Pamukkale Univ Muh Bilim Derg, 23(5), 597-601, 2017

Pamukkale Universitesi Miihendislik Bilimleri Dergisi

A software architecture for monitoring big data storage platforms

Biiyiik veri saklama ortamlarinin izlenmesine yénelik yazilim mimarisi

Mehmet Siddik AKTAS

1Department of Computer Engineering, Faculty of Electrical and Electronics Engineering, Yildiz Technical Univ., Istanbul, Turkey.
aktas@yildiz.edu.tr

Received/Gelis Tarihi: 12.03.2016, Accepted/Kabul Tarihi: 07.03.2017

* Corresponding author/Yazisilan Yazar

doi: 10.5505 /pajes.2017.45722
Research Article/Arastirma Makalesi

Abstract

NoSQL-based big data storage platforms provide similar fundamental
big data management functionalities in addition to various other
functionalities that differ for each platform. For example, document-
oriented NoSQL big data storage platforms are commonly used for
organizing and managing documents, while graph-based databases
are designed for data whose relations are represented by graphs. In
turn, different NoSQL-based platforms are often used together, as each
provides distinct capabilities. Within this study based on our literature
review, it is seen that a hybrid platform, which could perform real-time
monitoring tasks on top of different big data NoSQL platforms, is
lacking. In order to address this issue, this paper proposes a novel
system architecture. The proposed system architecture runs as a piece
of add-on software one layer above the NoSQL platforms and provides
monitoring tasks on these platforms. Within the research, a prototype
of the recommended system architecture is made and the testing
results are provided in detail. The prototype of the proposed
architecture focused on monitoring the system's distributed structure
and data structure, memory usage, and disk usage. In order to prove
the practical usage of the proposed system architecture, various
performance experiments were applied to the prototype application. In
this paper, we report on the promising results of the performance
experiment.

Keywords: NoSQL, Big data, Hybrid platform, Monitoring platform,
Hybrid architectural structure, Management of big data

(0)4

Biiyiik Veri NoSQL saklama platformlari, ayni temel fonksiyonel
ozellikleri saglamakla birlikte, birbirlerinden ayrilan genis oézellik
setleri de sunabilmektedir. Ornegin, dokiiman-tabanl NoSQL saklama
ortamlart doktimanlarin organizasyonu icin kullanilirken, cizge veri
tabanlari, veriler arasindaki iligkilerin cizgeler olarak
tamimlanabildigi veriler icin kullanabilmektedir. Bunun sonucu olarak,
farkli platformlar, sagladiklart ayristirict islevselliklerinden dolayt
birlikte kullanilabilmektedir. Ancak, farkh biyiik veri saklama
platformlart lizerinde gercek zamanli olarak izleme islemlerini
yapabilecek, tek bir programlama ara yiizii tizerinden kullanilabilen,
bir platformun eksikliginin oldugu gériilmektedir. Bu eksikligi
gidermek amaciyla, bir sistem mimarisi énerilmektedir. Onerilen
sistem birbirinden farkli NoSQL platformlari lizerinde lizerinde eklenti
olarak ¢alismakta ve izleme islemlerinin yapilabilmesine olanak
saglamaktadir. Calisma kapsaminda énerilen sistem mimarisinin
prototipi gerceklestirilmistir ve elde edilen deneyim detaylariyla
sunulmaktadir. Prototip uygulama, sistemin dagitik mimari yapisini ve
veri yapisini, bellek kullanimini ve sabit disk kullanimini takip etmek
odakli olarak gelistirilmistir. Onerdigimiz ~sistem mimarisinin
dogrulugu ve pratik kullanimini ortaya koymak amaciyla prototip
uygulama lizerinde performans testleri uygulanmis ve olumlu olarak
elde edilen sonuglar paylasiimistir.

