

RESEARCH ARTICLE

Log-Harmonic mappings associated with the sine function

Sushil Kumar¹, Asena Çetinkaya^{*2}, H. Esra Özkan Uçar³

¹Bharati Vidyapeeth's College of Engineering, Delhi–110063, India ²Department of Mathematics and Computer Science, İstanbul Kültür University, İstanbul, Türkiye ³Department of Software Engineering, İstanbul Health and Technology University, İstanbul, Türkiye

Abstract

In this paper, we define new subclasses $ST_{lh}(s)$ and $CST_{lh}(s)$ of sine starlike log-harmonic mappings and sine close-to-starlike log-harmonic mappings, respectively, defined in the open unit disc \mathbb{D} . We investigate representation theorem and integral representation theorem for functions in the class $ST_{lh}(s)$. Further, we determine radius of starlikeness for functions in the classes $ST_{lh}(s)$ and $CST_{lh}(s)$.

Mathematics Subject Classification (2020). 30C35, 30C45, 35Q30

Keywords. starlike function, sine starlike log-harmonic mapping, radius of starlikeness, sine close-to-starlike log-harmonic mapping

1. Introduction

Let $L(\mathbb{D})$ be the linear space of all analytic functions defined in the open unit disc $\mathbb{D} = \{z : |z| < 1\}$, and let \mathcal{A} be a subclass of $L(\mathbb{D})$ consisting of functions f, normalized by the conditions f(0) = f'(0) - 1 = 0. Also, let \mathcal{B} be the set of all bounded analytic functions $\mu \in L(\mathbb{D})$ satisfying $|\mu(z)| < 1$ for each $z \in \mathbb{D}$. For z = x + iy, the differential operators

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
 and $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$

satisfy the Laplacian

$$\triangle = 4 \frac{\partial^2}{\partial z \partial \overline{z}} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Thus a C^2 -function f defined in the unit disc \mathbb{D} is said to be harmonic in \mathbb{D} if $\Delta f = 0$. Analogously, a log-harmonic mapping defined in the disc \mathbb{D} is a solution of the non-linear elliptic partial differential equation

$$\frac{\overline{f_{\overline{z}}(z)}}{\overline{f(z)}} = \mu(z) \left(\frac{f_z(z)}{f(z)}\right),\tag{1.1}$$

^{*}Corresponding Author.

Email addresses: sushilkumar16n@gmail.com (S. Kumar), asnfigen@hotmail.com (A. Çetinkaya), eozu-car@gmail.com(H. E. Özkan Uçar)

Received: 04.11.2023; Accepted: 12.03.2024

for some $\mu \in \mathcal{B}$, where μ is the second complex-dilatation of the function f. Hence, the Jacobian

$$J_f(z) = |f_z(z)|^2 - |f_{\overline{z}}(z)|^2 = |f_z(z)|^2 (1 - |\mu(z)|^2)$$

is positive, and all non-constant log-harmonic mappings are sense-preserving in \mathbb{D} .

Abdulhadi and Bshouty [3] observed that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$f(z) = h(z)\overline{g(z)},$$

where h and g are analytic in \mathbb{D} . On the other hand, if f is a non-constant log-harmonic mapping that vanishes only at z = 0, then f admits the representation given by

$$f(z) = z^m |z|^{2\beta m} h(z) \overline{g(z)},$$

where m is a non-negative integer, $\Re(\beta) > -1/2$, h and g are analytic functions in \mathbb{D} with $h(0) \neq 0$ and g(0) = 1. The exponent β depends only on $\mu(0)$, and can be expressed by

$$\beta = \overline{\mu(0)} \frac{1 + \mu(0)}{1 - |\mu(0)|^2}.$$

Note that $f(0) \neq 0$ if and only if m = 0. A univalent log-harmonic mapping in \mathbb{D} vanishes at the origin if and only if m = 1. Thus every univalent log-harmonic mapping in \mathbb{D} which vanishes at the origin has the form

$$f(z) = z|z|^{2\beta}h(z)\overline{g(z)}$$

where $\Re(\beta) > -1/2$ and $0 \notin hg(\mathbb{D})$. The class of log-harmonic mappings have been studied extensively in [1, 5, 6] and references therein.

In this paper, we focus on sense-preserving univalent log-harmonic mappings in \mathbb{D} with the condition $\mu(0) = 0$ having the form

$$f(z) = zh(z)g(z), \tag{1.2}$$

where h and g are analytic in \mathbb{D} such that

$$h(z) = \exp\left(\sum_{n=1}^{\infty} a_n z^n\right)$$
 and $g(z) = \exp\left(\sum_{n=1}^{\infty} b_n z^n\right)$.

