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ABSTRACT 

In this paper, we propose a distribution for modeling data defined on a unit interval using an exponentiated 
transformation. The new distribution is based on the unit exponential half-logistic distribution, a member of 
proportional hazard models. Several measures of the statistical characterization of the distribution are discussed. 
The statistical inference of the parameters of the proposed distribution is studied by the maximum likelihood 
method. To explore the properties of the maximum likelihood estimates of the parameters, simulation studies are 
carried out under various scenarios. Furthermore, a real dataset is analyzed to demonstrate the performance of the 
distribution.  
 
Keywords: Exponentiated distribution, UEHL distribution, maximum likelihood estimator, goodness of fit 
 
 

Üstellenmiş UEHL Dağılımı: Özellikler ve Uygulamalar 
 
 

ÖZ 

Bu makalede, birim aralıkta tanımlanan verilerin üstel bir dönüşüm kullanılarak modellenmesi için bir dağılım 
önerilmiştir. Yeni dağılım, orantılı tehlike modellerinin bir üyesi olan birim üstel yarı lojistik dağılıma 
dayanmaktadır. Dağılımın istatistiksel karakterizasyonuna ilişkin çeşitli ölçütler tartışılmıştır. Önerilen dağılımın 
parametrelerinin istatistiksel çıkarımı en çok olabilirlik yöntemi ile incelenmiştir. Parametrelerin en çok olabilirlik 
tahminlerinin özelliklerini araştırmak için çeşitli senaryolar altında simülasyon çalışmaları gerçekleştirilmiştir. 
Ayrıca, dağılımın performansını göstermek için gerçek bir veri kümesi analiz edilmiştir 
 
Anahtar Kelimeler: Üstellenmiş dağılım, UEHL dağılımı, en çok olabilirlik tahmin edicisi, uyum iyiliği
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1. Introduction 

The well-known Weibull distribution was 
proposed as an enhanced extension of the 
exponential distribution. The Weibull distribution 
is more flexible than the exponential distribution 
in shape. Due to this characteristic, the Weibull 
distribution has applications in many areas such 
as business, economics and survival analysis 
(Murthy et al., 2004; McCool, 2012; Aslam et al., 
2015; Dokur and Kurban, 2015), manufacturing 
industry (Sürücü et al., 2009; Arenas et al., 2010; 
Barman et al., 2023; Periyasamypandian and 
Balamurali, 2023) and medicine (Feronze et al., 
2022; Ghazal and Radwan, 2022).  

In reliability theory, the properties of the hazard 
function of the underlying distribution are crucial 
for the success of statistical modeling. The 
Weibull distribution is commonly used in 
reliability theory to model the time to failure. The 
distribution generalizes the exponential model to 
cover nonconstant hazard rate functions and is 
appropriate for modeling monotone hazard rates. 
In this respect, the Weibull distribution and its 
extensions are useful for modeling a wide range 
of real-life data (Ijaz et al., 2020; Khalil et al., 
2021; Alotaibi, 2023). However, the distribution 
is not convenient for modeling non-monotonic 
hazard rates such as bathtub-shaped failure rates 
(Almalki and Nadarajah, 2014; Carrasco et al., 
2008; Lai, 2014). To improve the capability of the 
Weibull distribution in modeling bathtube-shaped 
failure rates various generalizations and 
modifications of the Weibull distribution were 
proposed in the literature (Lai, 2014). 

Dombi et al. (2019) proposed the omega 
distribution as an alternative to the Weibull 
distribution and explored its applications in 
reliability theory. Dombi et al. (2019) proved that 
the asymptotic hazard rate function of the omega 
distribution is the Weibull hazard rate function. 
Hence, the asymptotic omega distribution is the 
Weibull distribution. Also, the omega distribution 
belongs to the class of proportional hazard rate 
models. Based on the omega distribution, Özbilen 
and Genç (2022) proposed the unit exponentiated 
half-logistic (UEHL) distribution with a special 

case of the parameter of the omega distribution. 
The UEHL distribution reduces to an 
exponentiated half-logistic distribution with a 
simple transformation, which has many uses in 
reliability theory (Seo and Kang, 2015; Gui, 
2017). 

In distribution theory, generating new 
distributions using some baseline distributions is 
a popular practice (Gupta et al., 1998; Cordeiro 
and de Castro, 2011). In this context, Lehmann 
(1953) introduced exponentiated G-family of 
distributions (EG). If 𝐺𝐺(𝑥𝑥)  is the cumulative 
distribution function (cdf) of the baseline 
distribution, then an exponentiated G-family of 
distribution is defined by taking the 𝛼𝛼-th power of 
𝐺𝐺(𝑥𝑥) as 

