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Keywords: Variable exponent, embedding, maximal operator.

1. Introduction

Kovacik and Rakosnik introduced the variable exponent kgbe spackP!) (R") and the Sobolev
spaceW*Pl) (R") as an alternative approach for coping with non-linear Dlgtboundary value
problems in [18]. The study of these spaces has been trigdprene problems of elasticity, fluid
dynamics, calculus of variations, see [25], [32], [33]. &I®iening [6] proved for the first time
the boundedness of the maximal operator in variable expdoelpesgue spaces over bounded
domains ifp(.) satisfies the locally log-Holder continuous conditiorattts,

1
— < — —y| <=
PO) =PI = o=y XY E€Q =Yl =3

whereQ is a bounded domain. Diening later extended the result towmted domains by assum-
ing, in addition, that the exponempt(.) = p is a constant function outside a large ball. After this
paper, many exciting and important papers appeared in rghted and weighted variable expo-
nent spaces, see [7], [11], [18] and [27]. For b < «, the spac@P (G) =L (G)NLP(G)is a Ba-
nach algebra with the norifi[|gp ) such thaf| f[|gsg) := || f[|; + [/ ||, and the usual convolution
product. Warner and Yap have studied the Banach alg&@#&S), for details see [29], [30] and
[31]. Moreover, Sagir and Gurkanli investigated some prbgs ofBl'§ (G) = Li (G) NL§ (G)
and endowed it with the sum norfif (|55 == |||, + [ fllqs in [26]. The aim of this paper is
to generalize some of the results in [26] to the spafd” (R") = L (R") NLI (R"). Also, we
obtain several inclusions and embedding properties insthése. Using these results, we obtain
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some applications for the intersection spXceY and the sum space+Y, whereX andY are
two normed spaces. We refer to [19] and [23] for a detailetbhital background. The bound-
edness of the maximal operator in variable exponent spacesy effective such that there are
consequential papers e.qg. [5], [6], [21], [22], [27]. Byngthis result under the conditiomsc A,
andd € Ay, we will present Theorem 10, Theorem 11 and Corollary 2. Tkeessequences can
be used for some function spaces such as Sobolev spacenid spaces, Amalgam spaces and
Morrey spaces.

In this paper, we will work orR" with Lebesgue measumx. We write (LP(R"), |.||,) for the
Lebesgue spaces ford p < « . We denote byC;(R") the space of all continuous, complex-
valued functions with compact supporttf. We denote the family of all measurable functions
p(.) : R" — [1,00) (called the variable exponent @f") by the symbolZ (R"). In this paper, the
function p(.) always denotes a variable exponent. pa) € &2 (R"), define

p-=essinp(x), p’= efestup(X)-

For every measurable functidnon R" we define the function

po(F) = [ 11001 dx
Rn

The functionpy,) is convex modularLP)(R") is denoted as the set of all (equivalence classes)
measurable functions onR" such thaip (A f) < o for someA > 0, equipped with the Luxem-

, f

If p© < o, thenf € LPU(RM) iff py)(f) < 0. The sel.PL)(R") is a Banach space with the norm

burg norm

|-Ilp- If p(.) = pis a constant function, then the Luxemburg coincides wighitsual P—norm. A
positive, measurable and locally integrable functbnR" — (0, ) is called a weight function.
A Beurling weightd on R" is a measurable and locally bounded functionfhandd satisfies
1< 8(x) andd (x+Yy) <3 (x)3(y) for all x,y € R". We say thai}; < 3, if and only if there exists

¢ > 0 such thaid1(x) < cJ»(x) for all x € R". Two weight functions are called equivalent, written
asd ~ 9, if 91 < I, andd, < 9. We setlf (R") = {f L fwe € LP(R”)} forl<p<o.ltisa

. Recall thatl§, (R") — L, (R") if and
only if w, < wq [12]. The weighted modular is defined by

poa(F) = [ 110019 (x)dx
Rn

Banach space under the natural ndff ,, = H fwe

The weighted variable exponent Lebesgue sph@@s{R”) consist of all measurable functioris
onR" where| ||, ) 9 = H fo9 I