Here, h and g are the analytic and the co-analytic parts of f, respectively. The class of such mappings is denoted by S_{lh} . It follows from (1.2) that the functions h, g and the dilatation μ satisfy the relation

$$\mu(z) = \frac{zg'(z)/g(z)}{1+zh'(z)/h(z)} = \frac{z(\log g)'(z)}{1+z(\log h)'(z)}.$$
(1.3)

In [4], it is shown that the mapping $f(z) = zh(z)\overline{g(z)}$ is starlike log-harmonic mapping of order α if

$$\frac{\partial}{\partial \theta} \left(\arg f(re^{i\theta}) \right) = \Re \left(\frac{z f_z(z) - \overline{z} f_{\overline{z}}(z)}{f(z)} \right) > \alpha$$

for all $z = re^{i\theta} \in \mathbb{D}\setminus\{0\}$ and for some $0 \leq \alpha < 1$. The class of all starlike log-harmonic mappings of order α is denoted by $S\mathcal{T}_{lh}(\alpha)$. For $\alpha = 0$, we get the class $S\mathcal{T}_{lh}(0) = S\mathcal{T}_{lh}$ of starlike log-harmonic mappings. Also, denote by $S^*(\alpha)$ the class of starlike functions of order α . For $\alpha = 0$, we get the class $S^*(0) = S^*$ of starlike functions.

The following theorem provides a link between the classes $ST_{lh}(\alpha)$ and $S^*(\alpha)$.

Theorem A (Theorem 2.1 [4]). Let $f(z) = zh(z)\overline{g(z)}$ be a log-harmonic mapping in \mathbb{D} with $0 \notin (hg)(\mathbb{D})$, where h and g are analytic functions. Then $f \in ST_{lh}(\alpha)$ if and only if $\varphi(z) = zh(z)/g(z) \in S^*(\alpha)$. Let \mathcal{P}_{lh} be the set of all log-harmonic mappings R defined in \mathbb{D} which are of the form $R(z) = H(z)\overline{G(z)}$, where H and G are in $L(\mathbb{D})$, H(0) = G(0) = 1 such that $\Re(R(z)) > 0$ for all $z \in \mathbb{D}$. In particular, the set \mathcal{P} of all analytic functions p in \mathbb{D} with p(0) = 1 and $\Re(p(z)) > 0$ is a subset of \mathcal{P}_{lh} . The next result describes the connection between the classes \mathcal{P}_{lh} and \mathcal{P} .

Theorem B ([2]). A function $R(z) = H(z)\overline{G}(z) \in \mathcal{P}_{lh}$ if and only if $p(z) = H(z)/G(z) \in \mathcal{P}_{lh}$.

Denote by Ω the class of Schwarz functions w which are analytic in \mathbb{D} with w(0) = 0and |w(z)| < 1. For analytic functions f_1 and f_2 in \mathbb{D} , we state that f_1 is subordinate to f_2 , symbolized by $f_1 \prec f_2$, if there exists a function w in Ω satisfying $f_1(z) = f_2(w(z))$. The comprehensive details of subordination can be found in [8]. Ma and Minda [11] investigated the class of analytic functions ϕ with positive real part in \mathbb{D} that map the disc \mathbb{D} onto regions starlike with respect to 1, symmetric with respect to the real axis and normalized by the conditions $\phi(0) = 1$ and $\phi'(0) > 0$. These authors introduced the class of starlike functions

$$\mathbb{S}^*(\phi) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \phi(z), \ z \in \mathbb{D} \right\}.$$

For the case $\phi(z) = (1 + Az)/(1 + Bz)$ $(-1 \leq B < A \leq 1)$, the family of Janowski starlike functions $\mathcal{S}^*[A, B]$ is obtained ([9]). When $A = 1 - 2\alpha$ $(0 \leq \alpha < 1)$ and B = -1, we have the family $\mathcal{S}^*(\alpha)$ of starlike functions of order α . Particularly, $\alpha = 0$ yields the usual class $\mathcal{S}^*(0) =: \mathcal{S}^*$ of starlike functions. Recently, Cho *et al.* [7] defined the subclass \mathcal{S}^*_s of Ma–Minda class $\mathcal{S}^*(\phi)$ which is endowed with the analytic function $\phi(z) = 1 + \sin z$. Then, the function $f \in \mathcal{S}^*_s$ if $zf'(z)/f(z) \prec 1 + \sin z$ for all $z \in \mathbb{D}$. The following lemma provides the largest disc and the smallest disc centered, respectively, at (a, 0) and (1, 0) such that the domain $\Omega_s : (1 + \sin z)(\mathbb{D})$ is contained in the smallest disc and contains the largest disc.