Anahtar kelimeler: NoSQL, Biiyiik veri, Hibrit platform, Izleme
platformu, Hibrit mimari yapisi, Bilytk veri yoénetimi

1 Introduction

In the early 2000s, NoSQL platforms were introduced to solve
performance issues arising from the use of classical relational
databases as a means of dealing with the increasing size of
data. These platforms, where the data are stored in various
forms such as text documents or graphs, offer data analysis
capabilities with high performance on data sizes exceeding
petabytes.

Today, we observe that different NoSQL platforms appear to
be in line with the growth of businesses that deal with big
data. NoSQL platforms are able to store data in various
formats, such as key-value tables, document-oriented formats,
and graph-oriented formats. Key-value tables based NoSQL
platforms store data in a schema-less model, with simple key-
value pair to store, access, and manage data. Document-
oriented NoSQL platforms store the data in a document format
(e.g., JSON document format). On these platforms, the data are
held in structures called “collections.” in contrast to the table
structures of conventional relational databases. Contrary to
the rule of generating the tables of relational databases
according to a specific data schema, no specific data model is
sought out for JSON documents within the “collection.” Each
document is independent and may differ from others in terms

of its data structure. Another type of NoSQL platform is one
where the data are stored according to a graph data structure.

Unlike other NoSQL platforms, graph-oriented platforms store
the relationships among data. These platforms are designed
according to graph theory. NoSQL platforms provide similar
fundamental functionalities in addition to various other
functionalities that differ on each platform. Consequently,
different NoSQL structures may be used together because of
the distinct functionalities they provide. For example, an e-
trading site would use a document-oriented NoSQL platform
to store JSON objects created as a result of clickstreams, while
collecting data from itsonly users on social media and storing
them on a NoSQL platform with a graph data structure. The
distributed structure of NoSQL platforms requires real-time
monitoring. The monitoring these platforms is dependent on
monitoring tools specifically developed for these
environments. NoSQL platforms may have some common
monitoring functionalities as well as specialized monitoring
functionalities. This shows us that a common programmable
interface would allow one to monitor multiple NoSQL
platforms. In our literature review, we identified an important
deficiency in monitoring these platforms-the lack of a common
monitoring tool in the case of different NoSQL platforms being
used together. Each of the aforementioned NoSQL platforms

597

mailto:aktas@yildiz.edu.tr

Pamukkale Univ Muh Bilim Derg, 23(5), 597-601, 2017
M. S. Aktas

has its own monitoring tools. In turn, monitoring a NoSQL
platform is only possible with its respective monitoring tool.
Consequently, no monitoring tool of a certain platform may be
used to monitor another NoSQL platform.

To eliminate this deficiency, a monitoring platform
architecture will be proposed in this paper. This architecture,
which operates one level higher than NoSQL platforms as a
piece of add-on software, is capable monitoring in real time
common properties of NoSQL platforms in a hybrid structure.
The proposed architecture was designed based on
client/server architecture. A prototype was developed to show
the usability of the proposed architecture. The prototype
focused on monitoring the system's distributed structure and
data structure, memory usage, and disk usage. The developed
prototype platform is an application that enables real-time
monitoring of different NoSQL databases. It enables
monitoring in various reporting formats (e.g, tabular
presentation and visual presentation) by retrieving data from
NoSQL databases on the system. In order to prove the
accuracy and practical use of the proposed system
architecture, performance tests were executed on the
prototype application. The results showed that such an
architecture creates a negligible processing overhead. The rest
of the article follows with a literature review and the
definition of the research problem. Then, the proposed system
architecture and its prototype will be discussed in detail. Next,
the performance assessment of the prototype, followed by the
presentation of results and future studies, is introduced.