𝐹𝐹(𝑥𝑥) = 𝐺𝐺(𝑥𝑥)𝛼𝛼 , 𝑥𝑥 ∈ 𝐷𝐷                                          (1) 

where 𝛼𝛼 >  0 is a shape parameter and 𝐷𝐷 is the 
domain of the baseline distribution. The 
corresponding probability density function (pdf) 
is given by 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼𝛼𝛼(𝑥𝑥)𝐺𝐺(𝑥𝑥)𝛼𝛼−1                                         (2) 

where 𝛼𝛼(𝑥𝑥)  is the pdf corresponding to 𝐺𝐺(𝑥𝑥) . 
There are various studies in the literature in the 
context of exponentiated transformation. 
Mudholkar and Srivastava (1993) proposed the 
exponentiated Weibull distribution for modeling 
lifetime data with bathtub failure rate and for 
testing the goodness-of-fit of the Weibull 
distribution. Also, Mudholkar et al. (1995) used 
the exponentiated Weibull distribution in 
reanalyzing classical data sets on bus-motor 
failure to illustrate the flexibility of the family. 
Surles and Padgett (2001) proposed a scaled 
BurrX distribution and studied the inference of the 
distribution. Also, Kundu and Raqab (2005) 
examined the distribution in the scope of the 
lifetime data analysis by describing it as the 
generalized Rayleigh distribution. Cordeiro et al. 
(2014) proposed the exponentiated half-logistic 
family of distributions based on the half-logistic 
distribution and investigated various 
characteristics. Ashour and Eltehiwy (2015) 
proposed the exponentiated power Lindley 
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distribution as a new generalization of the Lindley 
distribution to obtain a more flexible model 
compared to the power Lindley distribution. 
Arshad et al. (2020) introduced exponentiated 
power function distribution and applied it to 
lifetime datasets from engineering. El-Monsef et 
al. (2021) proposed the exponentiated power 
Lomax distribution and used it to model various 
real-life datasets. Rather et al. (2022) introduced 
the Exponentiated Ailamujia distribution and 
utilized the distribution for a medical data 
analysis. Sharma et al. (2022) proposed two-
parameter exponentiated Teissier distribution, 
whose hazard rate function has increasing, 
decreasing and bathtub shapes, and used several 
techniques for parameter estimation of the 
distribution. Alotaibi et al. (2023) proposed 
exponentiated-Chen distribution and used the 
distribution to model the number of vehicle 
fatalities. 

In this paper, we use the concept of exponentiated 
distributions to introduce a new distribution called 
the exponentiated UEHL (EUEHL) distribution 
by considering the UEHL distribution as the 
baseline distribution in the G-family defined in 
Equation (1). 

The contents of this paper are organized as 
follows. Section 2 introduces the EUEHL 
distribution based on the exponentiated 
transformation and the survival and hazard rate 
functions are provided. Section 3 handles some 
analytical characteristics of the proposed 
distribution including the quantile function, 
moments, moment generating function, order 
statistics, stress-strength reliability, and the 
maximum likelihood estimation of the method. 
Section 4 presents a simulation study to evaluate 
the performance of the maximum likelihood 
estimates. Section 5 provides a numerical 
example to illustrate the performance of the 
proposed distribution in modeling a real-life data 
set. Finally, Section 6 concludes the paper. 

2. Exponentiated UEHL Distribution 

Recently, Özbilen and Genç (2022) introduced the 
UEHL distribution based on the omega 
distribution, which is a member of the class of 
proportional hazard rate models. The UEHL 
distribution has various applications in reliability 
theory via exponentiated half-logistic distribution 
(Kang, 2011; Rastogi, 2014).   

In this section, the three-parameter EUEHL 
distribution will be defined by applying the G-
family transformation given by Equation (1) to the 
UEHL distribution. By introducing the shape 
parameter 𝛼𝛼 in the EUEHL distribution, we aim to 
achieve a more useful model than the UEHL 
model in terms of flexibility and performance of 
fitting data. The cdf and pdf of the UEHL 
distribution are given, respectively, by 

𝐹𝐹𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑥𝑥, 𝜃𝜃, 𝜆𝜆) = 1 − �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆

, 0 < 𝑥𝑥 < 1                (3) 

and 

𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑥𝑥, 𝜃𝜃, 𝜆𝜆) = 2𝜃𝜃𝜆𝜆𝑥𝑥𝜃𝜃−1 �1−𝑥𝑥
𝜃𝜃�

𝜆𝜆−1

�1+𝑥𝑥𝜃𝜃�
𝜆𝜆+1 , 0 < 𝑥𝑥 <1         (4) 

where 𝜃𝜃 > 0 and 𝜆𝜆 > 0 are the scale and shape 
parameters of the distribution, respectively. By 
applying the transformations in Equations (1) and 
(2) to Equations (3) and (4) the cdf and pdf of the 
EUEHL distribution are obtained, respectively, as 

𝐹𝐹(𝑥𝑥;𝜃𝜃, 𝜆𝜆,𝛼𝛼) = �1 − �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼

                                 (5) 

and 

𝑓𝑓(𝑥𝑥;𝜃𝜃, 𝜆𝜆,𝛼𝛼) = 2𝜃𝜃𝜆𝜆𝛼𝛼 𝑥𝑥𝜃𝜃−1

�1+𝑥𝑥𝜃𝜃�
2 �

1−𝑥𝑥𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆−1

�1− �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼−1

              (6) 

with parameters 𝜃𝜃, 𝜆𝜆  and 𝛼𝛼 . Henceforth, we 
denote the random variable 𝑋𝑋 having the pdf in 
Equation (6) by EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼). 

