Log-Harmonic mappings associated with the sine function

Sushil Kumar ${ }^{1}$ (D) Asena Çetinkaya** ${ }^{\text {(D) }}$, H. Esra Özkan Uçar ${ }^{3}$ (D)
${ }^{1}$ Bharati Vidyapeeth's College of Engineering, Delhi-110063, India
${ }^{2}$ Department of Mathematics and Computer Science, İstanbul Kültür University, İstanbul, Türkiye
${ }^{3}$ Department of Software Engineering, İstanbul Health and Technology University, İstanbul, Türkiye

Abstract

In this paper, we define new subclasses $\mathcal{S I}_{l h}(s)$ and $\operatorname{CSI}_{l h}(s)$ of sine starlike log-harmonic mappings and sine close-to-starlike log-harmonic mappings, respectively, defined in the open unit disc \mathbb{D}. We investigate representation theorem and integral representation theorem for functions in the class $\mathcal{S} \mathcal{I}_{l h}(s)$. Further, we determine radius of starlikeness for functions in the classes $\mathcal{S}_{l h}(s)$ and $\mathcal{E S I}_{l h}(s)$.

Mathematics Subject Classification (2020). 30C35, 30C45, 35Q30
Keywords. starlike function, sine starlike log-harmonic mapping, radius of starlikeness, sine close-to-starlike log-harmonic mapping

1. Introduction

Let $L(\mathbb{D})$ be the linear space of all analytic functions defined in the open unit disc $\mathbb{D}=\{z:|z|<1\}$, and let \mathcal{A} be a subclass of $L(\mathbb{D})$ consisting of functions f, normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Also, let \mathcal{B} be the set of all bounded analytic functions $\mu \in L(\mathbb{D})$ satisfying $|\mu(z)|<1$ for each $z \in \mathbb{D}$. For $z=x+i y$, the differential operators

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \text { and } \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

satisfy the Laplacian

$$
\triangle=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

Thus a C^{2}-function f defined in the unit disc \mathbb{D} is said to be harmonic in \mathbb{D} if $\triangle f=0$. Analogously, a log-harmonic mapping defined in the disc \mathbb{D} is a solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{\overline{f_{\bar{z}}(z)}}{\overline{f(z)}}=\mu(z)\left(\frac{f_{z}(z)}{f(z)}\right), \tag{1.1}
\end{equation*}
$$

[^0]for some $\mu \in \mathcal{B}$, where μ is the second complex-dilatation of the function f. Hence, the Jacobian
$$
J_{f}(z)=\left|f_{z}(z)\right|^{2}-\left|f_{\bar{z}}(z)\right|^{2}=\left|f_{z}(z)\right|^{2}\left(1-|\mu(z)|^{2}\right)
$$
is positive, and all non-constant log-harmonic mappings are sense-preserving in \mathbb{D}.
Abdulhadi and Bshouty [3] observed that if f is a non vanishing log-harmonic mapping, then f can be expressed as
$$
f(z)=h(z) \overline{g(z)}
$$
where h and g are analytic in \mathbb{D}. On the other hand, if f is a non-constant log-harmonic mapping that vanishes only at $z=0$, then f admits the representation given by
$$
f(z)=z^{m}|z|^{2 \beta m} h(z) \overline{g(z)},
$$
where m is a non-negative integer, $\Re(\beta)>-1 / 2, h$ and g are analytic functions in \mathbb{D} with $h(0) \neq 0$ and $g(0)=1$. The exponent β depends only on $\mu(0)$, and can be expressed by
$$
\beta=\overline{\mu(0)} \frac{1+\mu(0)}{1-|\mu(0)|^{2}} .
$$

Note that $f(0) \neq 0$ if and only if $m=0$. A univalent log-harmonic mapping in \mathbb{D} vanishes at the origin if and only if $m=1$. Thus every univalent log-harmonic mapping in \mathbb{D} which vanishes at the origin has the form

$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)},
$$

where $\Re(\beta)>-1 / 2$ and $0 \notin h g(\mathbb{D})$. The class of log-harmonic mappings have been studied extensively in $[1,5,6]$ and references therein.

In this paper, we focus on sense-preserving univalent log-harmonic mappings in \mathbb{D} with the condition $\mu(0)=0$ having the form

$$
\begin{equation*}
f(z)=z h(z) \overline{g(z)}, \tag{1.2}
\end{equation*}
$$

where h and g are analytic in \mathbb{D} such that

$$
h(z)=\exp \left(\sum_{n=1}^{\infty} a_{n} z^{n}\right) \quad \text { and } \quad g(z)=\exp \left(\sum_{n=1}^{\infty} b_{n} z^{n}\right) .
$$