2 Literature review

The term “NoSQL” stands for “Not Only SQL.” An open source,
light, relational database without a standard SQL interface,
developed by Carlo Strozzi, was first used in 1998 [1]. In the
early 2010s, when the difficulties of working with
conventional databases (due to the increased size of data)
became obvious, NoSQL databases gained great popularity.
NoSQL database systems are distinguished by their higher
scalability and unstructured data schema in comparison to
relational database systems [2],[3]. While relational databases
meet all the requirements of ACID (Atomicity, Consistency,
Isolation, Durability), NoSQL databases do not meet them
completely. Instead, they prioritize the requirements of
sustainability (in case problems occur in any cluster element
of the distributed system) and the requirements of preserving
data integrity. NoSQL platforms provide BASE (Basically
Available, Soft-state, and Eventually Consistent) principles in
place of ACID principles [4]. As mentioned above, unlike tables
in classical relational databases, NoSQL platforms do not hold
data based on a specific data model. On the contrary—data are
stored in key-value pairs in data structures such as documents
or graphs. In this article, the most popular document-oriented
(MongoDB [5], CouchBase [6]) and graph-oriented NoSQL
(Neo4] [7]) platforms were examined.

Today's NoSQL platforms have programming interfaces that
enable self-monitoring. While these platforms involve
platform-specific, stand-alone, real-time monitoring tools (e.g.,
MongoVUE), tools are designed to work only with their
corresponding NoSQL platform. There are various monitoring
tools for key-value based, document-based, and graph-
oriented NoSQL platforms. The key-value oriented NoSQL
platform Cassandra [8] uses a monitoring tool called DataStax
OpsCenter [9]. OpsCenter reports on metrics such as the active
and passive number of nodes, the number of read/write

operations in clusters, the cluster delay, and the disk usage.
The document-oriented platform MongoDB includes various
monitoring tools. MongoVUE [10] is one example of these
tools. A variety of statistical data about NoSQL storage nodes
(shards), databases, document sets (collections), hard disk
nodes, and memory usage are accessible on MongoVUE. The
graph-oriented NoSQL platform Neo4] uses the]JConsole
monitoring tool [11]. This monitoring platform also presents
data about the number of nodes, the number of data per node,
and the disk usage.

In our study, we observed that different NoSQL technologies
have similar monitoring functionalities. However, there exists
no hybrid monitoring platform that would allow one to
monitor different NoSQL platforms over a single programming
interface. This missing aspect of NoSQL monitoring tools was
the triggering factor for us to initiate this research.

3 Definition of the problem

Today, it is obvious that almost all NoSQL platforms have
specific programming interfaces to monitor their capabilities,
and there exist dedicated monitoring tools that can only
interact with these programming interfaces. Currently,
monitoring various NoSQL platforms via one monitoring tool
is not possible. This drives the need for a hybrid monitoring
platform for cases where different NoSQL databases are being
used together and need to be monitored. To develop a tool
capable of monitoring different NoSQL platforms, the common
functionalities of these platforms should be utilized. How the
software architecture of a hybrid monitoring tool, working one
level above the available NoSQL platforms, should work, along
with how to verify it to meet such a requirement, comprises
the research problem of this paper.

4 Proposed software architecture

The proposed Hybrid NoSQL Monitoring Platform (HNMP) is
depicted in Figure 1. As depicted in this figure, the hybrid
monitoring platform runs one level above the existing NoSQL
platforms. The HNMP has no dependency on technologies at
the lower level. Information such as which NoSQL databases
are involved and in which directory the relevant libraries
(e.g., jar files) and relevant configuration files are located in
the file system is stored in a configuration file
(Hybrid-Mapping.xml).

In the proposed software architecture, Facade Design Pattern
In the proposed software architecture, the facade design
pattern is utilized. The facade pattern provides a unified
interface to a set of interfaces in a subsystem. Here, the
subsystem is a cluster of various NoSQL systems. It defines a
higher-level interface that makes the subsystem easier to use
and wraps a complicated subsystem up in a simpler interface
[12].

Hybrid Client -I Hybrid Client-Il

HYBRID XML API

COUCHBASE API

Request processor

Resource
Handler

[l Resource

1 1
1 | Config.xml | oo | Handler 1| Config.xml
1 = ! iz
1 ; !
H Mappmg.xml . 1 |Mapping.xml
----- s E e o e

Figure 1: hybrid NoSQL monitoring software arcitecture.

