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Gülşah Uzun1, Süleyman Şenyurt1* and Kübra Akdağ1
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Abstract

In this study, ruled surfaces formed by the movement of the Frenet vectors of the Successor curve along the Smarandache curve obtained
from the tangent and binormal vectors of the Successor curve of a curve are defined. Then, the Gaussian and mean curvatures of each ruled
surface are calculated. It is shown that the ruled surface formed by the movement of the tangent vector of the Successor curve along the
{u1 u3} curve is a developable minimal surface and the ruled surface formed by the movement of the binormal vector is only a developable
surface. It is also stated that if the principal curve is a planar curve, the ruled surface formed by the principal normal vector of the Successor
curve along the {u1 u3} curve is also a developable minimal surface. Conditions for other surfaces to be developable or minimal surfaces are
given.
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1. Introduction

The image of a function with two real variables in three-dimensional space is a surface. Surfaces are used in many fields, such as architecture
and engineering (see [1]). The curvature of surfaces was defined by Gauss in the 19th century, and therefore it was named Gaussian curvature
(see [2]). Gaussian curvatures are related to the dimensions of the surface [3]. Since the average curvature of the surface is a ratio, it is
independent of the size of the surface. Thus far, many studies [4]-[9] on the Gaussian curvatures of surfaces have been conducted. In 1795,
Monge defined the striped surface as the surface formed by the movement of the line along the curve. For more details, see [10]-[15].
There are many special curves in differential geometry. One of them is the successor curve. This curve is defined as, there is a new curve,
such that the tangent of one curve the principal normal of the other curve, by Menninger in 2014. Later, Masal investigated the relationships
between the position vectors of this curve and defined Successor planes. You can see [16]-[21]. And other special curve is Smarandache
curve. This curve were first defined in Minkowski space. Related studies with Smarandache curves are available in [22]-[25].
In this paper, we present some special ruled surface with {u1 u3}-Smarandache base curve obtained from the successor frame. Then we
examine the properties of these ruled surfaces by means of Gaussian and mean curvatures.

2. Preliminaries

In this section, we recall some basic notions of which we refer through out the paper.
Let α(s) be a differentiable curve in E3. Then, its Frenet frame and curvatures are {u1,u2,u3,k1,k2}. Here,

u1 = α
′, u2 =

α ′′

‖α ′′‖
, u3 = u1∧u2, k1 =

∥∥α
′′∥∥ , k2 =

〈
u2
′,u3

〉
,

u1
′ = k1u2, u2

′ =−k1u1 + k2u3, u3
′ =−k2u2.

The surface formed by a line moving depending on the parameter of a curve is called a ruled surface, and its parametric expression is as
follows:

X(s,v) = α(s)+ vr(s).
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The normal vector field, the Gaussian curvatures, and the mean curvatures of X(s,v) are as follows:

NX =
Xs∧Xv

‖Xs∧Xv‖
, (2.1)

K =
eg− f 2

EG−F2 , H =
Eg−2 f F + eG

2(EG−F2)
(2.2)

respectively. Here, the coefficients of the first and the second fundamental forms are defined as follows:

E = 〈Xs,Xs〉 , F = 〈Xs,Xv〉 , G = 〈Xv,Xv〉 , (2.3)

e = 〈Xss,NX 〉 , f = 〈Xsv,NX 〉 , g = 〈Xvv,NX 〉 . (2.4)

Definition 2.1. [16, 17] Let α and β be curves with unit speed in E3. If the unit tangent vector of the α curve is the principal normal vector
at the same point on the β curve, the β curve is called the Successor curve of the α curve.

Theorem 2.2. [16] Let the Successor curve of the β curve be α . Frenet apparatus of an α = α(s) curve with unit speed be {u1,u2,u3,k1,k2}
and Frenet apparatus of a β = β (s) curve be {u1,u2,u3,k1,k2}. Frenet apparatus of β curve is as follows:

u1 =−cosθu2 + sinθu3, u2 = u1, u3 = sinθu2 + cosθu3,

k1 = k1 cosθ , k2 = k1 sinθ , θ(s) = θ0 +
∫

k2(s)ds.

