ — ymay not be true in general. Consider Example 3.2.

4. Implication Scalar Elements

Definition 6. An elementa of a hyper lattice implication algebi&, A, Vv, —,",0,1) is called

(1) leftimplication scalar ifa— x| =1 forallx e L,
(2) right implication scalar ifx — a| =1 for all x € L,
(3) implication scalar if it is both right and left implicath scalar.

Proposition 4. Let 1 be a right implication scalar element of a hyper lattioglication algebra
(L,A,V,—,",0,1). Then,

(1) 1A1={1} and Iv1= {1},
(2) on0= {0}, OvO= {0},
(3) 0—x=1{1},

(4) x—x={1}, forallxeL,
(5) x—y/=1forallxyelL,
(6) 0e x— 0impliesx= 1.

Proof. (1) Since 1 is a right implication scalar element and1— 1, we have

{1} =(xAy) = 1=(x—=1)V(x—1) =1v1l
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by (HLI8). Hence v 1= {1}. Similarly, we can show thatA1= {1}.
(2) By part (1), Proposition 1 part (5) and (HLI9), we have

{0}=1-0=(1vV1) »0=(1—0)A(1—0)=0A0.
Therefore, 00 = {0}. Similarly, we can prove 0 0= {0}.

(3) It follows from Definition 6 part (2) and (HLI5).
(4) By (HLI3), (HLI6) and Proposition 1 part (2), we get that

lex=xC(1l=x)=>x=x—=1)—-1=1—-1={1}.

Hencex — x= {1} forall x € L.

(5) Suppose tha, b € x — y are arbitrary. By (HLI7) and (HLI6), we have

X=Yy) = X=Y)=X=((X=Y) =Y)=X=((y—=X) = X)

=y—=X) > X=X =(y—Xx) —1={1}.

Sincea— b,b—aC (x—y) — (x—y) = {1}, we obtain thah — b=b — a= {1}. Thena=b
by (HLI10). Therefore|x —y| =1 for all x,y € L.
(6) Let 0e x — 0. By part (4), (HLI6) and part (3), we have

{1}=0—-0=(x—0—-0=(0—=x) > x=1—x
Hencex = 1 by Proposition 1 part (1). [

Theorem 2. Let 1 be a right implication scalar element of a hyper latiioglication algebra
(L,A,V,—,,0,1). Then, 1 is an implication scalar elementLof

Proof. We will show that 1 is a left implication scalar elementlofSuppose that € 1 — x. By
Proposition 4 part (5), we have-2 x = {y}. Using (HLI5), (HLI6) and Proposition 4 part (3), we
have

15y =y—=-0C(x—>0—=0=(0—-%x) >x=1-=x

Thus,x =y by Proposition 1 part (8), that is% x = {x}. Hence, 1 is a left implication scalar
element ofL. m

Proposition 5. Let 1 be a left implication scalar element of a hyper latticglication algebra
(L,A,V,—,,0,1). Then,

(1) 1—-x={x},
(2) x—=0={x},
(3) (0—x) = x={x},
(4) 0—0={1},
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(5) O.xZ0—x, forallxe L—{1}.

Proof. (1) By Proposition 1 part (2)x € 1 — x. Since 1 is a left implication scalar element, we
have|l1 — x| =1 for allx € L. Hence 1— x = {x}.

(2) We havex — 0= 1 — X by (HLI5). Thus (2), follows from part (1).
(3) By (HLIB), part (2) and (HLI4), we obtain that

(0—=X) =»x=(x—0)—=0=xX —=0={(X)} ={x}.

(4) It follows from part (2).
(5) if x=0, then 0Z 0 — 0 by part (3). Now, suppose that~ 0.
If 0 € 0— x, then

0€c0—-XxC (0—x)—x={x}

by part (3). Hencex = 0, which is a contradiction.