Figure 1 illustrates the pdf of the EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) 
distribution for selected values of the 𝜃𝜃, 𝜆𝜆 and 𝛼𝛼 
parameters. Hence, the EUEHL( 𝜃𝜃, 𝜆𝜆,𝛼𝛼 ) 
distribution shows unimodal, increasing, 
decreasing and U-shaped functions depending on 
the parameter values. 
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Figure 1. Pdf plots of the EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) distribution for selected values of the parameters. 

Also, the survival and the hazard rate functions of 
the EUEHL distribution can be obtained by 

𝑆𝑆(𝑥𝑥; 𝜃𝜃, 𝜆𝜆,𝛼𝛼) = 1 − �1 − �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼

             (7) 

and 

ℎ(𝑥𝑥;𝜃𝜃, 𝜆𝜆,𝛼𝛼)  =

 
2𝜃𝜃𝜆𝜆𝛼𝛼 𝑥𝑥𝜃𝜃−1

(1+𝑥𝑥𝜃𝜃)2
�1−𝑥𝑥

𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆−1

�1−�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼−1

1−�1−�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼             (8) 

3. Statistical Characteristics of the EUEHL 
Distribution 

3.1. Quantile Function 

The quantile function of the EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) 
distribution is given by 
 

(𝑢𝑢;𝜃𝜃, 𝜆𝜆,𝛼𝛼) = �1−�1−𝑢𝑢
1 𝛼𝛼⁄ �

1 𝜆𝜆⁄

1+�1−𝑢𝑢1 𝛼𝛼⁄ �
1 𝜆𝜆⁄ �

1 𝜃𝜃⁄

                      (9) 

Hence, the median of the EUEHL( 𝜃𝜃, 𝜆𝜆,𝛼𝛼 ) 
distribution is obtained as a function of the 𝜃𝜃, 𝜆𝜆,𝛼𝛼 
parameters by 

𝑄𝑄(0.5; 𝜃𝜃, 𝜆𝜆,𝛼𝛼) = �
1 − �1 − 0.51 𝛼𝛼⁄ �1 𝜆𝜆⁄

1 + (1 − 0.51 𝛼𝛼⁄ )1 𝜆𝜆⁄ �

1 𝜃𝜃⁄

 

Based on the quantile function given by Equation 
(9) the random number generation process for 
EUEHL distribution is given as follows: 

Step 1. Generate a uniform random number from 
the interval [0, 1]. 

Step 2. Run the quantile function in Equation (9) 
on the uniform random number in Step 1. 

3.2. Moments 

The moments are useful tools for comprehending 
the various features of a statistical distribution. In 
this context, we consider the moments of an 
EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼 ) random variable. Let 𝑋𝑋  be an 
EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) random variable with pdf given 
by Equation (6). Then, the 𝑟𝑟-th raw moment of 𝑋𝑋 
is  

𝐸𝐸(𝑋𝑋𝑟𝑟) = ∫ 2𝜃𝜃𝜆𝜆𝛼𝛼 𝑥𝑥𝑟𝑟+𝜃𝜃−1

(1+𝑥𝑥𝜃𝜃)2
�1−𝑥𝑥

𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆−1

�1 −1
0

�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼−1

𝑑𝑑𝑥𝑥                                                                          (10) 

for 𝑟𝑟 ∈ {1,2,3, … } . By using the binomial 
expansion of the last factor in the integrand in 
Equation (10), 

�1 − �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼−1

=  ∑ �𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗 �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆𝑗𝑗

∞
𝑗𝑗=0 (11) 
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we get 

𝐸𝐸(𝑋𝑋𝑟𝑟) =

∫ 2𝜃𝜃𝜆𝜆𝛼𝛼 𝑥𝑥𝑟𝑟+𝜃𝜃−1

�1+𝑥𝑥𝜃𝜃�
2 ∑ �𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗 �1−𝑥𝑥

𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆(1+𝑗𝑗)−1

∞
𝑗𝑗=0 𝑑𝑑𝑥𝑥1

0   

=

∑ 2𝜆𝜆𝛼𝛼 �𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗∞
𝑗𝑗=0 ∫ 𝜃𝜃 𝑥𝑥𝑟𝑟+𝜃𝜃−1

(1+𝑥𝑥𝜃𝜃)2
�1−𝑥𝑥

𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆(1+𝑗𝑗)−1

𝑑𝑑𝑥𝑥1
0   

                                                                                (12) 

Substituting 𝑢𝑢 = 𝑥𝑥𝜃𝜃  in Equation (12), the 
expectation becomes 

𝐸𝐸(𝑋𝑋𝑟𝑟) = ∑ 2𝜆𝜆𝛼𝛼 �𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗∞
𝑗𝑗=0 ∫ 𝑢𝑢𝑟𝑟 𝜃𝜃⁄ (1 −1