Here, θ is the angle between binormal vector u3 and binormal vector u3.

3. Ruled Surfaces with {u1 u3}-Smarandache Base Curve Obtained From the Successor Frame

In this section, firstly we define some special ruled surfaces with {u1 u3}-Smarandache base curve obtained from the successor frame. Then
we calculate the properties of these ruled surfaces by means of Gaussian and mean curvatures and we examine whether these surfaces are
develepoble or minimal surface. Finally, we illustrate the shapes of the ruled surfaces with four examples.

Definition 3.1. Let the Successor curve of the β curve be α . The ruled surface formed by tangent vector u1 the vector along the {u1 u3}
Smarandache curve obtained from the u1 tangent vector and u3 binormal vector s of the β curve is as follows:

Φ(s,v) =
1√
2
(u1 +u3)+ vu1

=
1√
2

(
(sinθ − cosθ)u2 +(sinθ + cosθ)u3

)
+ v(−cosθu2 + sinθu3).

(3.1)

Theorem 3.2. Let the Successor curve of the β curve be α . Then, the Gaussian and mean curvature of the Φ(s,v) ruled surface are as
follows:

KΦ = HΦ = 0.

Proof. Partial derivatives of Equality 3.1 are,

Φs =
k1
(
(1+
√

2)cosθ sinθ
)
u1√

2
, Φv =−cosθu2 + sinθu3, Φsv = k1 cosθu1,

Φss =−
(
k1
′(sinθ +(v

√
2−1)cosθ

)
+ k1k2(cosθ +(1− v

√
2)sinθ

))
u1 +

(
k1

2(sinθ +(v
√

2−1)cosθ
))

u2√
2

, Φvv = 0,

Thus, from Equality 2.1 the normal of the surface NΦ is given as

NΦ =−sinθu2− cosθu3.

Moreover, in Equalities 2.3 and 2.4 the coefficients of fundamental forms are

EΦ =
k1
(
(1+ v

√
2)cosθ − sinθ

)
2

, FΦ = GΦ = 0,

eΦ =
k1

2 sinθ
(

sinθ +(v
√

2−1)cosθ
)

√
2

, fΦ = gΦ = 0,

respectively. Thus, by using Equality 2.2, the Gaussian and mean curvatures are found.

Corollary 3.3. The ruled surface Φ(s,v) is a developable minimal surface.
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Definition 3.4. Let the Successor curve of the β curve be α . The ruled surface formed by principal normal vector u2 along the {u1 u3}
Smarandache curve obtained from the u1 tangent vector and u3 binormal vectors of the β curve is as follows:

Q(s,v) = 1√
2
(u1 +u3)+ vu2

= 1√
2

(
(sinθ − cosθ)u2 +(sinθ − cosθ)u3

)
+ vu1.

(3.2)

Theorem 3.5. Let the Successor curve of the β curve be α . Then, the Gaussian and mean curvature of the Q(s,v) ruled surface are as
follows:

KQ = 0, HQ =− vk2

2k1
.

Proof. Partial derivatives of Equality 3.2 are,

Qs =
k1
(
(cosθ − sinθ)u1 + v

√
2
)

√
2

, Qv = u1, Qsv = k1u2, Qvv = 0,

Qss =−
(
k1
′(sinθ − cosθ)− k1k2(sinθ + cosθ)− v

√
2k1

2)u1− v
√

2k1
′u2− v

√
2k1k2u3√

2
.

Thus, from Equality 2.1 the normal of the surface NQ is given as NQ = −u3. Moreover, in Equalities 2.3 and 2.4 the coefficients of
fundamental forms are

EQ =
k1

2(3− sin2θ)

2
, FQ =

k1(cosθ − sinθ)√
2

, GQ = 1,

eQ =−vk1k2, fQ = gQ = 0

respectively. Thus, by using Equality 2.2, the Gaussian and mean curvatures are found.

Corollary 3.6. Let the Successor curve of the β curve be α . If α curve is planar, the ruled surface Q(s,v) is the minimal developable
surface.