Lemma 1.1 ([7]). Let $1 - \sin 1 \le a \le 1 + \sin 1$ and $r_a = \sin 1 - |a-1|$. Then the following inclusions hold:

$$\{w \in \mathbb{C} : |w - a| < r_a\} \subset \Omega_s \subset \{w \in \mathbb{C} : |w - 1| < \sinh 1\}.$$

Motivated by the above discussed literature, we introduce the notion of sine starlike log-harmonic mappings. Due to Cho *et al.* [7], we first give Ma-Minda type sine starlike function class:

An analytic function $\varphi \in S_s^*$ if $z\varphi'(z)/\varphi(z) \prec 1 + \sin z$ for all $z \in \mathbb{D}$. Since $\varphi \in S_s^*$,

$$\frac{z\varphi'(z)}{\varphi(z)} \prec 1 + \sin z \quad \text{if and only if} \quad \frac{z\varphi'(z)}{\varphi(z)} = 1 + \sin w(z),$$

where w is a Schwarz function with $|w(z)| \leq |z|$. Let $w(z) = r^* e^{it}$ with $r^* \leq |z| = r$, $t \in [-\pi, \pi]$. Thus, easy calculations show that

$$|\sin w(z)| \le \sinh r^* \le \sinh r.$$

Therefore, we have

$$\Re\left(\frac{z\varphi'(z)}{\varphi(z)}\right) \ge 1 - \sinh r.$$

Consider the function $\varphi(z) = zh(z)/g(z)$. Then taking logarithmic derivative, we observe that

$$\frac{z\varphi'(z)}{\varphi(z)} = 1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)} \prec 1 + \sin z.$$

Hence, taking into account the above relations, we define the following classes:

Definition 1.2. An analytic mapping $\varphi(z) = zh(z)/g(z)$ such that $\varphi(0) = 0$ and h(0) = g(0) = 1, is said to be sine starlike if

$$\Re\left(\frac{z\varphi'(z)}{\varphi(z)}\right) = \Re\left(1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)}\right) \ge 1 - \sin hr$$

for all $z \in \mathbb{D}$. The class of sine starlike functions is denoted by S_s^* .

Definition 1.3. A log-harmonic mapping $f(z) = zh(z)\overline{g(z)}$ such that f(0) = 0 and h(0) = g(0) = 1, is said to be sine starlike log-harmonic mapping if

$$\Re\left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)}\right) \ge 1 - \sin hr$$

for all $z \in \mathbb{D}$. The class of sine starlike log-harmonic mapping is denoted by $S\mathcal{T}_{lh}(s)$.

The main purpose of this paper is to show that a log-harmonic mapping $f(z) = zh(z)\overline{g(z)}$ is sine starlike log-harmonic in \mathbb{D} if and only if the function $\varphi(z) = zh(z)/g(z)$ is in the class S_s^* . In Section 2, we first investigate a representation theorem which gives a relation between the classes $ST_{lh}(s)$ and S_s^* . We next obtain integral representation theorem for functions in the class $ST_{lh}(s)$. In Section 3, we investigate radius of starlikeness for the class $ST_{lh}(s)$. Further, we define the concept of sine close-to-starlike log-harmonic mappings, denoted by $CST_{lh}(s)$, and investigate the radius of starlikeness for such mappings.

2. Representation Theorems

In this section, we first establish a representation theorem, which provides a relation between the classes $ST_{lh}(s)$ and S_s^* .

Theorem 2.1. Let $f(z) = zh(z)\overline{g(z)}$ be a log-harmonic mapping in \mathbb{D} with $0 \notin hg(\mathbb{D})$. Then f belongs to the class $ST_{lh}(s)$ if and only if $\varphi(z) = zh(z)/g(z)$ belongs to the class S_{s}^{*} .