’ 0 < 0. The spacdz_g(')(R”) is a Banach space with respect to
p(.
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[-l(.),9 - Also, some basic properties of this space were investigaté2], [3], [4], [13], [14],
[15], [16], [17]. We say thatp;(.) is non-weaker tham,(.) if and only if there exist positive
constantsy, K, andh € LY(R"),h > 0 such that

tP10) 91 (x) < Kg (Kaot)P2) 95(x) + h(x),

for a.e. xe R" and allt > 0. We saypi(.) < pz2(.). Moreover, the embedding_gi(')(R”) —
Lgi(‘)(]R”) holds if and only ifpi(.) < pz(.), [10]. The spacéi (R") is the space of all mea-
surable functions f oR" such thatf.xx € L*(R") for any compact subsét ¢ R". A Banach
function space (shortly BF-space) @& is a Banach spacéB, ||.||z) of measurable functions
which is continously embedded intd. . (R"), i.e. for any compact subsét C R" there exists
some constar@k > 0 such thaf| f.xk || » <Ck.| f||g forall f € B. ABF-spacgB,||.||z) is called
solid if ge LE . (R"), f € Band|g(x)| < |f(x)| almost everywhere (shortly a.e.) implies tgat B
and||g||.» < ||f||g- ABF-spacgB,]||.||g) is solid iff itis aL”(R")-module. Letf be a measurable
function onR". The translation and character operatoysind/\; are defined by, f (x) = f(x—y)
and/A¢ f(y) = (y,t) . f(y) respectively forx,y € R" ,t € R". Also (B, ||.||g) is strongly translation
invariant if one had\B C B and||Lyf||; = || f||z and strongly character invariant/&B C B and

N f|lg=|If]|gforall f e B,yecR"andt e R".

2. The Spaceﬁ&g(') (R")
Throughout this paper, we assume tha® are Beurling weight functions.
Letq(.) € Z(R"). We set
A ®M = {1 f e LB LY (R |
and equip this vector space with the norm
IS = ¥l + 1 Fllgc.0
forany f € A\FA’,:%(')(R”).

Theorem 1. If g© < o, then <A\FX;‘§(')(R”), ||.\|Vrf,’g(')> is a Banach space.

Proof. Let{fy},.n beaCauchy sequenceA@g(‘) (R"). Thus givere > 0, there exists ang € N
such that for alh,m > ng implies

[ fn— fm||\?v:g(.) = fn— mep7W+ [ fn — meq(Jﬂ <E&.

Therefore,{ fo}non C LR(RM) and{ fa} oy Lg(')(R”) are Cauchy sequences with respect to

[[-[[p.w @Nnd][.[|q).9 NOrms, respectively. Since the spaéeg,(R”), ||-Hp,w) and(Lg(‘)(R”), ||.\|q(_)’19>



4 C.Unaletal.

are two Banach spaces, then given 0, there areny, n, € N such that for alh > ny,n > ny imply

(1)

= Fllow <

NI ™ NI M

[f—dllgo.e <

Thus f, — gin L90(R™). Sinceqt < o, convergence in9")is necessity with convergence in
measure [18] and then there is a sequeftg}, \y C {fn}nen Such thatf, — g, a.e [24].
Also, it is easy to see thdt, — f . Therefore givere > 0, there existsiz € N such that for all
nk > nz andx ¢ K implies

€
5=

whereK is the set of{ f, }, .\ are not convergent. Then we wrife= g, a.e. and since elements

1100 =909 <10~ T, (9] + |Tn (0 - 90| < 5 +5 =&,

of L3 (R") are equivalence classes, we yiéle- g. Sincef € LY(R™ andf € LI(R"), then f ¢
Af,:g(‘)(R”). Letng = max{ng,ny} . If we use (1), then giver > 0, there existsiy € N such that
for all n > ng it holds that

= fI3" = Ia— fllpw+ o= Fllge)s <&
This completes the proof. [

Proposition 1. If g© < o, then
(i) Ce(RM < ALE (RY)
(i) The space\}"” (R") is dense irL{ (R") andL] " (R").

Proof. (i) Let f € C.(R") be any function such that spd = K compact. It is known that
Ce(R")  LE(RM). Also, the inclusiorC,(R") Lg(')(R”) is satisfied by [28]. Then, we get
f € LL(R") andf € L3 (R"). Therefore,f ¢ A‘;,:g(‘)(R”) which is the desired.
(i) Itis clear that the spadg. (R") is dense irL{(R"). Using the inclusion
Ce(R") C Ayg7(R") C LR (R,

we get thatA?") (R") is dense inL§(R"). Similarly, we can conclude tha\'z:g(‘)(R”) is
dense i3 (R).

Theorem 2. (i) The spac ng(')(R”) is strongly character invariant.
(i) If g™ < oo, then the function —s A f is continuous fronR" into A\f,:g(')(R”).
(i) The functionf — A f is continuous fronA'f,:g(')(R”) into A\f,:g(')(R”).