Here, h and g are the analytic and the co-analytic parts of f, respectively. The class of such mappings is denoted by $\delta_{l h}$. It follows from (1.2) that the functions h, g and the dilatation μ satisfy the relation

$$
\begin{equation*}
\mu(z)=\frac{z g^{\prime}(z) / g(z)}{1+z h^{\prime}(z) / h(z)}=\frac{z(\log g)^{\prime}(z)}{1+z(\log h)^{\prime}(z)} . \tag{1.3}
\end{equation*}
$$

In [4], it is shown that the mapping $f(z)=z h(z) \overline{g(z)}$ is starlike log-harmonic mapping of order α if

$$
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right)=\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)>\alpha
$$

for all $z=r e^{i \theta} \in \mathbb{D} \backslash\{0\}$ and for some $0 \leq \alpha<1$. The class of all starlike log-harmonic mappings of order α is denoted by $\mathcal{S I}_{l h}(\alpha)$. For $\alpha=0$, we get the class $\delta \mathcal{T}_{l h}(0)=\delta \mathcal{I}_{l h}$ of starlike log-harmonic mappings. Also, denote by $\mathcal{S}^{*}(\alpha)$ the class of starlike functions of order α. For $\alpha=0$, we get the class $\delta^{*}(0)=\delta^{*}$ of starlike functions.

The following theorem provides a link between the classes $\mathcal{S I}_{l h}(\alpha)$ and $\mathcal{S}^{*}(\alpha)$.
Theorem A (Theorem 2.1 [4]). Let $f(z)=z h(z) \overline{g(z)}$ be a log-harmonic mapping in \mathbb{D} with $0 \notin(h g)(\mathbb{D})$, where h and g are analytic functions. Then $f \in \mathcal{S T}_{l h}(\alpha)$ if and only if $\varphi(z)=z h(z) / g(z) \in \mathcal{S}^{*}(\alpha)$.

Let $\mathcal{P}_{l h}$ be the set of all log-harmonic mappings R defined in \mathbb{D} which are of the form $R(z)=H(z) \overline{G(z)}$, where H and G are in $L(\mathbb{D}), H(0)=G(0)=1$ such that $\Re(R(z))>0$ for all $z \in \mathbb{D}$. In particular, the set \mathcal{P} of all analytic functions p in \mathbb{D} with $p(0)=1$ and $\Re(p(z))>0$ is a subset of $\mathcal{P}_{l h}$. The next result describes the connection between the classes $\mathcal{P}_{l h}$ and \mathcal{P}.

Theorem B ([2]). A function $R(z)=H(z) \bar{G}(z) \in \mathcal{P}_{\text {lh }}$ if and only if $p(z)=H(z) / G(z) \in$ \mathcal{P}.

Denote by Ω the class of Schwarz functions w which are analytic in \mathbb{D} with $w(0)=0$ and $|w(z)|<1$. For analytic functions f_{1} and f_{2} in \mathbb{D}, we state that f_{1} is subordinate to f_{2}, symbolized by $f_{1} \prec f_{2}$, if there exists a function w in Ω satisfying $f_{1}(z)=f_{2}(w(z))$. The comprehensive details of subordination can be found in [8]. Ma and Minda [11] investigated the class of analytic functions ϕ with positive real part in \mathbb{D} that map the disc \mathbb{D} onto regions starlike with respect to 1 , symmetric with respect to the real axis and normalized by the conditions $\phi(0)=1$ and $\phi^{\prime}(0)>0$. These authors introduced the class of starlike functions

$$
\mathcal{S}^{*}(\phi)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), z \in \mathbb{D}\right\} .
$$

For the case $\phi(z)=(1+A z) /(1+B z)(-1 \leq B<A \leq 1)$, the family of Janowski starlike functions $\mathcal{S}^{*}[A, B]$ is obtained ([9]). When $A=1-2 \alpha(0 \leq \alpha<1)$ and $B=-1$, we have the family $\delta^{*}(\alpha)$ of starlike functions of order α. Particularly, $\alpha=0$ yields the usual class $\delta^{*}(0)=: \delta^{*}$ of starlike functions. Recently, Cho et al. [7] defined the subclass \mathcal{S}_{s}^{*} of Ma-Minda class $\mathcal{S}^{*}(\phi)$ which is endowed with the analytic function $\phi(z)=1+\sin z$. Then, the function $f \in \mathcal{S}_{s}^{*}$ if $z f^{\prime}(z) / f(z) \prec 1+\sin z$ for all $z \in \mathbb{D}$. The following lemma provides the largest disc and the smallest disc centered, respectively, at $(a, 0)$ and $(1,0)$ such that the domain $\Omega_{s}:(1+\sin z)(\mathbb{D})$ is contained in the smallest disc and contains the largest disc.