If x€ 0— X, then
lex—XxC(0—x) —x={x}

by (HLI2) and part (3). Hences= 1, which is a contradiction. [

Proposition 6. Let 1 be a left implication scalar element of a hyper latticwlication algebra
(L,A,V,—,",0,1). Then,

(1) (xvy) =xnY,
(2) (xAy) =X VY,

for all x,y € L.
Proof. (1) By Proposition 5 part (2) and (HLI8), we obtain
XAY =(XxX—=0)A(y—0)=(xVy) —0=(xVy).
Similarly, part (2) can be proved. [

Proposition 7. Let 1 be a left implication scalar element of a hyper latticwlication algebra
(L,A,V,—,,0,1). Then, 0— 1= {1}.

Proof. We have 1 0— 1 by (HLI3). Suppose thate 0— 1, wherex € L — {1}. By Proposition
5 part (3), we havec — 1 C (0 — 1) — 1= {1}. Hencex — 1= {1}. Applying Proposition 1
part (3) and (HLI6), we get that
0—-1=(x—1)—1)—=1=(x—1)—-0—-1)=0—(x—1)—1)
=0—=-(1-%x)—>XxX)=0— (x—=x)=(0—X) —x

=(x—=1)—>x=0-x
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Sincex € 0 — 1= 0— X, thenx € 0 — X, which is a contradiction by Proposition 5 part (5).m

Theorem 3. Let 1 be a left implication scalar element of a hyper lattioglication algebra
(L,A,V,—,,0,1) such that = x, for all xe L —{0,1}. Then, 1 is an implication scalar ele-
ment.

Proof. We know that 0— 1 = {1}, by Proposition 7. Now, suppose that x — 1, wherex €
L— {0} andy € L—{1}. Then,y — xC (0 — x) — x = x by Proposition 5 part (3). Hence,
y — x=xand we have

X =1=((y—=1)—=x=>1l=y—=1)—>K—=1)=X—=((y—=1) =1
=X = (1=y) =2y =X—=(y=y)=KX=2Y) =y
==X —y=xX—y
by Proposition 1 part (3) and (HLI6). SinceslX — 1=xX —-y=Yy — x, X =xandy =y, we
get that 1e x — y =y — X, that isx =y by (HLI10). HencexX =xec x— 1=0— X, which is

a contradiction by Proposition 5 part (5). Thas» 1= {1} for all x € L. Therefore, 1 is a right
implication scalar element. ]

Theorem 4. Let 1 be aleft implication scalar of afinite hyper lattice iingation algebrgL, A, Vv, —
,/,0,1). Then, 1 is an implication scalar bf

Proof. We will show thatx — 1 = {1}. Suppose that there exists L such thatx — 1 # {1}.
SincelL is finite andx — 1 C L, there exisys, ...,yn € L— {1} such thak — 1= {y1,...,¥n,1}. By
Theorem 7 and Proposition 1 part (3),

V1,0, =x—1=x—=(0—-1)=x—1)—-1=0—- 1)U, > DHU..U(y,—1).

By Proposition 5 part (5), we hawg ¢ 0 — y; for all 1 <i < n. Hence, there existsi < nsuch
thaty; € 0 — y;. Without loss of generality, suppose tlyatc 0 — y,. We claim thaty, € 0 — y;.
If y € 0— vy, then

Yo—=y1 C (0—=y1) = y1 =Y.
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Hencey, — y; = y1. Also, we have

VYi—=1=((y2—1) —y) —1
=(2—=1) = y1—1)
=V1—=((y2—1) = 1)
=1 ((1=y2) = ¥2)
=Y1— (Y2 = ¥2)
=1 Y2) = Y2
=(2—=y1) =2
=Y1 = Y2

Similarly, we can prove that, — 1 =y, — y;. By (HLI5), we get that

Y2605 y1=Y) = 1l=Yi = Yo=Yo=Y1=Yo—=1=0-Y,

which is a contradiction. Hencg, ¢ 0 — y1. Thus, there exists 8 i < nsuch thaty, € 0 — V.
Without loss of generality, suppose thate 0 — y, such thaty, € 0 — y3. Similarly, we can
show thaty, 1 € 0 — y, such thaty, € 0 — y,_1. Hence, there exists € k < n— 2 such that
Vn € 0 — yk. We have