0

𝑢𝑢)𝜆𝜆(1+𝑗𝑗)−1 (1 + 𝑢𝑢)−𝜆𝜆(1+𝑗𝑗)−1𝑑𝑑𝑢𝑢                                       (13) 

By applying the equation 

∫ 𝑡𝑡𝜆𝜆−1(1 − 𝑡𝑡)𝜇𝜇−1(1 − 𝛽𝛽𝑡𝑡)−𝜈𝜈𝑑𝑑𝑡𝑡 =1
0

𝐵𝐵(𝜆𝜆, 𝜇𝜇) 𝐹𝐹12
 (𝜈𝜈, 𝜆𝜆; 𝜆𝜆 + 𝜇𝜇;𝛽𝛽)                                                  (14) 

provided in Gradshteyn and Ryzhik (2007), we 
obtain the 𝑟𝑟-th raw moment as 

𝐸𝐸(𝑋𝑋𝑟𝑟) = 2𝜆𝜆𝛼𝛼 ∑ (−1)𝑗𝑗 �𝛼𝛼−1𝑗𝑗 �
∞
𝑗𝑗=0 𝐵𝐵 �1 + 𝑟𝑟

𝜃𝜃
, 𝜆𝜆(1 + 𝑗𝑗)�  

× 𝐹𝐹12
 �𝜆𝜆(1 + 𝑗𝑗) + 1,1 +

𝑟𝑟
𝜃𝜃

; 1 +
𝑟𝑟
𝜃𝜃

+ 𝜆𝜆(1 + 𝑗𝑗);−1� 

where 

𝐵𝐵(𝑎𝑎, 𝑏𝑏) = ∫ 𝑡𝑡𝑎𝑎−1(1 − 𝑡𝑡)𝑏𝑏−1 𝑑𝑑𝑡𝑡1
0   

and 

𝐹𝐹12
 (𝑎𝑎, 𝑏𝑏; 𝑐𝑐; 𝑧𝑧) = ∑ (𝑎𝑎)𝑛𝑛(𝑏𝑏)𝑛𝑛

(𝑐𝑐)𝑛𝑛
⋅ 𝑧𝑧

𝑛𝑛

𝑛𝑛!
∞
n=0   

are the beta and Gauss hypergeometric functions, 
respectively, and (𝑎𝑎)𝑛𝑛 =  𝑎𝑎(𝑎𝑎 +  1)⋯ (𝑎𝑎 +
 𝑛𝑛 +  1). 

3.3. Moment Generating Function 

The moment generating function (mgf) provides 
an alternative route to analytical results rather 
than working directly with pdfs. Let 𝑋𝑋  be an 
EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) random variable with pdf given 
by Equation (6). Then, the mgf of 𝑋𝑋 is 

𝑀𝑀𝑋𝑋(𝑡𝑡) = ∫ 2𝜃𝜃𝜆𝜆𝛼𝛼 𝑥𝑥𝜃𝜃−1

(1+𝑥𝑥𝜃𝜃)2
�1−𝑥𝑥

𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆−1

�1 −1
0

�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼−1

𝑒𝑒𝑡𝑡𝑥𝑥 𝑑𝑑𝑥𝑥.  

Using the binomial expansion in Equation (11), 
we write 

𝑀𝑀𝑋𝑋(𝑡𝑡) =

2𝜆𝜆𝛼𝛼 ∑ ��𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗 ∫ 𝜃𝜃𝑥𝑥𝜃𝜃−1

(1+𝑥𝑥𝜃𝜃)2
�1−𝑥𝑥

𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆(1+𝑗𝑗)−1

𝑒𝑒𝑡𝑡𝑥𝑥 𝑑𝑑𝑥𝑥1
0 �∞

𝑗𝑗=0      

                                                                                 (15) 

By the binomial expansion of 𝑒𝑒𝑡𝑡𝑥𝑥  in 
Equation(15), we get 

𝑀𝑀𝑥𝑥(𝑡𝑡) =

2𝜆𝜆𝛼𝛼 ∑ ��𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗 ∫ 𝜃𝜃𝑥𝑥𝜃𝜃−1

�1+𝑥𝑥𝜃𝜃�
2 �

1−𝑥𝑥𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆(1+𝑗𝑗)−1

∑ 𝑡𝑡𝑖𝑖𝑥𝑥𝑖𝑖

𝑖𝑖!
∞
𝑖𝑖=0  𝑑𝑑𝑥𝑥1

0 �∞
𝑗𝑗=0   

=

2𝜆𝜆𝛼𝛼 ∑ ��𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗 ∑ �𝑡𝑡
𝑖𝑖

𝑖𝑖! ∫
𝜃𝜃𝑥𝑥𝜃𝜃+𝑖𝑖−1

�1+𝑥𝑥𝜃𝜃�
2 �

1−𝑥𝑥𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆(1+𝑗𝑗)−1

 𝑑𝑑𝑥𝑥1
0 �∞

𝑖𝑖=0 �∞
𝑗𝑗=0      

                                                                               (16) 