Lemma 1.1 ([7]). Let $1-\sin 1 \leq a \leq 1+\sin 1$ and $r_{a}=\sin 1-|a-1|$. Then the following inclusions hold:

$$
\left\{w \in \mathbb{C}:|w-a|<r_{a}\right\} \subset \Omega_{s} \subset\{w \in \mathbb{C}:|w-1|<\sinh 1\} .
$$

Motivated by the above discussed literature, we introduce the notion of sine starlike log-harmonic mappings. Due to Cho et al. [7], we first give Ma-Minda type sine starlike function class:

An analytic function $\varphi \in \mathcal{S}_{s}^{*}$ if $z \varphi^{\prime}(z) / \varphi(z) \prec 1+\sin z$ for all $z \in \mathbb{D}$. Since $\varphi \in \mathcal{S}_{s}^{*}$,

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)} \prec 1+\sin z \quad \text { if and only if } \quad \frac{z \varphi^{\prime}(z)}{\varphi(z)}=1+\sin w(z),
$$

where w is a Schwarz function with $|w(z)| \leq|z|$. Let $w(z)=r^{*} e^{i t}$ with $r^{*} \leq|z|=r, t \in$ $[-\pi, \pi]$. Thus, easy calculations show that

$$
|\sin w(z)| \leq \sinh r^{*} \leq \sinh r .
$$

Therefore, we have

$$
\Re\left(\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right) \geq 1-\sinh r .
$$

Consider the function $\varphi(z)=z h(z) / g(z)$. Then taking logarithmic derivative, we observe that

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=1+\frac{z h^{\prime}(z)}{h(z)}-\frac{z g^{\prime}(z)}{g(z)} \prec 1+\sin z .
$$

Hence, taking into account the above relations, we define the following classes:

Definition 1.2. An analytic mapping $\varphi(z)=z h(z) / g(z)$ such that $\varphi(0)=0$ and $h(0)=$ $g(0)=1$, is said to be sine starlike if

$$
\Re\left(\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right)=\Re\left(1+\frac{z h^{\prime}(z)}{h(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \geq 1-\sin h r
$$

for all $z \in \mathbb{D}$. The class of sine starlike functions is denoted by \mathcal{S}_{s}^{*}.
Definition 1.3. A log-harmonic mapping $f(z)=z h(z) \overline{g(z)}$ such that $f(0)=0$ and $h(0)=g(0)=1$, is said to be sine starlike log-harmonic mapping if

$$
\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right) \geq 1-\sin h r
$$

for all $z \in \mathbb{D}$. The class of sine starlike log-harmonic mapping is denoted by $\mathcal{S} \mathcal{I}_{l h}(s)$.
The main purpose of this paper is to show that a log-harmonic mapping $f(z)=$ $z h(z) \overline{g(z)}$ is sine starlike log-harmonic in \mathbb{D} if and only if the function $\varphi(z)=z h(z) / g(z)$ is in the class \mathcal{S}_{s}^{*}. In Section 2 , we first investigate a representation theorem which gives a relation between the classes $\mathcal{S} \mathcal{T}_{l h}(s)$ and \mathcal{S}_{s}^{*}. We next obtain integral representation theorem for functions in the class $\mathcal{S} \mathcal{I}_{l h}(s)$. In Section 3, we investigate radius of starlikeness for the class $\mathcal{S I}_{l h}(s)$. Further, we define the concept of sine close-to-starlike log-harmonic mappings, denoted by $\operatorname{CST}_{l h}(s)$, and investigate the radius of starlikeness for such mappings.

2. Representation Theorems

In this section, we first establish a representation theorem, which provides a relation between the classes $\mathcal{S}_{l h}(s)$ and \mathcal{S}_{s}^{*}.
Theorem 2.1. Let $f(z)=z h(z) \overline{g(z)}$ be a log-harmonic mapping in \mathbb{D} with $0 \notin h g(\mathbb{D})$. Then f belongs to the class $\mathcal{S} \mathcal{I}_{l h}(s)$ if and only if $\varphi(z)=z h(z) / g(z)$ belongs to the class \mathcal{S}_{s}^{*}.

Proof. Let $f(z)=z h(z) \overline{g(z)}$ be in the class $\mathcal{S I}_{l h}(s)$. Then

$$
\begin{align*}
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right) & =\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right) \\
& =\Re\left(1+\frac{z h^{\prime}(z)}{h(z)}-\frac{\overline{z g^{\prime}(z)}}{\overline{g(z)}}\right) \\
& =\Re\left(1+\frac{z h^{\prime}(z)}{h(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \geq 1-\sin h r . \tag{2.1}
\end{align*}
$$

Consider the function $\varphi(z)=z h(z) / g(z)$, thus logarithmic differentiation gives

$$
\begin{equation*}
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=1+\frac{z h^{\prime}(z)}{h(z)}-\frac{z g^{\prime}(z)}{g(z)} . \tag{2.2}
\end{equation*}
$$

In view of (2.1) and (2.2), we arrive at

$$
\begin{equation*}
\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)=\Re\left(\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right) \geq 1-\sinh r . \tag{2.3}
\end{equation*}
$$