Definition 3.7. Let the Successor curve of the β curve be α . The ruled surface formed by binormal vector u3 the vector along the {u1 u3}
Smarandache curve obtained from the u1 tangent vector and u3 binormal vectors of the β curve is as follows:

M(s,v) =
1√
2
(u1 +u3)+ vu3

=
1√
2

(
(sinθ − cosθ)u2 +(sinθ − cosθ)u3

)
+ v(sinθu2 + cosθu3).

(3.3)

Theorem 3.8. Let the Successor curve of the β curve be α . The Gaussian and mean curvature of the M(s,v) ruled surface are as follows:

KM = 0, HM = cosθ − (1− v
√

2)sinθ .

Proof. Partial derivatives of Equality 3.3 are,

Ms =
k1
(

cosθ − (1− v
√

2)sinθ
)

√
2

, Mv = sinθu2 + cosθu3, Msv =−k1 sinθu1,

Mss =

(
k1
′(cosθ − (1− v

√
2)sinθ)− k1k2(sinθ +(1+ v

√
2)cosθ)

)
u1 +

(
k1

2(cosθ − (1− v
√

2)sinθ)
)
u2√

2
, Mvv = 0.

Thus, from Equality 2.1 the normal of the surface NM is given as

NM =−cosθu2 + sinθu3.

Moreover, in Equalities 2.3 and 2.4 the coefficients of fundamental forms are

EM =
k1

2(cosθ − (1− v
√

2)sinθ
)2

2
, FM = 0, GM = 1,

eM = k1
2 cosθ

(
(1− v

√
2)sinθ − cosθ

)
, fM = gM = 0

respectively. Thus, by using Equality 2.2, the Gaussian and mean curvatures are found.

Corollary 3.9. The ruled surface M(s,v) is a developable surface.



Konuralp Journal of Mathematics 31

Definition 3.10. Let the Successor curve of the β curve be α . The ruled surface formed by {u1 u2} the vector along the {u1 u3} Smarandache
curve obtained from the u1 tangent vector and and u3 binormal vectors of the β curve is as follows:

Σ(s,v) =
1√
2
(u1 +u3)+

v√
2
(u1 +u2)

=
1√
2

(
(sinθ − cosθ)u2 +(sinθ − cosθ)u3

)
+

v√
2
(u1− cosθu2 + sinθu3).

(3.4)

Theorem 3.11. Let the Successor curve of the β curve be α . The Gaussian and mean curvature of the Σ(s,v) ruled surface are as follows:

KΣ =
sin2

θ(vcosθ + sinθ)2(
sin2

θ + sin2
θ((1− v)cosθ − sinθ

)2
+ cos2 θ

(
(1− v)cosθ − sinθ +1)2)(((1− v)cosθ − sinθ

)2− (sinθ + vcosθ)2 +1
) ,

HΣ =
(vcosθ + sinθ)(v

√
2sinθ −1)+ k2

(
(1− v)+ cosθ

)
+ k1 sinθ

(
(1− v)2 cos2 θ − (1− v)sin2θ + sin2

θ +1
)√

2
(

sin2
θ + sin2

θ((1− v)cosθ − sinθ
)2

+ cos2 θ
(
(1− v)cosθ − sinθ +1)2

)((
(1− v)cosθ − sinθ

)2− (sinθ + vcosθ)2 +1
) .

Proof. Partial derivatives of Equality 3.4 are,

Σs =
k1
(
(1− v)cosθ − sinθ)u1 +u2

)
√

2
, Σv =

u1− cosθu2 + sinθu3√
2

, Σsv =
k1(cosθu1 +u2)√

2
,

Σss =

(
k1
′(1− v)cosθ − sinθ)− k1k2((1− v)sinθ + cosθ)− k1

2)u1 +
(
k1
′+ k1

2((1− v)cosθ − sinθ)
)
u2 + k1k2(1+ v)u3√

2
, Σvv = 0.