0—-W%C0—->0—=Y%1)=0—=V¥1C...CO0—=>yr-1 C0—yn

On the other hand, 6>y, C0— (0 — ykx) = 0 — yk. We get that 0— yx = 0 — y,, that is
Yn € 0 — yn, Which is a contradiction. Hencg,— 1 # {1} for all x € L. Therefore, 1 is a right
implication scalar ot.. ]

Theorem 5. Let (L, A,V,—,",0,1) be a hyper lattice implication algebra such that x = {1}.
Then, 1 is an implication scalar elementlof

Proof. We will prove that 1 is a left implication element bf By Proposition 1 part (2), we have
x € 1 — x. Suppose that € 1 — xis arbitrary. Then,

X=>y=X—=(1-Xx)=1—-(x—=>Xx)=1—1={1}.

Sincey € 1 — x, then 1€ y — x by Proposition 1 part (6). Hencg= X, that is 1— x = {x} for
all x € L. Hence, 1 is a left implication element bf
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Now, we will prove that 1 is a right implication elementlof Suppose that € L is arbitrary. We
have 1€ x — 1 by (HLI3). Applying (HLI5) and Proposition 1 part (3), we taln
X—>1Cx— (x—=1)=x—1) =X
=0—-X)—=>X=0—=(x—x)=0—1={1}.
Hencex — 1= {1} for all x € L, that is 1 is a right implication element bf ]

Corollary 1. Let(L,A,V,—,,0,1) be a hyper lattice implication algebra. Then, 1 is an implica
tion scalar element df if and only if x — x = {1} for all x € L.

Proof. It follows from Proposition 4 part (4), Theorem 2 and Theorgm [

Theorem 6. Let (L,A,V,—,",0,1) be a hyper lattice implication algebra such that 1 is an impli
cation scalar element &f Then,(L,—,0) is a regular commutative Fl-algebra.

Proof. We have that (FI1), (FI3), (FI4) and (FI5) follow by (HLI7)r&position 4 part (4), (HLI10)
and Proposition 4 part (3) respectively. We will prove (FIRet x,y,z € L be arbitrary. Since 1
is an implication scalar element bf then|x — y| = 1 by Proposition 4 part (5). Therefore, there
existsa € L such thak — y=a. We obtain(x — y) — (x—y) = 1. Applying (HLI7) and (HLI®6),
we have

x=y) = ((y=2 = (x—=2)= —(y=2—2
X—=((z—=y) =y

)
)
(Z=y) = x=y))
(x=y) = (x=y)

Then, (L,—,0) is a Fl-algebra and it is regular by Proposition 5 part (2) édti4). Finally,
(L,—,0) is commutative by (HLI6). [ ]

5. Hyper Lattice Implication Algebras of Order 2

In this section, we will obtain all hyper lattice implicati@lgebras of order 2. For this, we define
the concept of homomorphism of hyper lattice implicatiogediras.

Definition 7. LetL; andL, be two lattice implication algebras. A mappiig L1 — L is said to
be a homomorphism, if
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f(xAy) = f(x) A f(y),
f(xvy) = f(x) Vv f(y),
f(x—=y)=f(x) — f(y),

for all x,y € L.

Clearly, if f is a homomorphism, thefi(1) = 1.

If fis one-to-one (or onto), then we say thaits a monomorphism (or epimorphism), and ifs
both one-to-one and onto, we say tlids an isomorphism.

Theorem 7. There are three non-isomorphic hyper lattice implicatitqelaras of order 2 such
that 1 is an implication scalar element.