Since the function f is univalent, we have $0 \notin f_{z}(\mathbb{D})$. Also,

$$
q_{1}(w)=\varphi \circ f^{-1}(w)=w\left|g \circ f^{-1}(w)\right|^{-2}
$$

is locally univalent in $f(\mathbb{D})$. Thus, we have

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=1+\frac{z h^{\prime}(z)}{h(z)}-\frac{z g^{\prime}(z)}{g(z)}=\frac{z f_{z}(z)}{f(z)}-\mu(z) \frac{z f_{z}(z)}{f(z)}=(1-\mu(z)) \frac{z f_{z}(z)}{f(z)} \neq 0
$$

for all $z \in \mathbb{D}$. Therefore, φ is univalent, and in view of (2.3) we conclude that $\varphi \in \mathcal{S}_{s}^{*}$.
Conversely, let $\varphi \in \mathcal{S}_{s}^{*}$ and $\mu \in \mathcal{B}$ such that $|\mu(z)|<1$ for each $z \in \mathbb{D}$. Since $\varphi(z)=$ $z h(z) / g(z)$, we have the equation (2.2). Also, from (1.1), we get

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\mu(z)\left(1+\frac{z h^{\prime}(z)}{h(z)}\right) \tag{2.4}
\end{equation*}
$$

Combining (2.2) and (2.4), we observe that

$$
\begin{equation*}
g(z)=\exp \int_{0}^{z} \frac{\mu(s)}{1-\mu(s)} \frac{\varphi^{\prime}(s)}{\varphi(s)} d s \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
z h(z)=\varphi(z) \exp \int_{0}^{z} \frac{\mu(s)}{1-\mu(s)} \frac{\varphi^{\prime}(s)}{\varphi(s)} d s \tag{2.6}
\end{equation*}
$$

where $\frac{z \varphi^{\prime}(z)}{\varphi(z)}=p(z) \prec 1+\sin z$ such that $p(0)=1$ and $\Re(p(z))>0$. It follows that

$$
\begin{aligned}
f(z)=z h(z) \overline{g(z)} & =\varphi(z) \exp \int_{0}^{z} \frac{\mu(s)}{1-\mu(s)} \frac{\varphi^{\prime}(s)}{\varphi(s)} d s \overline{\exp \int_{0}^{z} \frac{\mu(s)}{1-\mu(s)} \frac{\varphi^{\prime}(s)}{\varphi(s)} d s} \\
& =\varphi(z) \exp \left(2 \Re \int_{0}^{z} \frac{\mu(s)}{1-\mu(s)} \frac{\varphi^{\prime}(s)}{\varphi(s)} d s\right),
\end{aligned}
$$

and

$$
f(z)=z h(z) \overline{g(z)}=\varphi(z)|g(z)|^{2} .
$$

Therefore, h and g are non-vanishing analytic functions, normalized by $h(0)=g(0)=1$, in \mathbb{D} and f is a solution of (1.1) with respect to μ. Hence, we observe that

$$
\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)=\Re\left(\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right) \geq 1-\sinh r .
$$

Moreover,

$$
q_{2}(w)=f \circ \varphi^{-1}(w)=w\left|g \circ \varphi^{-1}(w)\right|^{2}
$$

is locally univalent in $\varphi(\mathbb{D})$, and therefore f is univalent. It follows that $f \in \mathcal{S I}_{l h}(s)$.
We now give an integral representation for $f \in \mathcal{S}_{l h}(s)$ with the case $\mu(0)=0$. Hence, we need the following lemma.
Lemma 2.2 ([10]). If the function $\mu \in \mathcal{B}$ with $\mu(0)=0$, then

$$
\frac{\mu(z)}{1-\mu(z)}=\int_{\partial \mathbb{D}} \frac{\xi z}{1-\xi z} d \kappa(\xi),(z \in \mathbb{D})
$$

for some probability measure κ on $\partial \mathbb{D}$.
Theorem 2.3. A log-harmonic mapping $f(z)=z h(z) \overline{g(z)} \in \mathcal{S I}_{l h}(s)$ if and only if there are two probability measures ν and κ on $\partial \mathbb{D}$ such that

$$
\begin{equation*}
g(z)=\exp \left(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} K_{1}(z, t, \xi) d \nu(t) d \kappa(\xi)\right), \tag{2.7}
\end{equation*}
$$

where

$$
K_{1}(z, t, \xi)=\sin \left(\frac{t}{\xi}\right)\left\{\mathrm{Ci}\left(-\frac{t}{\xi}\right)-\mathrm{Ci}\left(t z-\frac{t}{\xi}\right)\right\}+\cos \left(\frac{t}{\xi}\right)\left\{\operatorname{Si}\left(\frac{t}{\xi}-t z\right)-\operatorname{Si}\left(\frac{t}{\xi}\right)\right\}-\log (1-\xi z)
$$