Proof. Let $f(z) = zh(z)\overline{g(z)}$ be in the class $ST_{lh}(s)$. Then

$$\frac{\partial}{\partial \theta} \left(\arg f(re^{i\theta}) \right) = \Re \left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)} \right) \\
= \Re \left(1 + \frac{zh'(z)}{h(z)} - \frac{\overline{z}g'(z)}{\overline{g(z)}} \right) \\
= \Re \left(1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)} \right) \ge 1 - \sin hr.$$
(2.1)

Consider the function $\varphi(z) = zh(z)/g(z)$, thus logarithmic differentiation gives

$$\frac{z\varphi'(z)}{\varphi(z)} = 1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)}.$$
(2.2)

In view of (2.1) and (2.2), we arrive at

$$\Re\left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)}\right) = \Re\left(\frac{z\varphi'(z)}{\varphi(z)}\right) \ge 1 - \sinh r.$$
(2.3)

Since the function f is univalent, we have $0 \notin f_z(\mathbb{D})$. Also,

$$q_1(w) = \varphi \circ f^{-1}(w) = w|g \circ f^{-1}(w)|^{-2}$$

is locally univalent in $f(\mathbb{D})$. Thus, we have

$$\frac{z\varphi'(z)}{\varphi(z)} = 1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)} = \frac{zf_z(z)}{f(z)} - \mu(z)\frac{zf_z(z)}{f(z)} = (1 - \mu(z))\frac{zf_z(z)}{f(z)} \neq 0$$

for all $z \in \mathbb{D}$. Therefore, φ is univalent, and in view of (2.3) we conclude that $\varphi \in S_s^*$.

Conversely, let $\varphi \in S_s^*$ and $\mu \in \mathcal{B}$ such that $|\mu(z)| < 1$ for each $z \in \mathbb{D}$. Since $\varphi(z) = zh(z)/g(z)$, we have the equation (2.2). Also, from (1.1), we get

$$\frac{zg'(z)}{g(z)} = \mu(z) \left(1 + \frac{zh'(z)}{h(z)} \right).$$
(2.4)

Combining (2.2) and (2.4), we observe that

$$g(z) = \exp \int_0^z \frac{\mu(s)}{1 - \mu(s)} \frac{\varphi'(s)}{\varphi(s)} ds, \qquad (2.5)$$

and

$$zh(z) = \varphi(z) \exp \int_0^z \frac{\mu(s)}{1 - \mu(s)} \frac{\varphi'(s)}{\varphi(s)} ds, \qquad (2.6)$$

where $\frac{z\varphi'(z)}{\varphi(z)} = p(z) \prec 1 + \sin z$ such that p(0) = 1 and $\Re(p(z)) > 0$. It follows that

$$\begin{split} f(z) &= zh(z)\overline{g(z)} = \varphi(z) \exp \int_0^z \frac{\mu(s)}{1 - \mu(s)} \frac{\varphi'(s)}{\varphi(s)} ds \, \exp \int_0^z \frac{\mu(s)}{1 - \mu(s)} \frac{\varphi'(s)}{\varphi(s)} ds \\ &= \varphi(z) \exp\left(2 \, \Re \int_0^z \frac{\mu(s)}{1 - \mu(s)} \frac{\varphi'(s)}{\varphi(s)} ds\right), \end{split}$$

and

$$f(z) = zh(z)\overline{g(z)} = \varphi(z)|g(z)|^2.$$

Therefore, h and g are non-vanishing analytic functions, normalized by h(0) = g(0) = 1, in \mathbb{D} and f is a solution of (1.1) with respect to μ . Hence, we observe that

$$\Re\left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)}\right) = \Re\left(\frac{z\varphi'(z)}{\varphi(z)}\right) \ge 1 - \sinh r.$$

Moreover,

$$q_2(w) = f \circ \varphi^{-1}(w) = w|g \circ \varphi^{-1}(w)|^2$$

is locally univalent in $\varphi(\mathbb{D})$, and therefore f is univalent. It follows that $f \in ST_{lh}(s)$. \Box

We now give an integral representation for $f \in ST_{lh}(s)$ with the case $\mu(0) = 0$. Hence, we need the following lemma.

Lemma 2.2 ([10]). If the function $\mu \in \mathbb{B}$ with $\mu(0) = 0$, then

$$\frac{\mu(z)}{1-\mu(z)} = \int_{\partial \mathbb{D}} \frac{\xi z}{1-\xi z} d\kappa(\xi), \ (z \in \mathbb{D})$$

for some probability measure κ on $\partial \mathbb{D}$.