Applying Equation (14) after the transformation 
𝑢𝑢 = 𝑥𝑥𝜃𝜃 in Equation (16), we obtain the mgf of the 
random variable having the distribution 
EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) as 

𝑀𝑀𝑋𝑋(𝑡𝑡) = 2𝜆𝜆𝛼𝛼 ∑ ��𝛼𝛼−1𝑗𝑗 � (−1)𝑗𝑗 ∑ �𝑡𝑡
𝑖𝑖

𝑖𝑖!
𝐵𝐵 �1 +∞

𝑖𝑖=0
∞
𝑗𝑗=0

𝑖𝑖
𝜃𝜃

, 𝜆𝜆(1 + 𝑗𝑗)� 𝐹𝐹12
 �𝜆𝜆(1 + 𝑗𝑗) + 1,1 + 𝑖𝑖

𝜃𝜃
; 1 + 𝑖𝑖

𝜃𝜃
+ 𝜆𝜆(1 +

𝑗𝑗);−1���  

= 2𝜆𝜆𝛼𝛼 ∑ ∑ ��𝛼𝛼−1𝑗𝑗 �
(−1)𝑗𝑗𝑡𝑡𝑖𝑖

𝑖𝑖!
𝐵𝐵 �1 + 𝑖𝑖

𝜃𝜃
, 𝜆𝜆(1 +∞

𝑖𝑖=0
∞
𝑗𝑗=0

𝑗𝑗)� 𝐹𝐹12
 �𝜆𝜆(1 + 𝑗𝑗) + 1,1 + 𝑖𝑖

𝜃𝜃
; 1 + 𝑖𝑖

𝜃𝜃
+ 𝜆𝜆(1 + 𝑗𝑗);−1��  

3.4. Order Statistics 

In statistical modeling, information obtained from 
the ordered values of the sample can be useful. 
Thus, it is important to obtain the order statistics 
of the distributions. In this section, the order 
statistics of the EUEHL distribution will be 
provided. Consider 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  be a random 
sample from EUEHL( 𝜃𝜃, 𝜆𝜆,𝛼𝛼 ) distribution and 
𝑋𝑋(1),𝑋𝑋(2), … ,𝑋𝑋(𝑛𝑛) represents the associated order 
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statistics. The pdf of the 𝑟𝑟th order statistics 𝑌𝑌 =
𝑋𝑋(𝑟𝑟) are obtained by 

𝑓𝑓𝑌𝑌(𝑥𝑥) = 2𝜃𝜃𝜆𝜆𝛼𝛼 𝑛𝑛!
(𝑟𝑟−1)!(𝑛𝑛−𝑟𝑟)!

⋅ 𝑥𝑥𝜃𝜃−1

�1+𝑥𝑥𝜃𝜃�
2 �

1−𝑥𝑥𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆−1

�1 −

�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼𝑟𝑟−1

�1 − �1 − �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼

�
𝑛𝑛−𝑟𝑟

  

In addition, the pdf of the smallest and largest 
order statistics are given, respectively, as the 
following: 

𝑓𝑓𝑋𝑋(1)(𝑥𝑥) = 2𝑛𝑛𝜃𝜃𝜆𝜆𝛼𝛼 𝑥𝑥𝜃𝜃−1

�1+𝑥𝑥𝜃𝜃�
2 �

1−𝑥𝑥𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆−1

�1 −

�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼−1

×  �1 − �1 − �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼

�  

and 

𝑓𝑓𝑋𝑋(𝑛𝑛)(𝑥𝑥) = 2𝑛𝑛𝜃𝜃𝜆𝜆𝛼𝛼 𝑥𝑥𝜃𝜃−1

�1+𝑥𝑥𝜃𝜃�
2 �

1−𝑥𝑥𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆−1

�1 −

�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆
�
𝛼𝛼𝑛𝑛−1

  

3.5. Stress-Strength Reliability 

Given the stress and strength random variables, 𝑌𝑌 
and 𝑋𝑋, the stress-strength reliability is defined as 
𝑅𝑅 = 𝑃𝑃(𝑌𝑌 < 𝑋𝑋) . In this section, we obtain the 
stress-strength reliability for the EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) 
model. 

Proposition 1. Given 𝑌𝑌 and 𝑋𝑋 independent stress 
and strength random variables following EUEHL 
distribution with parameters (𝜃𝜃, 𝜆𝜆1,𝛼𝛼1)  and 
(𝜃𝜃, 𝜆𝜆2,𝛼𝛼2) , respectively, the stress-strength 
reliability is 

𝑅𝑅 = 𝛼𝛼2Γ(𝛼𝛼2)∑ (−1)𝑗𝑗 �𝛼𝛼1𝑗𝑗 �
Γ(1+𝑗𝑗𝜆𝜆1 𝜆𝜆2⁄ )

Γ(1+𝛼𝛼2+𝑗𝑗𝜆𝜆1 𝜆𝜆2⁄ )
∞
𝑗𝑗=0   

where 𝜆𝜆1 > 0  and 𝜆𝜆2 > 0 , Γ  is the gamma 
function and 𝛾𝛾(𝑎𝑎, 𝑥𝑥) = ∫ 𝑡𝑡𝑎𝑎−1𝑥𝑥

𝑎𝑎 𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡  is the 
incomplete gamma function. 