Thus, from Equality 2.1 the normal of the surface NΣ is given as

NΣ =
sinθu1− sinθ((1− v)cosθ − sinθ)u2 + cosθ((1− v)cosθ − sinθ +1

)
u3√

sin2
θ + sin2

θ
(
(1− v)cosθ − sinθ

)2
+ cos2 θ

(
(1− v)cosθ − sinθ +1

)2
.

Moreover, in Equalities 2.3 and 2.4 the coefficients of fundamental forms are

EΣ =
k1

2((1− v)cosθ − sinθ)2 +1
)

2
, FΣ =−k1(sinθ + cosθ)

2
, GΣ = 1,

eΣ =
k1

2 sinθ
(
(1− v)2 cos2 θ − (1− v)sin2θ + sin2

θ +1
)
+ k1k2

(
(1− v)+ cosθ

)
√

2
(

sin2
θ + sin2

θ
(
(1− v)cosθ − sinθ

)2
+ cos2 θ

(
(1− v)cosθ − sinθ +1

)2 ,

fΣ =
k1 sinθ(vcosθ + sinθ)

√
2
(

sin2
θ + sin2

θ
(
(1− v)cosθ − sinθ

)2
+ cos2 θ

(
(1− v)cosθ − sinθ +1

)2 ,

gΣ = 0

respectively. Thus, by using Equality 2.2 the Gaussian and mean curvatures are found.

Corollary 3.12. θ = kπ (k ∈ N) the ruled surface Σ(s,v) is a developable surface.

Definition 3.13. Let the Successor curve of the β curve be α . The ruled surface formed by {u1 u3} the vector along the {u1 u3} Smarandache
curve obtained from the u1 tangent vector and u3 binormal vectors of the β curve is as follows:

λ (s,v) = 1√
2
(u1 +u3)+ vu3

= 1√
2

(
(sinθ − cosθ)u2 +(sinθ + cosθ)u3

)
+ v(sinθu2 + cosθu3).

(3.5)

Theorem 3.14. Let the Successor curve of the β curve be α . The Gaussian and mean curvature of the λ (s,v) ruled surface are as follows:

Kλ = 0, Hλ =−
cosθ + sinθ

√
2(1+ v)2

√
(sin2

θ − cos2 θ)2 +(cosθ sinθ −1)2
.
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Proof. Partial derivatives of Equality 3.5 are,

λs =
k1(1+ v)(cosθ − sinθ)u1√

2
, λv =

(sinθ − cosθ)u2 +(sinθ + cosθ)u3√
2

,

λsv =
k1(cosθ − sinθ)u1√

2
, λvv = 0,

λss =
1√
2

(
k1
′(cosθ − sinθ)− k1k2(sinθ − cosθ)

)
u1 +

(
k1

2(cosθ − sinθ)
)
u2.

Thus, from Equality 2.1 the normal of the surface Nλ is given as

Nλ =
(sin2

θ − cos2 θ)u2 +(sinθ cosθ −1)u3√
(sin2

θ − cos2 θ)2 +(sinθ cosθ −1)2
.

Moreover, in Equalities 2.3 and 2.4 the coefficients of fundamental forms are

Eλ =
k1

2(1+ v)2(cosθ − sinθ)2

2
, Fλ = 0, Gλ = 1,

eλ =
k1

2(cosθ − sinθ)sin2
θ − cos2 θ

√
2
√

k1
2(cosθ − sinθ)sin2

θ − cos2 θ

, fλ = gλ = 0

respectively. Thus, by using Equality 2.2 the Gaussian and mean curvatures are found.

Corollary 3.15. θ =
π

4
+ kπ (k ∈ N) the ruled surface λ (s,v) is a developable minimal surface.

Definition 3.16. Let the Successor curve of the β curve be α . The ruled surface formed by {u2 u3} the vector along the {u1 u3} Smarandache
curve obtained from the u1 tangent vector and u3 binormal vectors of the β curve is as follows:

η(s,v) =
1√
2
(u1 +u3)+

v√
2
(u2 +u3)

=
1√
2

(
(sinθ − cosθ)u2 +(sinθ + cosθ)u3

)
+

v√
2
(u1 + sinθu2 + cosθu3).