—————
-

598

Pamukkale Univ Muh Bilim Derg, 23(5), 597-601, 2017
M. S. Aktas

In the proposed architecture, a resource handler module is
used for each subsystem. The hybrid platform communicates
with each resource handler module using two different
configuration files: Mapping.xml and Config.xml. The first file
maps the monitoring functions provided by the hybrid NoSQL
monitoring tool, with monitoring functions enabled by the
NoSQL technology at the lower level. The second file includes
the IP addresses of the underlying NoSQL instances, which are
accessible via distributed servers within the NoSQL database
clusters.

The resource handler module includes the required libraries
to access the database of the platform to be monitored. During
the development of our proposed system's prototype, this
module was realized as a Java library (.jar file format).

To identify the core monitoring functions of the HNMP, we
identified the common monitoring functionalities of existing
NoSQL databases. These monitoring functions are listed in
Table 1. The XML API of the proposed system provides
monitoring capabilities for these functions over different
NoSQL platforms.

The Hybrid NoSQL Monitoring Platform uses the located
resource handler library of the NoSQL databases on the next
highest level and performs monitoring functions by accessing
the relevant database. The facade design pattern provides a
common interface for the lower-level systems’ programming
interfaces. Thus, the deployment of lower-level systems over a
higher-level interface is enabled independently of the
technologies deployed by the lower-level systems. The
complexity is reduced by wrapping the complicated
subsystem at the lower level. In the proposed architecture, the
end-user interacts with the HNMP, which, in turn,
communicates with the rest of the lower-level subsystems
across the facade object.

5 Hybrid NoSQL monitoring functions

As a design requirement for the system to monitor various
NoSQL platforms, an examination of these platforms was
required to identify common monitoring functionalities. In
this study, common methods to monitor NoSQL platforms
were classified under three main categories: methods to
monitor general information related to the system's
distributed structure and data structure; methods to monitor
memory usage; and methods to monitor disk usage.

As mentioned earlier, the HNMP uses the Mapping.xml file to
map these hybrid monitoring functions to their corresponding
implementations in the resource handler modules specific to
each NoSQL platform. Table 1 shows examples of the hybrid
monitoring methods and their corresponding monitoring
functions in the corresponding NoSQL systems. Detailed
information on these monitoring functions is provided below.

1. Methods to monitor general information related to
the system's distributed structure and data structure
are the methods commonly developed for NoSQL
platforms to inquire about the nodes involved in
these platforms, the number of active/passive nodes,
and the data structures of platforms such as the
database list,

2. Methods to monitor memory usage are the methods
commonly developed for NoSQL platforms to inquire
about the memory usage data of nodes,

3. Methods to monitor disk usage are the methods
commonly developed for NoSQL platforms to inquire
about the disk usage data of nodes.

6 Prototype implementation

A prototype software was developed to show the usability of
the Hybrid NoSQL Monitoring Platform architecture. The
MongoDB and CouchBase NoSQL platforms were deployed as
subsystems in the prototype, which was created with the Java
programming language.

Figure 2 illustrates the usage scenario of the prototype system.
The developed prototype implements the Hybrid NoSQL
Monitoring Platform functions with a restful-based web
service that can be accessed via user applications. The Hybrid
Platform Web Service provides a programming interface that
enables one to monitor various NoSQL platforms on a single
platform. This interface can be used through a web-based
application that we have developed under the scope of this
prototype. This client application was implemented with
PrimeFaces technology and demonstrates how to interact with
the hybrid platform.

As shown in Figure 2, the system accesses each NoSQL
database through APIs provided by the NoSQL database. This
APl is packaged within the resource handler of the
corresponding NoSQL database. The resource handler module
is used to access data about the platform's database.