Theorem 2.3. A log-harmonic mapping $f(z) = zh(z)\overline{g(z)} \in ST_{lh}(s)$ if and only if there are two probability measures ν and κ on $\partial \mathbb{D}$ such that

$$g(z) = \exp\left(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} K_1(z, t, \xi) d\nu(t) d\kappa(\xi)\right),$$
(2.7)

where

$$K_1(z,t,\xi) = \sin\left(\frac{t}{\xi}\right) \left\{ \operatorname{Ci}\left(-\frac{t}{\xi}\right) - \operatorname{Ci}\left(tz - \frac{t}{\xi}\right) \right\} + \cos\left(\frac{t}{\xi}\right) \left\{ \operatorname{Si}\left(\frac{t}{\xi} - tz\right) - \operatorname{Si}\left(\frac{t}{\xi}\right) \right\} - \log(1 - \xi z)$$

and

$$h(z) = \exp\bigg(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} K_2(z, t, \xi) d\nu(t) d\kappa(\xi)\bigg),$$
(2.8)

where

$$K_2(z,t,\xi) = \operatorname{Si}(tz) + \sin\left(\frac{t}{\xi}\right) \left\{ \operatorname{Ci}\left(-\frac{t}{\xi}\right) - \operatorname{Ci}\left(tz - \frac{t}{\xi}\right) \right\} + \cos\left(\frac{t}{\xi}\right) \left\{ \operatorname{Si}\left(\frac{t}{\xi} - tz\right) - \operatorname{Si}\left(\frac{t}{\xi}\right) \right\} - \log(1 - \xi z)$$

$$if |\xi| = |t| = 1, \ \xi \neq t.$$

Proof. By Theorem 2.1, we know that $f(z) = zh(z)\overline{g(z)} \in S\mathcal{I}_{lh}(s)$ if and only if $\varphi(z) = zh(z)/g(z) \in S_s^*$, thus

$$\frac{z\varphi'(z)}{\varphi(z)} = p(z) \prec 1 + \sin z,$$

where $p \in \mathcal{P}$ such that p(0) = 1 and $\Re(p(z)) > 0$. Hence, for $p(z) = 1 + \sin z$, there exists a probability measure ν defined on the Borel σ -algebra of $\partial \mathbb{D}$ such that

$$\frac{z\varphi'(z)}{\varphi(z)} = \int_{\partial \mathbb{D}} (1+\sin tz) d\nu(t) \Rightarrow \varphi(z) = z \exp\left(\int_{\partial \mathbb{D}} \int_0^z \frac{\sin ts}{ts} ds d\nu(t)\right).$$
(2.9)

Setting (1.3), (2.9) and Lemma 2.2 into (2.5), we get

$$g(z) = \exp\left(\int_0^z \int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} \frac{\xi}{1 - \xi s} (1 + \sin ts) d\nu(t) d\kappa(\xi) ds\right)$$

for probability measures ν and κ on $\partial \mathbb{D}$. Integrating above function, we arrive at

$$g(z) = \exp\left(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} \int_{0}^{z} \frac{\xi}{1 - \xi s} (1 + \sin ts) ds d\nu(t) d\kappa(\xi)\right)$$
$$= \exp\left(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} K_{1}(z, t, \xi) d\nu(t) d\kappa(\xi)\right),$$
(2.10)

where

$$K_1(z,t,\xi) = \sin\left(\frac{t}{\xi}\right) \left\{ \operatorname{Ci}\left(-\frac{t}{\xi}\right) - \operatorname{Ci}\left(tz - \frac{t}{\xi}\right) \right\} + \cos\left(\frac{t}{\xi}\right) \left\{ \operatorname{Si}\left(\frac{t}{\xi} - tz\right) - \operatorname{Si}\left(\frac{t}{\xi}\right) \right\} - \log(1 - \xi z).$$

Here, Ci(z) is the cosine integral and Si(z) is the sine integral given, respectively, by

$$\operatorname{Ci}(z) = -\int_{z}^{\infty} \frac{\cos s}{s} ds$$
 and $\operatorname{Si}(z) = \int_{0}^{z} \frac{\sin s}{s} ds$

Moreover, in similar way, by plugging (2.9) and (2.10) into $h(z) = (\varphi(z)/z)g(z)$, we get the integral representation for h given by (2.8). This completes the proof.

3. Radii of Starlikeness

The first result gives radius of starlikeness for sine starlike log-harmonic mappings f, which satisfy the condition $\Re(\frac{f(z)}{z}) > 0$.