(3.6)

Theorem 3.17. Let the Successor curve of the β curve be α . The Gaussian and mean curvature of the η(s,v) ruled surface are as follows:

Kη =
sin2

θ + sin2θ

2κ2
(

v2 cos2 θ +
(
(1+ v)cosθ sinθ − cos2θ

)2
+
(
(sinθ cosθ − (1+ v)sin2

θ)− v
)2
)((

cosθ − (1+ v)sinθ
)2

+ v2−1+ sin2θ

) ,

Hη =
cosθ(sinθ − cosθ)2 + vk2(1+2v)+ k1 cosθ

(
v2 +(1+ vsinθ(cosθ − (1+ v)sinθ)2)

)
√

2k1
2
√(

v2 cos2 θ +
(
(1+ v)cosθ sinθ − cos2θ

)2
+
(
(sinθ cosθ − (1+ v)sin2

θ)− v
)2
)((

cosθ − (1+ v)sinθ
)2

+ v2−1+ sin2θ

) .

Proof. Partial derivatives of Equality 3.6 are,

ηs =
k1
(
(cosθ − (1+ v)sinθ)u1 + vu2

)
√

2
, ηv =

u1 + sinθu2 + cosθu3√
2

, ηsv =
−k1(sinθu1−u2)√

2
,

ηss =

(
k1
′(cosθ − (1+ v)sinθ)

)
− k1k2

(
sinθ +(1+ v)cosθ)− vk1

2)u1 +
(
k1

2(cosθ − (1+ v)sinθ)
)
− vk1

′)u2 + vk1k2u3√
2

, ηvv = 0.

Thus, from Equality 2.1 the normal of the surface Nλ is given as

Nη =
vcosθu1 +

(
(1+ v)cosθ sinθ − cos2 θ

)
u2 +

(
(sinθ cosθ − (1+ v)sin2

θ)− v
)
u3√

v2 cos2 θ +
(
(1+ v)cosθ sinθ − cos2 θ

)2
+
(
(sinθ cosθ − (1+ v)sin2

θ)− v
)2

.

Moreover, in Equalities 2.3 and 2.4 the coefficients of fundamental forms are

Eη =
k1

2((cosθ − (1+ v)sinθ)2 + v2)
2

, Fη =
k1(cosθ − sinθ)

2
, Gη = 1, gη = 0,

eη =
−k1

(
k2v(1+2v)+ k1 cosθ

(
v2 +(1+ v)sinθ(cosθ − (1+ v)sinθ)2))

√
2
√

v2 cos2 θ +
(
(1+ v)cosθ sinθ − cos2 θ

)2
+
(
(sinθ cosθ − (1+ v)sin2

θ)− v
)2

,

fη =
cosθ(sinθ − cosθ)

√
2
√

v2 cos2 θ +
(
(1+ v)cosθ sinθ − cos2 θ

)2
+
(
(sinθ cosθ − (1+ v)sin2

θ)− v
)2

respectively. Thus, by using Equality 2.2 the Gaussian and mean curvatures are found.
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Corollary 3.18. θ =
π

4
+ kπ (k ∈ N) the ruled surface η(s,v) is a developable surface.

Definition 3.19. Let the Successor curve of the β curve be α . The ruled surface formed by {u1 u2 u3} the vector along the {u1 u3}
Smarandache curve obtained from the u1 tangent vector and u3 binormal vectors of the β curve is as follows:

Γ(s,v) =
1√
2
(u1 +u3)+

v√
3
(u1 +u2 +u3)

=
1√
2

(
(sinθ − cosθ)u2 +(sinθ + cosθ)u3

)
+

v√
3

(
u1 +(sinθ − cosθ)u2 +(sinθ + cosθ)u3

)
.