S. Get sever status info

v
4. Get IP addresses of nodes

Config.xml I i
+ 3. Get method name Resource Handler sass
; > (MongoDB)
Mapping.xml

2. Get Resource Handler .jar file location from n
Hybrid-Mapping.xml method name forward the il

server status info request 2 . .
Hybrid NoSQL Monitoring Platform
% |
1. Request server status info | 7 Result Mapping xmi,J

Hybrid Client

Figure 2: The usage scenario for hybrid NoSQL monitoring
tool.

| 6.Result from corresponding Resource Handler

Tablo 1: An example of mapping hybrid monitoring functions and NoSQL monitoring functions.

MongoDB monitoring functions MongoDB MongoDB monitoring functions
monitoring functions
System's monitoring functions getServerStatus() getServerStats() serverStatus()
Memory Usage monitoring getMem() getRamHdd() MemoryStatus()
functions
Disk Usage monitoring functions getDBStats() getNodeStats() DBStatus()

599

Pamukkale Univ Muh Bilim Derg, 23(5), 597-601, 2017
M. S. Aktas

The system retrieves the resource handler data of the NoSQL
platform to be monitored from the Hybrid-configxml file,
shown in Appendix 1. As mentioned previously, the resource
handlers are packed as “jar” files. Each resource handler has a
standard programming interface that is externally accessible
and contains code related to platform-specific monitoring
methods.

For each resource handler to be added to the system, two
configuration files should be created. Mapping.xml is the
configuration file where hybrid monitoring methods and
lower-level systems' monitoring methods are mapped. An
example of the Mapping.xml file is shown in Appendix 2. The
other file to be used by the system (i.e., Config.xml) contains
the IP addresses of the nodes on the NoSQL platform. An
example of the Config.xml file is provided in Appendix 3. The
system acquires the IP addresses of the nodes to be monitored
by reading the Config.xml file, and it monitors the NoSQL
databases on these nodes.

7 Evaluation

Performance tests were conducted to test system availability.
The initial results of the Hybrid NoSQL Monitoring platform
were first discussed in [13]. The technical details of the
computers used in these tests are as follows. The processor
used was Intel Core i7 3630QM, equipped with 2. 4 GHz. The
memory of the server was 8GM RAM, and the size of the hard
drive was 750 GB. We used Java version 1. 8. 0_25 in our
implementation. Throughout the tests, nano.Time() was used
as the Java timing function [14]. Seven different tests were
performed to measure the system performance. In other
words, the execution is repeated seven times under different
message-loads. In each test, the average delay time in sending
a monitoring request and obtaining the results was measured.
These tests were repeated for Hybrid API, MongoDB, and
CouchBase. The basic purpose was to show that the
performance load from the hybrid structure on the system
was negligible (in terms of seconds). The results are depicted
in Figure 3.

50.000

45.000
40.000

35.000
30.000
25.000
20.000

_ mHibrit Restful API

~ ®MongoDB Restful API

Couchbase Restful API
15.000

IR IR 18 8

1000 2000 5000 10000

Figure 3: Hybrid restful API performance evaluation results.
X-axis stands for iteration number. Y-axis stands for time in
milliseconds.

The first three tests were performed for low-scale request
volumes. Over one hundred observations, the results indicate
that a MongoDB monitoring request for server statustakes 677
ms, while the same type of CouchDB monitoring request takes
302 ms. On the other hand, Hybrid Monitoring reqest for
server status takes only 986 ms. These results show that our
proposed hybrid platform generates a negligible load on
NoSQL platforms. The rest of the test results indicate that if
the number of sequential requests on the system increases,

the delay time increases exponentially. The main reason for
this is that as the simultaneous connection size increases, the
system starts using more threads from the thread pool. In
turn, this creates an additional need for time for the operating
system to perform thread scheduling runs and prioritize the
threads.

8 Conclusions and future work

Within the scope of this study, a system architecture was
proposed for a hybrid platform that performs real-time
monitoring on various big data platform systems. The
proposed software architecture runs as a piece of add-on
software on NoSQL platforms and provides monitoring tasks
without any necessary additional development on these
platforms. In our study, we created a prototype of our
proposed system architecture. In order to prove the practical
usage of the proposed system architecture, performance tests
were executed on the prototype application. The test results
indicate that the load generated by the Hybrid NoSQL
Monitoring Platform is negligible. Testing this system on
various types of NoSQL environments will be among our
future projects.