Theorem 3.1. Suppose that $f(z) = zh(z)\overline{g(z)} \in ST_{lh}(s)$ in \mathbb{D} with h(0) = g(0) = 1, and $\varphi(z) = \frac{zh(z)}{g(z)} \in S_s^*$ in \mathbb{D} . If $\Re(\frac{f(z)}{z}) > 0$ for $z \in \mathbb{D}$, then f is univalent and starlike in

$$|z| \le r = \frac{\sinh 1}{\sqrt{1 + (\sinh 1)^2 + 1}} \approx 0.462117.$$

Proof. Since $f \in ST_{lh}(s)$, it follows that

$$\frac{\partial}{\partial \theta} \left(\arg f(re^{i\theta}) \right) = \Re \left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)} \right) = \Re \left(1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)} \right)$$

Taking logarithmic derivative of $\varphi(z) = zh(z)/g(z)$, and using the above relation, we get

$$\Re\left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)}\right) = \Re\left(\frac{z\varphi'(z)}{\varphi(z)}\right).$$
(3.1)

Let $p(z) = \varphi(z)/z$, then we observe that

$$\frac{zp'(z)}{p(z)} = \frac{z\varphi'(z)}{\varphi(z)} - 1.$$
(3.2)

Using (3.1) and (3.2), we obtain

$$\Re\left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)}\right) = \Re\left(\frac{z\varphi'(z)}{\varphi(z)}\right) = 1 + \Re\left(\frac{zp'(z)}{p(z)}\right).$$
(3.3)

We will show that the function f in (3.3) is univalent and starlike. Since

$$\Re\left(\frac{f(z)}{z}\right) = \Re\left(\frac{zh(z)\overline{g(z)}}{z}\right) = |g(z)|^2 \Re(p(z)) > 0,$$

it follows that $\Re(p(z)) > 0$. Thus we conclude that $p \in \mathcal{P}$, which satisfying

$$\left|\frac{zp'(z)}{p(z)}\right| \le \frac{2r}{1-r^2}$$

Hence, from (3.2) and the above relation, we obtain

$$\left|\frac{z\varphi'(z)}{\varphi(z)} - 1\right| = \left|\frac{zp'(z)}{p(z)}\right| \le \frac{2r}{1 - r^2}.$$

Since the above disc centered at 1, by Lemma 1.1, it follows that $|w-1| \le 2r/(1-r^2)$ contains the disc Ω_s if

$$\frac{2r}{1-r^2} \le \sinh 1$$

or $(\sinh 1)r^2 + 2r - \sinh 1 \leq 0$. Thus, the radius of $ST_{lh}(s)$ is the smallest positive root of the equation $(\sinh 1)r^2 + 2r - \sinh 1 = 0$ in (0, 1), and this implies that $|z| \leq r = \frac{\sinh 1}{\sqrt{1 + (\sinh 1)^2 + 1}}$.

Moreover, the function

$$f(z) = zh(z)\overline{g(z)} = \varphi(z) \exp\left(2 \,\,\Re \int_0^z \frac{\mu(s)}{1 - \mu(s)} \frac{\varphi'(s)}{\varphi(s)} ds\right),$$

where $\varphi(z) = z(1+z)/(1-z)$ and $\mu(z) = z$, holds $\Re(\frac{f(z)}{z}) > 0$ for $z \in \mathbb{D}$, and is univalent in $|z| \le r = \frac{\sinh 1}{\sqrt{1+(\sinh 1)^2+1}}$.

Sharpness is satisfied for the function

$$\frac{z\varphi'(z)}{\varphi(z)} - 1 = \frac{2z}{1 - z^2} = \sinh 1$$

This completes the proof.

Now, we define the class of sine close-to-starlike log-harmonic mappings: Let $F(z) = zh(z)\overline{g(z)}$ be a log-harmonic mapping with respect to $\mu \in \mathcal{B}$. We say that F is sine close-to-starlike log-harmonic mapping denoted by $CST_{lh}(s)$ if there exists a log-harmonic mapping $f(z) = zh_1(z)\overline{g_1(z)} \in ST_{lh}(s)$ with respect to $\mu \in \mathcal{B}$ such that

$$\Re\left(\frac{F(z)}{f(z)}\right) > 0,$$

or equivalently

$$F(z) = f(z)R(z),$$

where $R(z) = H(z)\overline{G(z)} \in \mathcal{P}_{lh}$ with H(0) = G(0) = 1.

The next theorem gives the radius of starlikeness for functions $F(z) = zh(z)\overline{g(z)}$ in the class $CST_{lh}(s)$.