and

$$
\begin{equation*}
h(z)=\exp \left(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} K_{2}(z, t, \xi) d \nu(t) d \kappa(\xi)\right), \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{2}(z, t, \xi)=\operatorname{Si}(t z)+\sin \left(\frac{t}{\xi}\right)\left\{\operatorname{Ci}\left(-\frac{t}{\xi}\right)-\operatorname{Ci}\left(t z-\frac{t}{\xi}\right)\right\}+\cos \left(\frac{t}{\xi}\right)\left\{\operatorname{Si}\left(\frac{t}{\xi}-t z\right)-\operatorname{Si}\left(\frac{t}{\xi}\right)\right\}-\log (1-\xi z) \\
& i f|\xi|=|t|=1, \xi \neq t .
\end{aligned}
$$

Proof. By Theorem 2.1, we know that $f(z)=z h(z) \overline{g(z)} \in \mathcal{S T}_{l h}(s)$ if and only if $\varphi(z)=$ $z h(z) / g(z) \in \mathcal{S}_{s}^{*}$, thus

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=p(z) \prec 1+\sin z
$$

where $p \in \mathcal{P}$ such that $p(0)=1$ and $\Re(p(z))>0$. Hence, for $p(z)=1+\sin z$, there exists a probability measure ν defined on the Borel σ-algebra of $\partial \mathbb{D}$ such that

$$
\begin{equation*}
\frac{z \varphi^{\prime}(z)}{\varphi(z)}=\int_{\partial \mathbb{D}}(1+\sin t z) d \nu(t) \Rightarrow \varphi(z)=z \exp \left(\int_{\partial \mathbb{D}} \int_{0}^{z} \frac{\sin t s}{t s} d s d \nu(t)\right) \tag{2.9}
\end{equation*}
$$

Setting (1.3), (2.9) and Lemma 2.2 into (2.5), we get

$$
g(z)=\exp \left(\int_{0}^{z} \int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} \frac{\xi}{1-\xi s}(1+\sin t s) d \nu(t) d \kappa(\xi) d s\right)
$$

for probability measures ν and κ on $\partial \mathbb{D}$. Integrating above function, we arrive at

$$
\begin{align*}
g(z) & =\exp \left(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} \int_{0}^{z} \frac{\xi}{1-\xi s}(1+\sin t s) d s d \nu(t) d \kappa(\xi)\right) \\
& =\exp \left(\int_{\partial \mathbb{D}} \int_{\partial \mathbb{D}} K_{1}(z, t, \xi) d \nu(t) d \kappa(\xi)\right) \tag{2.10}
\end{align*}
$$

where

$$
K_{1}(z, t, \xi)=\sin \left(\frac{t}{\xi}\right)\left\{\operatorname{Ci}\left(-\frac{t}{\xi}\right)-\operatorname{Ci}\left(t z-\frac{t}{\xi}\right)\right\}+\cos \left(\frac{t}{\xi}\right)\left\{\operatorname{Si}\left(\frac{t}{\xi}-t z\right)-\operatorname{Si}\left(\frac{t}{\xi}\right)\right\}-\log (1-\xi z)
$$

Here, $\mathrm{Ci}(z)$ is the cosine integral and $\mathrm{Si}(z)$ is the sine integral given, respectively, by

$$
\operatorname{Ci}(z)=-\int_{z}^{\infty} \frac{\cos s}{s} d s \quad \text { and } \quad \operatorname{Si}(z)=\int_{0}^{z} \frac{\sin s}{s} d s
$$

Moreover, in similar way, by plugging (2.9) and (2.10) into $h(z)=(\varphi(z) / z) g(z)$, we get the integral representation for h given by (2.8). This completes the proof.

3. Radii of Starlikeness

The first result gives radius of starlikeness for sine starlike log-harmonic mappings f, which satisfy the condition $\Re\left(\frac{f(z)}{z}\right)>0$.

Theorem 3.1. Suppose that $f(z)=z h(z) \overline{g(z)} \in \mathcal{S T}_{l h}(s)$ in \mathbb{D} with $h(0)=g(0)=1$, and $\varphi(z)=\frac{z h(z)}{g(z)} \in \mathcal{S}_{s}^{*}$ in \mathbb{D}. If $\Re\left(\frac{f(z)}{z}\right)>0$ for $z \in \mathbb{D}$, then f is univalent and starlike in

$$
|z| \leq r=\frac{\sinh 1}{\sqrt{1+(\sinh 1)^{2}}+1} \approx 0.462117
$$

Proof. Since $f \in \mathcal{S T}_{l h}(s)$, it follows that

$$
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right)=\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)=\Re\left(1+\frac{z h^{\prime}(z)}{h(z)}-\frac{z g^{\prime}(z)}{g(z)}\right)
$$

Taking logarithmic derivative of $\varphi(z)=z h(z) / g(z)$, and using the above relation, we get

$$
\begin{equation*}
\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)=\Re\left(\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right) \tag{3.1}
\end{equation*}
$$