Proof: By definition, stress-strength reliability 
can be written as 

𝑅𝑅 = ∫ 𝑃𝑃(𝑌𝑌 < 𝑋𝑋 ∣ 𝑋𝑋 = 𝑥𝑥)𝑓𝑓𝑋𝑋(𝑥𝑥) 𝑑𝑑𝑥𝑥1
0   

= ∫ 2𝜃𝜃𝜆𝜆2𝛼𝛼2
𝑥𝑥𝜃𝜃−1

�1+𝑥𝑥𝜃𝜃�
2 �

1−𝑥𝑥𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆2−1

�1 −1
0

�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆1
�
𝛼𝛼1

�1 − �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆2
�
𝛼𝛼2−1

 𝑑𝑑𝑥𝑥  

By substituting 𝑡𝑡 = �1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆2

 and applying the 

binomial expansion �1 − 𝑡𝑡𝜆𝜆1 𝜆𝜆2⁄ �
𝛼𝛼1 =

∑ �𝛼𝛼1𝑗𝑗 � (−1)𝑗𝑗𝑡𝑡𝑗𝑗𝜆𝜆1 𝜆𝜆2⁄∞
𝑗𝑗=0 , we obtain the stress-

strength reliability as  

𝑅𝑅 = 𝛼𝛼2 ∫ (1 − 𝑡𝑡)𝛼𝛼2−1�1 − 𝑡𝑡𝜆𝜆1 𝜆𝜆2⁄ �𝛼𝛼11
0 𝑑𝑑𝑡𝑡  

= 𝛼𝛼2 ∑ ��𝛼𝛼1𝑗𝑗 � (−1)𝑗𝑗𝑡𝑡𝑗𝑗𝜆𝜆1 𝜆𝜆2⁄ ∫ 𝑡𝑡𝑗𝑗𝜆𝜆1 𝜆𝜆2⁄ (1 −1
0

∞
𝑗𝑗=0

𝑡𝑡)𝛼𝛼2−1 𝑑𝑑𝑡𝑡�  

= 𝛼𝛼2Γ(𝛼𝛼2)∑ �𝛼𝛼1𝑗𝑗 � (−1)𝑗𝑗 Γ(1+𝑗𝑗𝜆𝜆1 𝜆𝜆2⁄ )
Γ(1+𝛼𝛼2+𝑗𝑗𝜆𝜆1 𝜆𝜆2⁄ )

∞
𝑗𝑗=0   

3.6. Maximum Likelihood Estimation 

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  be an identically independent 
sample from EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) distribution, then, 
the log-likelihood function is written as 

ℓ(𝜃𝜃, 𝜆𝜆,𝛼𝛼) = 𝑛𝑛 log 2 + 𝑛𝑛 log𝜃𝜃 + 𝑛𝑛 log 𝜆𝜆 + 𝑛𝑛 log𝛼𝛼 +
(𝜃𝜃 − 1)∑ log 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 2∑ log�1 + 𝑥𝑥𝑖𝑖𝜃𝜃�𝑛𝑛
𝑖𝑖=1 + (𝜆𝜆 −

1)∑ log �1−𝑥𝑥𝑖𝑖
𝜃𝜃

1+𝑥𝑥𝑖𝑖
𝜃𝜃�𝑛𝑛

𝑖𝑖=1 + (𝛼𝛼 − 1)∑ log�1 − �1−𝑥𝑥𝑖𝑖
𝜃𝜃

1+𝑥𝑥𝑖𝑖
𝜃𝜃�

𝜆𝜆
�𝑛𝑛

𝑖𝑖=1   

Differentiating the log-likelihood function with 
respect to the parameters 𝜃𝜃, 𝜆𝜆 and 𝛼𝛼, we obtain the 
log-likelihood equations, respectively, as 

𝜕𝜕ℓ
𝜕𝜕𝜃𝜃

= 𝑛𝑛
𝜃𝜃

+ ∑ log 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 2∑ 𝑥𝑥𝑖𝑖

𝜃𝜃 log 𝑥𝑥𝑖𝑖
1+𝑥𝑥𝑖𝑖

𝜃𝜃
𝑛𝑛
𝑖𝑖=1 + (𝜆𝜆 −

1)∑ −2𝑥𝑥𝑖𝑖
𝜃𝜃 log 𝑥𝑥𝑖𝑖

1−𝑥𝑥𝑖𝑖
2𝜃𝜃

𝑛𝑛
𝑖𝑖=1   

 +(𝛼𝛼 − 1)∑ −2𝜆𝜆𝑥𝑥𝑖𝑖
𝜃𝜃 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖�1−𝑥𝑥𝜃𝜃�

𝜆𝜆

�1−𝑥𝑥𝑖𝑖
2𝜃𝜃���1−𝑥𝑥𝜃𝜃�

𝜆𝜆
−�1+𝑥𝑥𝜃𝜃�

𝜆𝜆
�

𝑛𝑛
𝑖𝑖=1 ,                    (17) 