Theorem 3.2. Let $F(z) = zh(z)g(z) \in CST_{lh}(s)$. Then F maps the disc $|z| < \rho \approx 0.309757$ onto a starlike domain, where ρ is the smallest positive root of the equation

$$(1 - \sinh \rho)(1 - \rho^2) - 2\rho = 0. \tag{3.4}$$

Proof. Since $F(z) = zh(z)g(z) \in CST_{lh}(s)$ with respect to $\mu \in \mathcal{B}$, there exist a function $f(z) = zh_1(z)\overline{g_1(z)} \in ST_{lh}(s)$ with respect to $\mu \in \mathcal{B}$, and a log-harmonic mapping with positive real part $R(z) = H(z)\overline{G(z)} \in \mathcal{P}_{lh}$ with respect to $\mu \in \mathcal{B}$ such that

$$F(z) = f(z)R(z).$$
(3.5)

Since $R \in \mathcal{P}_{lh}$, we have

$$\Re\left(\frac{zR_z(z) - \overline{z}R_{\overline{z}}(z)}{R(z)}\right) = \Re\left(\frac{zp'(z)}{p(z)}\right),\tag{3.6}$$

where $\Re(p(z)) = \Re(\frac{H(z)}{G(z)}) > 0$ by Theorem B, and

$$\Re\left(\frac{zp'(z)}{p(z)}\right) \ge -\frac{2r}{1-r^2}.$$
(3.7)

From (2.3), (3.5), (3.6) and (3.7), we get

$$\Re\left(\frac{zF_z(z) - \overline{z}F_{\overline{z}}(z)}{F(z)}\right) = \Re\left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)}\right) + \Re\left(\frac{zR_z(z) - \overline{z}R_{\overline{z}}(z)}{R(z)}\right)$$
$$= \Re\left(\frac{z\varphi'(z)}{\varphi(z)}\right) + \Re\left(\frac{zp'(z)}{p(z)}\right)$$
$$\ge 1 - \sinh r - \frac{2r}{1 - r^2}.$$

Thus,

$$\Re\left(\frac{zF_z(z) - \overline{z}F_{\overline{z}}(z)}{F(z)}\right) > 0$$

if $1 - \sinh r - \frac{2r}{1-r^2} > 0$. Therefore, the radius of starlikeness ρ is the smallest positive root of the equation $(1 - \sinh \rho)(1 - \rho^2) - 2\rho = 0$ in (0, 1). The function $F(z) = \frac{z(1+z)}{(1-z)^3}$ belongs to the class $CST_{lh}(s)$.

Next, we prove the following radius of starlikeness for functions $F \in CST_{lh}(s)$.

Theorem 3.3. Let $K(z) = zh(z)\overline{g(z)}$ be a log-harmonic mapping with respect to $\mu \in \mathcal{B}$, and let $F(z) = zh_1(z)\overline{g_1(z)} \in \mathbb{CST}_{lh}(s)$ with respect to $\mu \in \mathcal{B}$ such that $\Re(\frac{K(z)}{F(z)}) > 0$. Then F maps the disc $|z| < \rho_1 \approx 0.193715$ onto a starlike domain, where ρ_1 is the smallest positive root of the equation

$$(1 - \sinh \rho_1)(1 - \rho_1^2) - 4\rho_1 = 0.$$
(3.8)

Proof. Since K(z) = zh(z)g(z) is a log-harmonic mapping with respect to $\mu \in \mathcal{B}$, and $F(z) = zh_1(z)\overline{g_1(z)} \in CST_{lh}(s)$ with respect to $\mu \in \mathcal{B}$, there exist a function $f(z) = zh_2(z)\overline{g_2(z)} \in ST_{lh}(s)$ with respect to $\mu \in \mathcal{B}$ and log-harmonic mappings with positive real parts R and R^* in \mathcal{P}_{lh} with respect to $\mu \in \mathcal{B}$ such that

$$K(z) = f(z)R(z)R^{*}(z).$$
 (3.9)

From (3.9), we get

$$\Re\left(\frac{zK_z(z) - \overline{z}K_{\overline{z}}(z)}{K(z)}\right) = \Re\left(\frac{zf_z(z) - \overline{z}f_{\overline{z}}(z)}{f(z)}\right) + \Re\left(\frac{zR_z(z) - \overline{z}R_{\overline{z}}(z)}{R(z)}\right) + \Re\left(\frac{zR_z^*(z) - \overline{z}R_{\overline{z}}^*(z)}{R^*(z)}\right).$$
(3.10)

Since $R, R^* \in \mathcal{P}_{lh}$, we have

$$\Re\left(\frac{zR_z(z) - \overline{z}R_{\overline{z}}(z)}{R(z)}\right) = \Re\left(\frac{zp'(z)}{p(z)}\right) \ge -\frac{2r}{1 - r^2},\tag{3.11}$$

$$\Re\left(\frac{zR_{z}^{*}(z) - \overline{z}R_{\overline{z}}^{*}(z)}{R^{*}(z)}\right) = \Re\left(\frac{zp'(z)}{p(z)}\right) \ge -\frac{2r}{1 - r^{2}}.$$
(3.12)