Proof. ConsiderL = {0,1}. SinceL is a hyper lattice implication algebra, then-10 = {0}.
By assumption, 1 must be an implication scalar element. eleme have 1 1= {1} =0—0
and 0— 1 = {1}. Therefore, we have the following hyper operatienon L such that 1 is an
implication scalar element:

—>‘O 1
0l {1y {1}
11{0}y {1}

Also, we have h1=1=1Vv1and 0\0= 0= 0V 0 by Proposition 4. Since®1=1A0C {0,1}
and Ov 1= (0OA 1) by Proposition 6, we have the following hyper operations onL:

(1) ifOA1= {0}, then Ov 1= {1}. Hence, we obtain

rjo 1 vijo 1
0|{0} {0} 0|{0} {1}
1] {0}y {1} 1) {1} {1}

(2) ifOA1= {1}, then Ov 1= {0}. Therefore, we obtain

rafo 1 V2o 1
0|{0} {1} 0|{0} {0}
1) {1} {1} 1| {0} {1}

(3)if0OA1={0,1}, then Ov 1= {0,1}, then we get

A |0 1 Vs |0 1
ol {00 {01 ol {00 {01
1/{0,1 {1 1{0,1 {1
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We can check thatL, Aq,V1,—,0,1), (L,A2,V2,—,0,1) and (L, A3, V3,—,0,1) are three non-
isomorphic hyper lattice implication algebras such that ari implication scalar.

Lemma 1. Let L be a hyper lattice implication algebra of order 2. 41 = {1}, then 1 is an
implication scalar element.

Proof. By assumption and (HLI5), we have® 0=1— 1= {1}. By Proposition 1 part (5), we
have 1— 0= {0}. Hence, 1 is a left implication scalar element. By Theorerhid,an implication
scalar element. ]

Theorem 8. There are twenty eight non-isomorphic hyper lattice imgtdlimn algebras of order 2
such that 1 is not an implication scalar element.

Proof. Suppose thdt = {0,1}. By Proposition 1 part (5), we have-2 0= {0}. Since 1 is not an
implication scalar and & 1 — 1 C {0,1}, we have 0—- 0=1— 1= {0,1} by Lemma 1. Also,
1€0— 1. Hence, 0~ 1= {1} or 0— 1= {0,1}. Therefore, we have two hyper operationg
and—» onL as follows:

—)1‘0 1 —)2‘0 1
0[{0,1} {1} 0l{0,1} {0, 1}
1/{0} {0, 1 1/{0} {0, 1

By (HL1), we have ke 1A1C{0,1} and 1€ 1v1C{0,1}. Hence, 1= {1} or 1In1={0,1}.
Also, 1v1={1}or1v1={0,1}.

(1) Suppose thatA1 = {1} and 1v 1= {1}. By (HLI8) and (HLI9), we obtain
{0} =1-0=(1A1)—»0=(1—0)V(1—0)=0V0,
{0=1-0=(1vV1) - 0=(1—0)A(1— 0)=0AO.
We have O/ 1= {1} or Ov1= {0} or 0V 1= {0,1}. Consider the following cases:
(i) Suppose that 0 1 = {1}. Since 0=0A0. Then,
{0} =1—-0=(0vV1) —»0=(0—0)A(1—0)=(0A0)U(1A0).

Hence, O\1={0}. Therefore(L,A1,V1,—1,0,1) and(L, A1, V1,—2,0,1) are two non-isomorphic
hyper lattice implication algebras where

rjo 1 vijo 1
0|{0} {0} 0|{0} {1}
1|{0} {1} 1) {1} {1}




CUJSE 14, No. 1 (2017) 25

(i) Let Ov1={0}. Since 1e 1A(0Vv1) =0Aland 0c 1A (0V1) =0A1 by (HL4), then
0A1={0,1}. Therefore,L,A2,V2,—1,0,1) and (L, A2,V2,—2,0,1) are two non-isomorphic
hyper lattice implication algebras where