𝜕𝜕ℓ
𝜕𝜕𝜆𝜆

= 𝑛𝑛
𝜆𝜆

+ ∑ log �1−𝑥𝑥𝑖𝑖
𝜃𝜃

1+𝑥𝑥𝑖𝑖
𝜃𝜃�𝑛𝑛

𝑖𝑖=1 + (𝛼𝛼 −

1)∑ �1−𝑥𝑥𝜃𝜃�
𝜆𝜆
�log�1−𝑥𝑥𝜃𝜃�−log�1+𝑥𝑥𝜃𝜃��

��1−𝑥𝑥𝜃𝜃�
𝜆𝜆
−�1+𝑥𝑥𝜃𝜃�

𝜆𝜆
�

𝑛𝑛
𝑖𝑖=1              (18) 

and 

𝜕𝜕ℓ
𝜕𝜕𝛼𝛼

= 𝑛𝑛
𝛼𝛼

+ ∑ log�1− �1−𝑥𝑥𝑖𝑖
𝜃𝜃

1+𝑥𝑥𝑖𝑖
𝜃𝜃�

𝜆𝜆
�𝑛𝑛

𝑖𝑖=1           (19) 



 
Exponentiated UEHL Distribution: Properties and Applications                  Genç and Özbilen / RTEU-JSE 4(2) 232-241 2023 
 

238 
 

Since Equations (17), (18) and (19) do not have a 
closed-form solution, some iterative methods are 
required to get the MLE estimates of the 
parameters of the EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) model. Here, 
we use the optim procedure in 𝑅𝑅  to obtain the 
solution of the underlying equation system. 

4. Simulation Study 

In this section, we carry out a simulation study to 
investigate the properties of the MLE, which we 
handle in detail in Section 3. Table 1 shows the 
biases and mean squared errors (MSEs) of the 
parameter estimates based on 5000 replications of 
the experiments for several values of the 
distribution parameters 𝜃𝜃, 𝜆𝜆  and 𝛼𝛼  and sample 
size, 𝑛𝑛. According to the outputs in Table 1, the 
MLEs have positive or negative bias depending 
on the distribution parameters and sample sizes. 
Also, the parameter estimates are asymptotically 
unbiased. Furthermore, the MSEs of the MLEs 
decrease to zero as the sample size increases as 
expected 

5. Real Data Application 

In this section, we consider the flexibility 
performance of the EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) distribution 
based on a real data application. The data is called 
the reservoir data that is obtained from the 
monthly water capacity of the Shasta Reservoir in 
California (Nadar et al., 2013). We compare the 
performance of the EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) distribution 

with the Weibull, Beta, Kumaraswamy 
(Kumaraswamy, 1980), UEHL, and DUS-UEHL 
(Genç and Özbilen, 2023) distributions. The pdfs 
of the distributions that are used for comparison 
are given as follows: 

Weibull distribution 

𝑓𝑓𝑊𝑊𝑊𝑊𝑖𝑖𝑏𝑏𝑢𝑢𝑙𝑙𝑙𝑙(𝑥𝑥; 𝜃𝜃, 𝜆𝜆) = 𝜃𝜃
𝜆𝜆
�𝑥𝑥
𝜆𝜆
�
𝜃𝜃−1

𝑒𝑒−(𝑥𝑥 𝜆𝜆⁄ )𝜃𝜃 ,   𝜃𝜃, 𝜆𝜆 > 0  

Beta distribution 

𝑓𝑓𝐵𝐵𝑊𝑊𝑡𝑡𝑎𝑎(𝑥𝑥; 𝜃𝜃, 𝜆𝜆) = 1
𝐵𝐵(𝜃𝜃,𝜆𝜆)

𝑥𝑥𝜃𝜃−1(1 − 𝑥𝑥)𝜆𝜆−1,   𝜃𝜃, 𝜆𝜆 > 0  

Kumaraswamy distribution 

𝑓𝑓𝐾𝐾𝐾𝐾(𝑥𝑥;𝜃𝜃, 𝜆𝜆) = 𝜃𝜃𝜆𝜆𝑥𝑥𝜃𝜃−1�1 − 𝑥𝑥𝜃𝜃�
𝜆𝜆−1,   𝜃𝜃, 𝜆𝜆 > 0  

DUS-UEHL distribution 

𝑓𝑓𝐷𝐷𝑈𝑈𝐷𝐷−𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑥𝑥) =

1
𝑊𝑊−1

2𝜆𝜆𝜃𝜃𝑥𝑥𝜃𝜃−1 �1−𝑥𝑥
𝜃𝜃�

𝜆𝜆−1

�1+𝑥𝑥𝜃𝜃�
𝜆𝜆+1 𝑒𝑒

1−�1−𝑥𝑥
𝜃𝜃

1+𝑥𝑥𝜃𝜃
�
𝜆𝜆

,   𝜃𝜃, 𝜆𝜆 > 0  

We employ the maximum likelihood estimation 
method to obtain the parameter estimates of the 
underlying distributions. To assess the goodness 
of fits of the models, we used the Kolmogorov-
Smirnov test statistic (K-S (stat)) and associated 
𝑝𝑝-value (K-S (p-value)). We report the Akaike 
information criterion (AIC) and Bayesian 
information criterion (BIC) for comparison of the 
models. 