Substituting (2.3), (3.11) and (3.12) into (3.10), we get

$$\Re\left(\frac{zK_z(z) - \overline{z}K_{\overline{z}}(z)}{K(z)}\right) \ge 1 - \sinh r - \frac{4r}{1 - r^2}$$

Hence,

$$\Re \bigg(\frac{zK_z(z) - \overline{z}K_{\overline{z}}(z)}{K(z)} \bigg) > 0$$

if $1 - \sinh r - \frac{4r}{1-r^2} > 0$. Therefore, the radius ρ_1 is the smallest positive root of the equation $(1 - \sinh \rho_1)(1 - \rho_1^2) - 4\rho_1 = 0$ in (0, 1). The function $F(z) = \frac{z(1+z)}{(1-z)^4}$ belongs to the class $CST_{lh}(s)$.

Finally, we prove the following radius of starlikeness for functions $F \in CST_{lh}(s)$.

Theorem 3.4. Let $F(z) = zh(z)\overline{g(z)} \in CST_{lh}(s)$ be a log-harmonic mapping with respect to $\mu \in \mathbb{B}$, and let $f^*(z) = zh^*(z)\overline{g^*(z)} \in ST_{lh}(s)$ with respect to $\mu \in \mathbb{B}$. Then $S(z) = F(z)^{\lambda}f^*(z)^{1-\lambda}$, $\lambda \in (0,1)$ is univalent and starlike in $|z| < \rho_2$, where ρ_2 is the smallest positive root of the equation

$$(1 - \sinh \rho_2)(1 - \rho_2^2) - 2\lambda\rho_2 = 0.$$
(3.13)

Proof. Let $S(z) = F(z)^{\lambda} f^*(z)^{1-\lambda}$, $\lambda \in (0,1)$, where F(z) = f(z)R(z) such that $f \in ST_{lh}(s)$, $R \in \mathcal{P}_{lh}$, and where $f^* \in ST_{lh}(s)$ are log-harmonic mappings with respect to $\mu \in \mathcal{B}$, then S(z) is log-harmonic with respect to the same $\mu \in \mathcal{B}$ such that

$$S(z) = F(z)^{\lambda} f^*(z)^{1-\lambda} = (f(z)R(z))^{\lambda} (f^*(z))^{1-\lambda}.$$
(3.14)

From (2.3), (3.6), (3.7) and (3.14), we get

$$\begin{split} \Re\left(\frac{zS_z(z)-\overline{z}S_{\overline{z}}(z)}{S(z)}\right) &= \lambda \Re\left(\frac{zf_z(z)-\overline{z}f_{\overline{z}}(z)}{f(z)}\right) + \lambda \Re\left(\frac{zR_z(z)-\overline{z}R_{\overline{z}}(z)}{R(z)}\right) \\ &+ (1-\lambda) \Re\left(\frac{zf_z^*(z)-\overline{z}f_{\overline{z}}^*(z)}{f^*(z)}\right) \\ &\geq \lambda \left(1-\sinh r - \frac{2r}{1-r^2}\right) + (1-\lambda)(1-\sinh r) \\ &= 1-\sinh r - \frac{2\lambda r}{1-r^2}. \end{split}$$

Hence,

$$\Re\left(\frac{zS_z(z) - \overline{z}S_{\overline{z}}(z)}{S(z)}\right) > 0$$

if $1 - \sinh r - \frac{2\lambda r}{1 - r^2} > 0$. Therefore, the radius ρ_2 is the smallest positive root of the equation $(1 - \sinh \rho_2)(1 - \rho_2^2) - 2\lambda\rho_2 = 0$ in (0, 1).

References

- Z. Abdulhadi, Typically real log-harmonic mappings, Int. J. Math. Math. Sci. 31, 1–9, 2002.
- [2] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, Int. J. Math. Math. Sci. 19, 563–574, 1996.
- [3] Z. Abdulhadi and D. Bshouty, Univalent functions in HH(D), Tran. Amer. Math. Soc. 305, 841–849, 1988.
- [4] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mappings of order alpha, J. Inequal. Pure Appl. Math. 7, Article 123, 2006.
- [5] Z. Abdulhadi and W. Hengartner, Spirallike log-harmonic mappings, Complex Variables: Theory Appl. 9, 121–130, 1987.

- [6] Z. Abdulhadi and W. Hengartner, One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203, 333–351, 1996.
- [7] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45, 213–232, 2019.
- [8] P. L. Duren, Univalent functions, Springer, New York, 1983.
- [9] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28, 297–326, 1973.
- [10] Z. Liu and S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32, 5275–5288, 2018.
- [11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.