(3.7)

Theorem 3.20. Let the Successor curve of the β curve be α . The Gaussian and mean curvature of the Γ(s,v) ruled surface are as follows:

KΓ =−
3k1

2(sin2
θ − cos2 θ)2

4
(

2v2(1+ sin2θ)+(
√

3+ v
√

2)2(sin2
θ − cos2 θ)2 +

(
(
√

3+ v
√

2)(sin2θ −1)v
√

2
)2
)(

(1+ v
√

6+2v2)(1− sin2θ)2
) ,

HΓ =−

√
6
(
−
√

2(sin2
θ − cos2 θ)(cosθ − sinθ)

)
−
√

6
(

k2(v
√

6+2v2)(2sin2θ − v
√

2)
)
+
√

6
(

k1(cosθ + sinθ)(2v2 +(
√

3+ v
√

2)2sin2θ)
)

2k1
(
((
√

3+ v
√

2)2−1)(1− sin2θ)+2v2
)
2k1

(
2v2(1+ sin2θ)2 +(

√
3+ v
√

2)2(sin2
θ − cos2 θ)+

(
(
√

3+ v
√

2)(sin2θ −1)
)
− v
√

2
) 1

2
.

Proof. Partial derivatives of Equality 3.7 are,

Γs =
k1

((
(cosθ − sinθ)(

√
3+ v
√

2)
)
u1 + v

√
2u2

)
√

6
, Γsv =

k1
(
(cosθ − sinθ)u1 +u2

)
√

3
,

Γv =
u1 +(sinθ − cosθ)u2 +(sinθ + cosθ)u3√

3
, Γvv = 0,

Γss =

(
k1
′(
√

3+ v
√

2)(cosθ − sinθ)− k1k2(
√

3+ v
√

2)(cosθ + sinθ)− v
√

2k1
2)u1 +

(
k1

2(
√

3+ v
√

2)(cosθ − sinθ)− v
√

2k1
′)u2 + v

√
2k1k2u3√

6
.

Thus, from Equality 2.1 the normal of the surface Nλ is given as

NΓ =

(
v
√

2(cosθ + sinθ)
)
u1 +(

√
3+ v
√

2)(sin2
θ − cos2 θ)u2 +

(
(
√

3+ v
√

2)(sin2θ −1)− v
√

2
)
u3(

2v2(1+ sin2θ)+(
√

3+ v
√

2)2(sin2
θ − cos2 θ)2 +

(
(
√

3+ v
√

2)(sin2θ −1)− v
√

2
)2
) 1

2

Moreover, in Equalities 2.3 and 2.4 the coefficients of fundamental forms are

EΓ =
k1

2((√3+ v
√

2)(1− sin2θ)−2v2
)

6
, FΓ =

k1(cosθ − sinθ)

6
, GΓ = 1, gΓ = 0,

eΓ =
−k1(cosθ + sinθ)

(
2v2 +(

√
3+ v
√

2)2(sin2θ)
)
− k2v

√
2(
√

3+ v
√

2)(2sin2θ −1)(
12v2(1+ sin2θ)+6(

√
3+ v
√

2)2 +(sin2
θ − cos2 θ)2 +6

(
(
√

3+ v
√

2)(sin2θ −1)− v
√

2
)) 1

2

fΓ =
sin2

θ − cos2 θ(
12v2(1+ sin2θ)+6(

√
3+ v
√

2)2 +(sin2
θ − cos2 θ)2 +6

(
(
√

3+ v
√

2)(sin2θ −1)− v
√

2
)) 1

2

respectively. Thus, by using Equality 2.2 the Gaussian and mean curvatures are found.

Example 3.21. Let the Successor curve of α curve be β Salkowski curve (see [26]). The equation of this curve for m =
1
3

is as follows:

β (s) =
3

2
√

10


−
√

10−1
2
√

10+4
sin

(
s+ 2s√

10

)
−
√

10−1
2
√

10+4
sin

(
s− 2s√

10

)
− sins,

−
√

10−1
2
√

10+4
cos

(
s+ 2s√

10

)
+

√
10−1

2
√

10+4
cos

(
s− 2s√

10

)
+ coss,

3
2

cos

(
2s√
10

)