9 Acknowledgments

We would like to thank Oguz Aydin and Yusuf Onder for their
contribution to this study. Financial support was provided by
the TUBITAK project numbered 114E781 and titled
“Development of Methods for the Identification of
Disinformation and Copyright Violations in Social Media
Software with Provenance.”

10 References

[1] Han]. “Survey on NoSQL database”. 6t International
Conference on Pervasive Computing and Applications,
Port Elizabeth, South Africa, 26-28 October 2011.

[2] Leavitt N. “Will NoSQL databases live up to their
promise?”. Computer Magazine, 43(2), 12-14, 2010.

[3] Muthukkaruppan K. “Storage infrastructure behind
facebook messages”. Proceedings of International
Workshop on High Performance Transaction Systems, New
york, NY, 2011.

[4] Pritchett D. “BASE: An acid alternative”. File Systems and
Storage, 6(3), Pages 48-55, 2008.

[5] Wei-ping Z, Ming-xin L, Huan C. “Using mongoDB to
implement textbook management system instead of
MySQL”. 3 [EEE International Conference on
Communication Software and Networks, Xi'an, China,
2011.

[6] Yishan L. “A performance comparison of SQL and NoSQL
databases”. IEEE Pacific Rim Conference, Victoria, BC,
Canada, 2013.

[7] Angles R. “A Comparison of current graph database
models”. IEEE 28% International Conference on Data
Engineering Workshops, Arlington, VA, USA, 2012.

[8] Tudorica B, Bucur C. "A comparison between several
NoSQL databases with comments and notes". 10t
Roedunet International Conference, lasi, Romania, 2011.

[9] Mishra V. Beginning Apache Cassandra Development, 1st
Edition, New York, NY, Apress, 2014.

[10] Griffin M. A Preliminary Exploration of Database
Performance for Use With ‘big data’ projects in the
aviation industry. Master Thesis, School of Science LYIT,
Gortlee, Letterkenny, Co. Donegal, Ireland 2014.

600

Pamukkale Univ Muh Bilim Derg, 23(5), 597-601, 2017
M. S. Aktas

[11] Robin L, Gibbs C, Coady Y. “MADAPT: managed aspects
for dynamic adaptation based on profiling techniques”.
Proceedings of the 3rd workshop on Adaptive and reflective
middleware, New York, NY, 2004.

[12] Prechelt L, Unger-Lamprecht B, Philippsen M, Tich W.
“Two controlled experiments assessing the usefulness of
design pattern documentation in program maintenance”.
IEEE Transactions on Software, 28(6), 595-606, 2002.

[13] Aydin O, Onder Y, Aktas M. “NoSQL biiytik veri yapilarinin
izlenmesine yonelik hibrit sistem platformu”. Basarim-15
Conference, Ankara, Turkey, 2015.

[14] Lee J K, Lee] Y. “Android programming techniques for
improving performance”. 3rd International Conference on
Awareness Science and Technology, Dalian, China, 2011.

Appendix A
Example Hybrid-Mapping. xml

<resources>

<resource>
<db>MongoDB</db>
<path>..\MongoDB\target\</path> </resource>
<resource>

<db>Couchbase</db>
<path>..\Couchbase\target\</path> </resource>

</resources>

Appendix B
Example Mapping. xml

<methods>

<method>

<hybrid>serverStatus</hybrid>
<original>getServerStats</original>

</method>
<method>

<hybrid>DBStatus</hybrid>
<original>getNodeStats</original>

</method>
<method>

<hybrid>MemoryStatus</hybrid>
<original>getRamHdd</original>

</method>

</methods>

Appendix C

Example Config. xml
<shards>

<shard>
<host>127.0.0.1</host><port>27020</port> </shard>

<shard>
<host>127.0. 0. 1</host> <port>27025</port>

</shard>

</shards>

601