Let $p(z)=\varphi(z) / z$, then we observe that

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}=\frac{z \varphi^{\prime}(z)}{\varphi(z)}-1 \tag{3.2}
\end{equation*}
$$

Using (3.1) and (3.2), we obtain

$$
\begin{equation*}
\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)=\Re\left(\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right)=1+\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right) . \tag{3.3}
\end{equation*}
$$

We will show that the function f in (3.3) is univalent and starlike. Since

$$
\Re\left(\frac{f(z)}{z}\right)=\Re\left(\frac{z h(z) \overline{g(z)}}{z}\right)=|g(z)|^{2} \Re(p(z))>0
$$

it follows that $\Re(p(z))>0$. Thus we conclude that $p \in \mathcal{P}$, which satisfying

$$
\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{2 r}{1-r^{2}}
$$

Hence, from (3.2) and the above relation, we obtain

$$
\left|\frac{z \varphi^{\prime}(z)}{\varphi(z)}-1\right|=\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leq \frac{2 r}{1-r^{2}}
$$

Since the above disc centered at 1 , by Lemma 1.1, it follows that $|w-1| \leq 2 r /\left(1-r^{2}\right)$ contains the disc Ω_{s} if

$$
\frac{2 r}{1-r^{2}} \leq \sinh 1
$$

or $(\sinh 1) r^{2}+2 r-\sinh 1 \leq 0$. Thus, the radius of $\mathcal{S T}$ lh (s) is the smallest positive root of the equation $(\sinh 1) r^{2}+2 r-\sinh 1=0$ in $(0,1)$, and this implies that $|z| \leq r=\frac{\sinh 1}{\sqrt{1+(\sinh 1)^{2}}+1}$.

Moreover, the function

$$
f(z)=z h(z) \overline{g(z)}=\varphi(z) \exp \left(2 \Re \int_{0}^{z} \frac{\mu(s)}{1-\mu(s)} \frac{\varphi^{\prime}(s)}{\varphi(s)} d s\right)
$$

where $\varphi(z)=z(1+z) /(1-z)$ and $\mu(z)=z$, holds $\Re\left(\frac{f(z)}{z}\right)>0$ for $z \in \mathbb{D}$, and is univalent in $|z| \leq r=\frac{\sinh 1}{\sqrt{1+(\sinh 1)^{2}}+1}$.

Sharpness is satisfied for the function

$$
\frac{z \varphi^{\prime}(z)}{\varphi(z)}-1=\frac{2 z}{1-z^{2}}=\sinh 1
$$

This completes the proof.
Now, we define the class of sine close-to-starlike log-harmonic mappings: Let $F(z)=$ $z h(z) \overline{g(z)}$ be a log-harmonic mapping with respect to $\mu \in \mathcal{B}$. We say that F is sine close-to-starlike log-harmonic mapping denoted by $\mathcal{C S T}_{l h}(s)$ if there exists a log-harmonic mapping $f(z)=z h_{1}(z) \overline{g_{1}(z)} \in \mathcal{S T}_{l h}(s)$ with respect to $\mu \in \mathcal{B}$ such that

$$
\Re\left(\frac{F(z)}{f(z)}\right)>0
$$

or equivalently

$$
F(z)=f(z) R(z)
$$

where $R(z)=H(z) \overline{G(z)} \in \mathcal{P}_{l h}$ with $H(0)=G(0)=1$.
The next theorem gives the radius of starlikeness for functions $F(z)=z h(z) \overline{g(z)}$ in the class $\operatorname{CST}_{l h}(s)$.
Theorem 3.2. Let $F(z)=z h(z) \overline{g(z)} \in \operatorname{CST}_{l h}(s)$. Then F maps the disc $|z|<\rho \approx$ 0.309757 onto a starlike domain, where ρ is the smallest positive root of the equation

$$
\begin{equation*}
(1-\sinh \rho)\left(1-\rho^{2}\right)-2 \rho=0 \tag{3.4}
\end{equation*}
$$

Proof. Since $F(z)=z h(z) \overline{g(z)} \in \operatorname{ESI}_{l h}(s)$ with respect to $\mu \in \mathcal{B}$, there exist a function $f(z)=z h_{1}(z) \overline{g_{1}(z)} \in \mathcal{S I}_{l h}(s)$ with respect to $\mu \in \mathcal{B}$, and a log-harmonic mapping with positive real part $R(z)=H(z) \overline{G(z)} \in \mathcal{P}_{l h}$ with respect to $\mu \in \mathcal{B}$ such that

$$
\begin{equation*}
F(z)=f(z) R(z) . \tag{3.5}
\end{equation*}
$$

Since $R \in \mathcal{P}_{\text {lh }}$, we have

$$
\begin{equation*}
\Re\left(\frac{z R_{z}(z)-\bar{z} R_{\bar{z}}(z)}{R(z)}\right)=\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right), \tag{3.6}
\end{equation*}
$$

where $\Re(p(z))=\Re\left(\frac{H(z)}{G(z)}\right)>0$ by Theorem B, and

$$
\begin{equation*}
\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right) \geq-\frac{2 r}{1-r^{2}} \tag{3.7}
\end{equation*}
$$