A2 |0 1 v2lo 1
0| {0} {0,1} 0| {0} {0}
11{0,1} {1} 1| {0} {1}

(i) Let 0 v 1= {0,1}. Then, 0\ 1+ {O}. If 0A1= {0}, then
{0,1} = (1v0) - 0= (1 0)A(0— 0) = 0A {0,1} = (0AD) U (0A 1),
which is a contradiction. Also, 81 {1}. If0A 1= {1}, then
{0}=1—-0=(1A0)—0=(1—-0)V(0—0)=0v{0,1} = (OVO)U(0V0) = {0,1}

which is a contradiction. Hence, we have\Q = {0,1}. Therefore,(L,A3,V3,—1,0,1) and
(L,A3,V3,—2,0,1) are two non-isomorphic hyper lattice implication algebndeere

A |0 1 Vs |0 1
0{0} {01} 0{0} {0,1}
1/{0,1 {1 1{0,1 {1}

(2) Suppose thatA1= {1} and 1v 1= {0,1}. Then, we have
{0}=1-0=(1A1)—0=(1—-0)V(1—0)=0V0,
{0,1} ={0,1} »0=(1v1) - 0= (1 - 0) A (1— 0) =0AO.
We have 0/1=# {1}. Suppose that 01 = {1}. Since 0\ 0= {0,1}, then
{0} =1—-0=(0v1) - 0=(0—0)A(1—0)=(0A0)U(1A0) ={0,1},

which is a contradiction. Hence, we have or 0= {0} or 0Ov 1= {0,1}. Consider the following
cases:

(i) Let Ov1={0}. Since 1e 1AN(0v1l)=0Aland 0c 1A(0V1) =0A1 Dby (HL3), then
0A1={0,1}. Thus,(L,A4,Va,—1,0,1) and(L, A4, V4, —2,0,1) are two non-isomorphic hyper
lattice implication algebras where

Aa |0 1 valo 1
0l{0,1 {0, 1) ol {0} {0
1{0,1 {1} 1[{0} {0,

(i) LetOVv1={0,1}. If OA1= {0}, then there are two non-isomorphic hyper lattice implmati
algebragL, A5, Vs5,—1,0,1) and(L, As, Vs, —2,0,1) where
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As | 0 1 Vs | 0 1
ol {0, 1} {0} ol {0} {01
1) {0p {1} 11{0,1}4 {01}

If 0 AN1= {1}, then there are two non-isomorphic hyper lattice implmaglgebragL, As, Ve, —1
,0,1) and(L, Ag, Ve, —2,0,1) where

A | 0 1 Ve |0 1
ol{0,1 {1} ol{o} {01
1 {1 {1 1/{0,1 {0,1}

IfOA1={0,1}, thenthere are two non-isomorphic hyper lattice implmatlgebraslL, A7, V7, —1
,0,1) and(L, A7, V7,—2,0,1) where

N7 ‘ 0 1 V7 ‘ 0 1
0|{0,1} {0, 1} 0| {0} {0, 1}
1|40, 1 {1} 1|/{0,1 {0,1}

(3) Suppose thatA1={0,1} and 1v 1= {1}. Then,
{0,1} ={0,1} - 0=(1A1) - 0= (1 - 0)V(1— 0) =0VO0.

0=1—-0=(1v1l]) —-0=(1—-0A(1—0)=0A0.
We have O\ 1# {1}. Assume that @ 1= {1}. Since Ov 0= {0,1}, then

{0}=1-0=(0A1) = 0=(0—0)V(1—0)=(0v0)U(1v0)={0,1},

which is a contradiction. Hence, we have @ = {0} or 0A1={0,1}.