Table 1. Bias and MSEs of MLEs for selected parameter values. 

    Bias MSE 

𝜽𝜽 𝝀𝝀 𝜶𝜶 𝒏𝒏 𝜽𝜽� 𝝀𝝀�  𝜶𝜶� 𝜽𝜽� 𝝀𝝀�  𝜶𝜶� 
2 2 0.7 50 -0.14998 0.13959 0.49978 0.77478 0.40058 0.85349 
   100 -0.15627 0.03831 0.32564 0.44643 0.15492 0.43831 
   200 -0.30196 -0.05485 0.27518 0.28597 0.07120 0.17299 
   300 -0.05199 0.01988 0.14195 0.28219 0.06269 0.15892 

0.8 1.5 2.5 50 0.50013 0.14801 -0.81067 0.66485 0.16213 1.21904 
   100 0.43258 0.07978 -0.88063 0.42064 0.06062 1.10793 
   200 0.41690 0.04524 -1.08156 0.21043 0.02225 1.25049 
   300 0.34341 0.03793 -0.85480 0.22409 0.01507 0.94521 

1.5 0.8 2 50 0.37225 0.00734 -0.16906 0.61365 0.01855 0.41367 
   100 0.30107 -0.00611 -0.24477 0.30830 0.00855 0.25049 
   200 0.20705 -0.00577 -0.17520 0.17167 0.00407 0.21506 
   300 0.29907 -0.01384 -0.32148 0.20349 0.00254 0.17557 
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AIC and BIC are computed as 

AIC = 2𝑘𝑘 − 2ℓ(𝜃𝜃, 𝜆𝜆) and BIC = 𝑘𝑘 log𝑛𝑛 − 2ℓ(𝜃𝜃, 𝜆𝜆) 

where 𝑘𝑘  is the number of parameters, 𝑛𝑛  is the 
sample size, and ℓ is the maximum value of the 
likelihood function for the underlying 
distribution. 

The parameter estimates, comparison criteria and 
goodness-of-fit test results of all the models for 
reservoir data are reported in Table 2. Based on 
the K-S (stat) and K-S (p-value) given in Table 2, 
the compared distributions are appropriate for 
modeling the dataset. Table 2 shows that the 
EUEHL(𝜃𝜃, 𝜆𝜆,𝛼𝛼) model yields the smallest −2ℓ, 
AIC and BIC followed by the DUS-UEHL(𝜃𝜃, 𝜆𝜆) 
model for the data set. Therefore, the EUEHL 
(𝜃𝜃, 𝜆𝜆,𝛼𝛼)  distribution outperforms the compared 
distributions in modeling the reservoir data. We 

give the histogram of the reservoir data set and 
plots of the fitted UEHL, DUS-UEHL and 
EUEHL models in Figure 2 for illustrative 
purposes. 

 
Figure 2. The histogram of the reservoir data set 
and the fitted models. 

 

 

Table 2. Parameter estimates, comparison criteria and goodness-of-fit test results for reservoir data. 

Distribution 𝜽𝜽 𝝀𝝀 𝜶𝜶 AIC BIC −𝟐𝟐𝟐𝟐 K-S (stat) 
K-S  

(p-val) 

Weibull 7.299 0.775 - -20.5347 -18.5432 -24.5347 0.2220 0.2396 

Beta 7.316 2.910 - -21.1238 -19.1324 -25.1238 0.2359 0.1834 

Kw 6.348 4.489 - -22.9494 -20.9580 -26.9494 0.2209 0.2447 

UEHL 6.901 2.888 - -21.2699 -19.2784 -25.2699 0.2254 0.2248 

DUS-UEHL 6.432 3.268 - -23.0543 -21.0629 -27.0543 0.2046 0.3267 

EUEHL 25.390 32.859 0.202 -27.4472 -24.4600 -33.4472 0.2087 0.3044 

 
6. Conclusions  

In this study, we propose the EUEHL distribution 
based on the exponentiated transformation of the 
UEHL distribution, which is convenient for 
modeling data with values in unit intervals. Some 
analytical properties including structural and 
reliability measures of the distribution along with 
estimation issues are discussed. Simulation 
studies are conducted to evaluate the performance 
of the maximum likelihood method used in 
parameter estimation. The real data analysis on a 
record data with values in unit interval reveals that 
the EUEHL model performs better on the data 
than the other well-known models in terms of 
comparison criteria.  

The idea of obtaining the EUEHL distribution can 
be applied to various G-Family distributions such 
as the Marshall-Olkin and McDonald 
distributions by considering the UEHL 
distribution as the baseline distribution and, 
hence, can be used to form new statistical 
distributions appropriate for various real-life data 
sets. 
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