From (2.3), (3.5), (3.6) and (3.7), we get

$$
\begin{aligned}
\Re\left(\frac{z F_{z}(z)-\bar{z} F_{\bar{z}}(z)}{F(z)}\right) & =\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)+\Re\left(\frac{z R_{z}(z)-\bar{z} R_{\bar{z}}(z)}{R(z)}\right) \\
& =\Re\left(\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right)+\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right) \\
& \geq 1-\sinh r-\frac{2 r}{1-r^{2}} .
\end{aligned}
$$

Thus,

$$
\Re\left(\frac{z F_{z}(z)-\bar{z} F_{\bar{z}}(z)}{F(z)}\right)>0
$$

if $1-\sinh r-\frac{2 r}{1-r^{2}}>0$. Therefore, the radius of starlikeness ρ is the smallest positive root of the equation $(1-\sinh \rho)\left(1-\rho^{2}\right)-2 \rho=0$ in $(0,1)$. The function $F(z)=\frac{z(1+z)}{(1-z)^{3}}$ belongs to the class $\operatorname{CSI}_{l h}(s)$.

Next, we prove the following radius of starlikeness for functions $F \in \operatorname{CSI}_{l h}(s)$.
Theorem 3.3. Let $K(z)=z h(z) \overline{g(z)}$ be a log-harmonic mapping with respect to $\mu \in \mathcal{B}$, and let $F(z)=z h_{1}(z) \overline{g_{1}(z)} \in \operatorname{CSI}_{\text {lh }}(s)$ with respect to $\mu \in \mathcal{B}$ such that $\Re\left(\frac{K(z)}{F(z)}\right)>0$. Then F maps the disc $|z|<\rho_{1} \approx 0.193715$ onto a starlike domain, where ρ_{1} is the smallest positive root of the equation

$$
\begin{equation*}
\left(1-\sinh \rho_{1}\right)\left(1-\rho_{1}^{2}\right)-4 \rho_{1}=0 . \tag{3.8}
\end{equation*}
$$

Proof. Since $K(z)=z h(z) \overline{g(z)}$ is a log-harmonic mapping with respect to $\mu \in \mathcal{B}$, and $F(z)=z h_{1}(z) \overline{g_{1}(z)} \in \operatorname{CSI}_{l h}(s)$ with respect to $\mu \in \mathcal{B}$, there exist a function $f(z)=$ $z h_{2}(z) \overline{g_{2}(z)} \in \mathcal{S \mathcal { J } _ { l h }}(s)$ with respect to $\mu \in \mathcal{B}$ and log-harmonic mappings with positive real parts R and R^{*} in $\mathcal{P}_{l h}$ with respect to $\mu \in \mathcal{B}$ such that

$$
\begin{equation*}
K(z)=f(z) R(z) R^{*}(z) . \tag{3.9}
\end{equation*}
$$

From (3.9), we get

$$
\begin{equation*}
\Re\left(\frac{z K_{z}(z)-\bar{z} K_{\bar{z}}(z)}{K(z)}\right)=\Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)+\Re\left(\frac{z R_{z}(z)-\bar{z} R_{\bar{z}}(z)}{R(z)}\right)+\Re\left(\frac{z R_{z}^{*}(z)-\bar{z} R_{z}^{*}(z)}{R^{*}(z)}\right) . \tag{3.10}
\end{equation*}
$$

Since $R, R^{*} \in \mathcal{P}_{l h}$, we have

$$
\begin{align*}
& \Re\left(\frac{z R_{z}(z)-\bar{z} R_{\bar{z}}(z)}{R(z)}\right)=\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right) \geq-\frac{2 r}{1-r^{2}}, \tag{3.11}\\
& \Re\left(\frac{z R_{z}^{*}(z)-\bar{z} R_{\bar{z}}^{*}(z)}{R^{*}(z)}\right)=\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right) \geq-\frac{2 r}{1-r^{2}} . \tag{3.12}
\end{align*}
$$

Substituting (2.3), (3.11) and (3.12) into (3.10), we get

$$
\Re\left(\frac{z K_{z}(z)-\bar{z} K_{\bar{z}}(z)}{K(z)}\right) \geq 1-\sinh r-\frac{4 r}{1-r^{2}}
$$

Hence,

$$
\Re\left(\frac{z K_{z}(z)-\bar{z} K_{\bar{z}}(z)}{K(z)}\right)>0
$$

if $1-\sinh r-\frac{4 r}{1-r^{2}}>0$. Therefore, the radius ρ_{1} is the smallest positive root of the equation $\left(1-\sinh \rho_{1}\right)\left(1-\rho_{1}^{2}\right)-4 \rho_{1}=0$ in $(0,1)$. The function $F(z)=\frac{z(1+z)}{(1-z)^{4}}$ belongs to the class $\operatorname{CST}_{l h}(s)$.