Proof. (i) Take anyf € Af,:g(‘)(R”). Also, we have

A O] =[0t) £ ()] = [ (X)].
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Using the definitions of norms of the spades(R") and Lg(‘) (R™), we get
A= ASIRS = 1A= At + A=Al 0
= o= Fllpwt = Fllgy.o = o= FI5S7-
(ii) If we use same method in Proposition 2.4 by [2], then we caclade

. & &
IACE = FI587 = IAE = fllpu A~ fllg 0 < 5+5 =¢

forany f e A‘,Jvig(‘)(R”) andt € R".
(ii)) Let (fo)pey € ARSI (RM) and f € AR (R™). Also, f, — fin ALY (R™). Then, we get
A= AR = A= At 1A Fa = Acfllg )0
= A= )llpw 1A (Fa = )llg)0

= [fo—fI09Y <.

That is the desired.

Lemma 1. (i) The spacé\f,:g(‘)(R”) is a BF-space oR".
(i) If g < oo, thenA\f;g(')(R”) is a solid BF-space oR".
Proof. Itis known that(A\‘A’,:g(')(R”), H.Hp(i)ﬂ) is a Banach space. L&t R" be a compact sub-

set an% + Tl) = 1. If we use the generalized Holder inequality for variadtponent Lebesgue
space, we obtain@ > 0 such that

/\f(X)!dX < Clixxlliy 1fllge) < Clixkllecy.o 1 Fllge).s
K

IN

Clixkll s I 155

forall f € A‘,)V:g('>(R”),wherexK is the characteristic function &f. It is clear that|[ Xk |;) s <
o iff Py 9 (Xk) < oo fort* < eo. Sinced (x) > 1 forx € R", we get

xeK

Ao O06) = [ 9097k (sup9 (0T ) () <
K

ThereforeA‘A’,:g(')(R”) < LE _(RM). This completes (i). If we use (i), then the proof of (ii) isate

loc
[ |

Theorem 3. Letq" < . ThenA‘,’vfgi(R”) C Aﬁfgi(ﬂ%”) if and only ifA\f;Eg(R”) — A‘,’V’ggi(R”).
Proof. The sufficient condition of the theorem is clear by the detiniof embedding. Now, let

AL (RM) < ARTS) (RM). Put the sum nornf| f[[| = || £]155) + || £12%) on APIS) (R™). Hence it

2,82 w891 W, 82
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is easy to see th{tAﬁ’qf‘,‘i (R™M), /] ]H) is a Banach space. Now, let us define the unit fundtivom
(AN o, R ]H) into (A\N Bl(R”) II. le 31> Thenl is continuous. Because, we can obtain the
= [|fllg

inequality || ()||> < |[If||l. Using the closed graph mapplng theorem, it is clear

wy, 791 W17791 =
that| is a homeomorphism. That means the noifh§| and||. le Blare equivalent. Thus, for
everyf e A\qugl(R”) there exist&k > 0 such that
1< K155 )

Therefore, by using (2) and the definition of nofiml ||, we write

Hwaz,az < 1[I < kale 9
That is the desired. ]
Theorem 4. If wy < wy, thenA’;;Efs‘) (R") < A‘;,ffs‘) (R™).
Proof. The proof is straightforward. [
Theorem 5. If 9, < 91, thenA‘,JV:g(l‘)(R”) — A‘,Jvzg(z‘)(R”).
Proof. It is clear thatd, < 9, implies andLg(l‘)(R”) — Lgi‘)(R”) by [2]. Hence, we write
A3 () = ALY (D). "
Theorem 6. If qu () < a2 (.), thenﬁ\%gzz(')(R”) — A‘;,:glz(‘)(R”).

Proof. Letaqy(. ) < q(.). Then we writel_gzz(')(R”) s Lgll(')(R”). Using this embedding, we con-
clude tha pq2 (R — AN R"). m
il o . <o then APEU (RN o ALED (RM).

Theorem 7. If ¢f < and‘
CIREIBe

a0) < oo, Itis known by Theorem 5.1 in [10] thda.@ll(') (R™) —

R — 2
@ ()-a()’
ngz(‘)(R ). Thus there exists a constant- 0 such that

Proof. Letus assume th#tﬂ2

If HQ2(<)7792 <cl|f HQ1(<)7791
p(.)
forany f € Ly 7 (R").
Therefore, we can write as follows

£ 5t

IN

[l o+ 1 Fllgp) 00 < I Fllpw +Cll Fllgy() 5,

max{L,c} { | Fllpu+ 1 Fllgyy.0, } = max{Leh | FILE".

forany f ¢ A\F&gll(')(R”). That isA‘;,:gll('>(R”) — A\F&gzz(') (R"). m

IN
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The following corollary can be easily proved using Theoreriit3eorem 4, Theorem 5, Theorem
6 and Theorem 7.