The Successor frames of β curve {u1,u2,u3} are as follows:

u1(s) =

 −cosscos
s√
10
− 1√

10
sinssin

s√
10

,

−sinscos
s√
10

+
1√
10

cosssin
s√
10

,
3√
10

sin
s√
10

 ,

u2(s) =
( 3
√

10
sins, −

3
√

10
coss, −

1
√

10

)
,

u3(s) =

 −cosssin
s√
10
− 1√

10
sinscos

s√
10

,

−sinscos
s√
10

+
1√
10

cosscos
s√
10

,
3√
10

cos
s√
10

 .
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The graphs of the ruled surfaces obtained from these frames for s ∈ [−π,π] and v ∈ [−1,1] are shown in Figures 3.1-3.7:

Figure 3.1: Φ(s,v) = 1√
2
(u1 +u3)+ vu1

Figure 3.2: Q(s,v) = 1√
2
(u1 +u3)+ vu2

Figure 3.3: M(s,v) = 1√
2
(u1 +u3)+ vu3
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Figure 3.4: Σ(s,v) = 1√
2
(u1 +u3)+

v√
2
(u1 +u2)

Figure 3.5: λ (s,v) = 1√
2
(u1 +u3)+

v√
2
(u1 +u3)

Figure 3.6: η(s,v) = 1√
2
(u1 +u3)+

v√
2
(u2 +u3)
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Figure 3.7: Γ(s,v) = 1√
2
(u1 +u3)+

v√
3
(u1 +u2 +u3)

Example 3.22. Let the Salkowski curve in Example 3.21 be the main curve. From [26] and Theorem 2.2, the Successor frames are as
follows:

u1(s) =



−cos
(∫

tan
s√
10

ds
)( 3√

10
sins

)
+sin

(∫
tan

s√
10

ds
)(
− cosssin

s√
10
− 1√

10
sinscos

s√
10

)
,

cos
(∫

tan
s√
10

ds
)( 3√

10
coss

)
−sin

(∫
tan

s√
10

ds
)(
− sinssin

s√
10

+
1√
10

cosscos
s√
10

)
,

cos
(∫

tan
s√
10

ds
) 1√

10
+ sin

(∫
tan

s√
10

ds
)( 3√

10
cos

s√
10

)


,

u2(s) =

 −cosscos
s√
10
− 1√

10
sinssin

s√
10

,

−sinscos
s√
10

+
1√
10

sinssin
s√
10

,
3√
10

sin
s√
10

 ,

u3(s) =



sin
(∫

tan
s√
10

ds
)( 3√

10
sins

)
−cos

(∫
tan

s√
10

ds
)(

cosssin
s√
10

+
1√
10

sinscos
s√
10

)
,

−sin
(∫

tan
s√
10

ds
)( 3√

10
coss

)
−cos

(∫
tan

s√
10

ds
)(

sinssin
s√
10
− 1√

10
cosscos

s√
10

)
,

−sin
(∫

tan
s√
10

ds
) 1√

10
+ cos

(∫
tan

s√
10

ds
)( 3√

10
cos

s√
10

)


.

The graphs of the ruled surfaces obtained from these frames for s ∈ [−π,π] and v ∈ [−1,1] are shown in Figures 3.8-3.14:
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Figure 3.8: Φ(s,v) = 1√
2
(u1 +u3)+ vu1

Figure 3.9: Q(s,v) = 1√
2
(u1 +u3)+ vu2

Figure 3.10: M(s,v) = 1√
2
(u1 +u3)+ vu3
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Figure 3.11: Σ(s,v) = 1√
2
(u1 +u3)+

v√
2
(u1 +u2)

Figure 3.12: λ (s,v) = 1√
2
(u1 +u3)+

v√
2
(u1 +u3)

Figure 3.13: η(s,v) = 1√
2
(u1 +u3)+

v√
2
(u2 +u3)
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Figure 3.14: Γ(s,v) = 1√
2
(u1 +u3)+

v√
3
(u1 +u2 +u3)

Example 3.23. Let the Successor curve of α curve be β ∗(s) anti Salkowski curve [26]. The equation of this curve for m =
1
3

is as

follows:

β
∗(s) =

√
10

40


− 5

2
√

10

( 3√
10

cos(
1
5

+ cos(
2√
10

)s)
)
+

6
5

sinssin
2√
10

s,

− 5
2
√

10

( 3√
10

sin(
1
5

+ cos(
2√
10

)s)
)
+

6
5

cosssin
2√
10

s,

− 9
√

10
40

( 2√
10

s+ sin(
2√
10

)s
)


.