Finally, we prove the following radius of starlikeness for functions $F \in \mathcal{C S T}_{l h}(s)$.
Theorem 3.4. Let $F(z)=z h(z) \overline{g(z)} \in \mathcal{C S T}_{l h}(s)$ be a log-harmonic mapping with respect to $\mu \in \mathcal{B}$, and let $f^{*}(z)=z h^{*}(z) \overline{g^{*}(z)} \in \mathcal{S T}_{l h}(s)$ with respect to $\mu \in \mathcal{B}$. Then $S(z)=$ $F(z)^{\lambda} f^{*}(z)^{1-\lambda}, \lambda \in(0,1)$ is univalent and starlike in $|z|<\rho_{2}$, where ρ_{2} is the smallest positive root of the equation

$$
\begin{equation*}
\left(1-\sinh \rho_{2}\right)\left(1-\rho_{2}^{2}\right)-2 \lambda \rho_{2}=0 \tag{3.13}
\end{equation*}
$$

Proof. Let $S(z)=F(z)^{\lambda} f^{*}(z)^{1-\lambda}, \quad \lambda \in(0,1)$, where $F(z)=f(z) R(z)$ such that $f \in$ $\mathcal{S T}_{l h}(s), R \in \mathcal{P}_{l h}$, and where $f^{*} \in \mathcal{S I}_{l h}(s)$ are log-harmonic mappings with respect to $\mu \in \mathcal{B}$, then $S(z)$ is log-harmonic with respect to the same $\mu \in \mathcal{B}$ such that

$$
\begin{equation*}
S(z)=F(z)^{\lambda} f^{*}(z)^{1-\lambda}=(f(z) R(z))^{\lambda}\left(f^{*}(z)\right)^{1-\lambda} \tag{3.14}
\end{equation*}
$$

From (2.3), (3.6), (3.7) and (3.14), we get

$$
\begin{aligned}
\Re\left(\frac{z S_{z}(z)-\bar{z} S_{\bar{z}}(z)}{S(z)}\right)= & \lambda \Re\left(\frac{z f_{z}(z)-\bar{z} f_{\bar{z}}(z)}{f(z)}\right)+\lambda \Re\left(\frac{z R_{z}(z)-\bar{z} R_{\bar{z}}(z)}{R(z)}\right) \\
& +(1-\lambda) \Re\left(\frac{z f_{z}^{*}(z)-\bar{z} f_{\bar{z}}^{*}(z)}{f^{*}(z)}\right) \\
\geq & \lambda\left(1-\sinh r-\frac{2 r}{1-r^{2}}\right)+(1-\lambda)(1-\sinh r) \\
= & 1-\sinh r-\frac{2 \lambda r}{1-r^{2}} .
\end{aligned}
$$

Hence,

$$
\Re\left(\frac{z S_{z}(z)-\bar{z} S_{\bar{z}}(z)}{S(z)}\right)>0
$$

if $1-\sinh r-\frac{2 \lambda r}{1-r^{2}}>0$. Therefore, the radius ρ_{2} is the smallest positive root of the equation $\left(1-\sinh \rho_{2}\right)\left(1-\rho_{2}^{2}\right)-2 \lambda \rho_{2}=0$ in $(0,1)$.

References

[1] Z. Abdulhadi, Typically real log-harmonic mappings, Int. J. Math. Math. Sci. 31, 1-9, 2002.
[2] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, Int. J. Math. Math. Sci. 19, 563-574, 1996.
[3] Z. Abdulhadi and D. Bshouty, Univalent functions in $H \bar{H}(\mathbb{D})$, Tran. Amer. Math. Soc. 305, 841-849, 1988.
[4] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mappings of order alpha, J. Inequal. Pure Appl. Math. 7, Article 123, 2006.
[5] Z. Abdulhadi and W. Hengartner, Spirallike log-harmonic mappings, Complex Variables: Theory Appl. 9, 121-130, 1987.
[6] Z. Abdulhadi and W. Hengartner, One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203, 333-351, 1996.
[7] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45, 213-232, 2019.
[8] P. L. Duren, Univalent functions, Springer, New York, 1983.
[9] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28, 297-326, 1973.
[10] Z. Liu and S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32, 5275-5288, 2018.
[11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.

[^0]: *Corresponding Author.
 Email addresses: sushilkumar16n@gmail.com (S. Kumar), asnfigen@hotmail.com (A. Çetinkaya), eozucar@gmail.com(H. E. Özkan Uçar)
 Received: 04.11.2023; Accepted: 12.03.2024