Corollary 1. (i) The equality pfg) (R") = A\‘A);SQ (R") holds if and only ifw, ~ w.
(i) If 92~ 91, thenAD D) (R") = ADE) (R).
(iii) If wo < wy and 9, < 91, thenALTs) (RM) — ARIY) (RM).
(V) If Wz~ wi andd; ~ 91, thenAl%) (R") = ALY (RM).
(v) The embedding\, ™/ (R") — AP% (R") holds ifw, < wy andap(.) < aa(.).
(vi) The embeddin p"“ )(R”) AN ()(R”) holds ifw, < w; and‘

v2
9

Now, we characterize the embeddings of the sum and intéraeut variable exponent Lebesgue
spaces. For two normed spacesandY (which are both embedded into a Hausdorff topological
vector spaceZ) we equip the intersectioX NY = {f: f X, f €Y} and the sunX +Y :=
{g+h:ge X, heY} with the norms

[fllxqy = =max{|[fllx,[[fllv},

flee = =it Al iy}

The following theorem is well known by [8].

Theorem 8. Letp(.)q(.),r(.) € Z (R") with p(.) <q(.) <r(.), almost everywhere iR". Then
LPO (RN NLO) (RM) < LI (RM) s LPO (R) 4 L7 (R™).,
Theorem 9. Let 1< p< o, q(.),r(.) € Z (R") with p<r(.) <q(.), almost everywhere iiR".

Then

Proof. Sincew,d are Beurling’s weight functions, we can write embeddibd$R") < LP(R")
andL3") (R") — L40)(R"). Using the last two embeddings and Theorem 8, we get

AR (RM) < LP(RM) AL (R) = L' (R") < LP(RM) + L) (R™).

The exponeng|(.) satisfies the locally log-Holder continuous if

1
- Q. |x—yl <=
whereQ c R". We denote the family of all locally log-Holder continoushitions by the symbol

Plog(RM).
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For f € LL (R"), we denote the (centered) Hardy-Littlewood moximal operité of f by

Mf (x) —sm—— H )| dy.
r>0B

where the supremum is taken over all b&lsr) .

Let 1 < p < . A weightw satisfies Muckenhoupt’d, (R") = A, condition, orw € A, if there
exist positive constants andc such that, for every baB ¢ R",

p—1
1 1 1
(B/de) (B/W pidx) <C,l<p<wm
B B
1 1
_ < =1.
(B B/wdx) <eS§qu_v> <c, p=1

Let 1< p < . Then Muckenhoupt proved thate A, if and only if the Hardy-Littlewood maxi-
mal operator is bounded drf, (R"), see [20].

or

Hasto and Diening defined the cla&g ) to consist of those weights for which

1
) <%,

1Wla,, = Suplel ™ Wl || gy

-1
where s denotes the set of all balls iR", gg = < [ g > and gt5 + % = 1. ltis clear
I 4 .

that the Hardy-Littlewood maximal operator is bounded_é(r? (R") if and only if g € P'°9(R"),
1<q <g"<w, dechy, seel3].

Theorem 10. Let 1< p < », g€ P°9(R") and 1< g~ < g* < . Then, the maximal operator

M : ARSI (RY) — ADSY(RM) is bounded if and only ifv e Ap and 9 € Aq ).

Proof. It is known that the maximal operatold : Li(R") —s LE(R") andM : L3 (R") —
Lg(')(R”) are bounded if and only i € Ap andd € Ay, respectively. Using the definition of the
intersection space, the proof is completed. [

Definition 1. Let ¢ : R" — R be a nonnegative, radial, decreasing function belongi§ {@R")
and having the properties:
() ¢ (x)=0if |x > 1,
(i) [ ¢ (x)dx=1.
Rn
Lete > 0. If the function ¢, (x) = £ "¢ (¥) is nonnegative, belongs & (R") and satisfies

() ¢ (x) =0if [x| > ¢,
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(i) [ ¢e (x)dx=1,
Rn
then g, is called a mollifier and we define the convolution (g = f) (X) = [ ¢ (X—y) f (y)dy.
Rn

The following proposition was proved in [9].

Proposition 2. Let ¢, be a mollifier andf € LE (R"). Then sup(¢e * ) (X)] < Mf(x).

loc
>0

Proposition 3. If § € Aq) andf € Lg(‘)(R”), theng. « f — fin Lg('>(R”) ase — 07, see [3].

Theorem 11. If we Ay and 9 € Ay) and f € Af,:g(‘)(R”), then ¢e « f — f in A‘;,:g(‘)(R”) as
e —0".

Proof. Let f ¢ A@:?’(R”) ande > 0 be given. lfw € Ay andd € Ay, then the inequality

If = e FIRST = I1f = @ex Fllow+ 11T = e fllg)
< 48 ;
2 2
is satisfied by [1], [3]. That is the desired. [

Corollary 2. Letw e Ay and® € Ay ). The clas<Cg(R") is dense inﬁ\f’vzg(')(R”).
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