The Successor frames of β ∗ curve {u∗1,u∗2,u∗3} are as follows:

u∗1(s) =

 −cosssin
s√
10

+
1√
10

sinscos
s√
10

,

−sinssin
s√
10
− 1√

10
cosscos

s√
10

,− 3√
10

cos
s√
10

 ,

u∗2(s) =
( 3
√

10
sins, −

3
√

10
coss,

1
√

10

)
,

u∗3(s) =

 −cosscos
s√
10
− 1√

10
sinssin

s√
10

,

−sinscos
s√
10

+
1√
10

cosssin
s√
10

,
3√
10

sin
s√
10

 .

The graphs of the ruled surfaces obtained from these frames for s ∈ [−π,π] and v ∈ [−1,1] are shown in Figures 3.15-3.21:

Figure 3.15: Φ∗(s,v) = 1√
2
(u∗1 +u∗3)+ vu∗1
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Figure 3.16: Q∗(s,v) = 1√
2
(u∗1 +u∗3)+ vu∗2

Figure 3.17: M∗(s,v) = 1√
2
(u∗1 +u∗3)+ vu∗3

Figure 3.18: Σ∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
2
(u∗1 +u∗2)



Konuralp Journal of Mathematics 41

Figure 3.19: λ ∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
2
(u∗1 +u∗3)

Figure 3.20: η∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
2
(u∗2 +u∗3)

Figure 3.21: Γ∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
3
(u∗1 +u∗2 +u∗3)

Example 3.24. Let the Salkowski curve in Example 3.23 be the main curve. From [26] and Theorem 2.2 the Successor frames are as follows:

u∗1(s) =



−cos(s+ c)
( 3√

10
sins

)
+ sin(s+ c)

(
− cosscos

s√
10
−

1√
10

sinssin
s√
10

)
,

cos(s+ c)
3√
10

coss+ sin(s+ c)
(
− sinscos

s√
10

+
1√
10

cosssin
s√
10

)
,

−cos(s+ c)
1√
10

+ sin(s+ c)
( 3√

10
sin

s√
10

)


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u∗2(s) =


−cosssin

s√
10

+
1√
10

sinscos
s√
10

,−sinssin
s√
10
−

1√
10

cosscos
3√
10

,

−
3√
10

cos
s√
10



u∗3(s) =



sin(s+ c)
( 3
√

10
sins

)
+ cos(s+ c)

(
− cosscos

s
√

10
−

1
√

10
sinssin

s
√

10

)
,

sin(s+ c)
3
√

10
coss+ cos(s+ c)

(
− cosscos

s
√

10
−

1
√

10
sinssin

s
√

10

)
,

sin(s+ c)
1
√

10
+ cos(s+ c)

( 3
√

10
sin

s
√

10

)



The graphs of the ruled surfaces obtained from these frames for s ∈ [−π,π] and v ∈ [−1,1] are shown in Figures 3.22-3.28:

Figure 3.22: Φ∗(s,v) = 1√
2
(u∗1 +u∗3)+ vu∗1

Figure 3.23: Q∗(s,v) = 1√
2
(u1 +u3)+ vu2
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Figure 3.24: M∗(s,v) = 1√
2
(u∗1 +u∗3)+ vu∗3

Figure 3.25: Σ∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
2
(u∗1 +u∗2)

Figure 3.26: λ ∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
2
(u∗1 +u∗3)
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Figure 3.27: η∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
2
(u∗2 +u∗3)

Figure 3.28: Γ∗(s,v) = 1√
2
(u∗1 +u∗3)+

v√
3
(u∗1 +u∗2 +u∗3)
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