(i) Let 0OAN1 = {0}. Since 1€ 1V(0A1l)=0v1land 0c 1V (0A1l) =0V 1 by (HL3), then
0v1={0,1}. Therefore,(L,As,Vs,—1,0,1) and(L,Asg, Vg, —2,0,1) are two non-isomorphic
hyper lattice implication algebras where

nelo 1 Ve | 0 1
0|{0} {0} 0{0,1 {0, 1}
1| {0} {01} 11{0, 1} {1}

(i) LetOA1={0,1}. If 0V 1= {0}, then there are two non-isomorphic hyper lattice implmati
algebragL, Ag, Vg,—1,0,1) and(L, Ag, Vg, —2,0,1) where

Ao | 0 1 Ve | 0 1
ol {00 {01 ol {0, 1y {0}
1/{0,1 {01 1[{0} {1
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If 0 V1= {1}, then there are two non-isomorphic hyper lattice implmatlgebrasgL, A10, V10, —1
,0, 1) and(L, A10, V10, —2, 0, 1) where

A10 ‘ 0 1 V10 ‘ 0 1
0| {0} {0, 1} 0]{0,1 {1}
1|{0,1} {0,1} 1| {1} {1}

IfOVv1={0,1}, thenthere are two non-isomorphic hyper lattice implmatlgebraslL, A11, V11, —1
,0, 1) and(L,/\ll,\/ll,—>2,O, 1) where

A11 ‘ 0 1 V11 ‘ 0 1
o[{o} (o1 ol {0, {0, 1
1|{0,1} {0,1} 1|{0,1} {1}

(4) Suppose thatA1 = {0,1} and 1v 1= {0,1}. Then,
{0,1} ={0,1} - 0=(1A1) - 0= (1 - 0)V(1— 0) =0VO0.
{0,1} ={0,1} - 0=(1v1) - 0= (1—=0)A(1—0) = 0AO0.
We have O\ 1+# {1}. Suppose that @1 = {1}. Since Ov 0= {0,1}, then
{0} =1—-0=(0A1)—»0=(0—0)V(1—0)=(0v0)U(1v0)={0,1},
which is a contradiction. Hence we have @ = {0} or OA 1= {0,1}.
Also, we have O/ 1# {1}. Assume that @ 1= {1}. Since 0\ 0 = {0, 1}, then
{0}=1-0=(0v1) - 0=(0—0)A(1—0)=(0A0)U(1A0) = {0,1},
which is a contradiction. Hence we have' @ = {0} or OV 1= {0,1}.

(i) Let Ov1={0}. Since 1e 1AN(0v1l)=0Aland 0c 1A(0V1) =0A1 Dby (HL3), then
0A1={0,1}. So(L,A12,V12,—1,0,1) and(L, A12,V12,—2,0,1) are two non-isomorphic hyper
lattice implication algebras where

N12 ‘ 0 1 V12 ‘ 0 1
0({0,1 {0,1} 0|{0,1 {0}
1|{0,1} {0, 1} 1| {0} {0,1}

(i) LetOVv1={0,1}. If OA1= {0}, then there are two non-isomorphic hyper lattice implmati
algebragL, A13,V13,—1,0,1) and(L, A13, V13,—2,0,1) where

A13 ‘ 0 1 V13 ‘ 0 1
0]{0,1 {0} 0/{0,1 {0, 1}
1| {0} {0, 1} 1/{0,1 {0,1}
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If 0 A1={0, 1}, then there are two non-isomorphic hyper lattice implmatlgebrasgl, A14, V14, —1
,0, 1) and(L, N14,V14,—2,0, 1) where

A1 |0 1 Via| 0 1
ol {0, {01 ol {0, {01
11{0,1} {0, 1 11{0,1} {01}

Corollary 2. There are thirty one non-isomorphic hyper lattice implmatalgebras of order 2.

6. Conclusions

In this paper, we introduce the notion of hyper lattice irog@lion algebras and study their basic
properties. We obtain some conditions under which a hyp@fidgation operation in a hyper
implication algebra is an implication operation. Finalyper lattice implication algebras of order
2 are considered. In future work, we will study the relatidiesween hyper lattice implication
algebra and hyper MV-algebra, hyper K-algebra and (weagghgesiduated lattices.
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