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1. INTRODUCTION

ABSTRACT

A cruise ship cabin can be outlined using a complex bill of materials, components and sub-as-
semblies properly interconnected, considering its functional nature as a whole. In this regard,
modern scientific achievements have allowed the development of so-called smart materials.
The research activity has started with a scoping review of the currently constituent finishing,
as well as insulation materials installed on-board. The assessment of smart and high-perfor-
mance solutions is aimed of optimizing thickness, weight, noise and vibrations parametres.
Actual cases under analysis related to finishing materials include performance paints and
inks, fabrics with antibacterial and water-repellent properties which, together with a protec-
tive action, can generate electricity if exposed to light. Some polymeric fibres can thermally
modify their sensitivity to humidity and allow for better adaptability and reversible shrinkage,
self-healing surfaces regenerate after the occurrence of a crack. Active safety, failure preven-
tion, and comfort criteria on board passenger ships are the main focus of many of the techno-
logical applications under investigation. It is necessary for them to evaluate the compatibility
with the marine environment, durability, and compliance with the rules.

Cite this article as: Peri AD. Smart materials finishing and insulation solutions applied to the
interior design of a cruise ship cabin. Seatific 2023;3:2:89-110.

simultaneous presence is determined by the design need to
integrate the new paradigm with a knowledge that has been

The current scoping review activity, connected to the
doctoral thesis currently under development, is focused on
the interior design of cruise ships, which have the common
denominator of implementing high-performance (Wang,
Tang, 2022) and smart materials which could increase the
overall comfort performance, energy optimization and
compliance with safety classification rules.

The suggested taxonomy (Goldade et al., 2015) includes,
without any formal disconnection, currently used and
potential applicable achievements, with an integration of
innovative technologies intrinsically linked to the designed
and molecular-controlled substance constitution (Bengisu,
Ferrara, 2018) as in the case of smart materials. The
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diachronically consolidated (Peijnenburg et al., 2021). The
regulatory framework currently in use in the field of design
will introduce the most common insulation materials. High
performance and smart materials solutions principles are
described, along with a list of tests used to assess their
properties and possible, future applications on board.

2. THE ROLE OF ACOUSTIC AND THERMAL
INSULATION IN THE SHIPBUILDING INDUSTRY

Typical noises and vibrational stresses associated with cruise
ships are generated by the rushing of water against the hull
and related to the operational profile of engines, propellers,
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machinery and air conditioning, as well as sounds generated
by onboard activities. These are transferred throughout
the structure and spread towards the accommodation
areas. Acoustic insulation applications (Adam, 2016) have
significant impact in reducing noise levels, minimizing
reverberation, eliminating echoes, and improving speech
clarity. A proper thermal insulation (Lakatos, 2022), on
the other hand, is performed to control and maintain the
design temperature within the ship's interior spaces that
is, minimizing the transfer of heat between the interior
and exterior environments. This would result in an overall
increase of the energy efficiency by reducing the reliance on
heating or cooling systems.

Thermoacoustic insulation plays a crucial role in ensuring
the comfort and safety of passengers and crew on cruise
ships accommodation area, especially within cabins.

These latter are regulated by the international SOLAS
Convention (Safety of Life at Sea). Is has been issued by the
International Maritime Organization (IMO), a specialized
agency of the United Nations responsible for regulating
shipping on a global scale. The first Convention was
adopted in 1914 (after the Titanic disaster) and the current
version entered into force in 1974. SOLAS primary goal is
to establish minimum requirements for ship construction,
equipment, and operation, compatible with their safety.
Merchant ships, like cruise ships, are required to comply
with these strict safety standards.

It is divided into fourteen chapters and rules that are
comprehensively addressed to distinct aspects of safety
in the specific environment of ships. Chapter II-2, titled
"Construction - Fire protection, fire detection and
fire extinction,” specifically focuses on fire protection,
detection and extinction. The products referenced in this
section, including materials and components used in ship
construction (bulkheads, decks, fire doors, fire-resistant
closures, upholstered furniture, bed components, lining

materials, and curtains) have to withstand international
requirements for laboratory testing, type-approval and fire
test provided by the International Code for Application of
Fire Test Procedures, 2010 (2010 FTP Code).

In particular, non-combustibility tests and substance
classification are performed according to IMO 2010 FTP Code
Part 1, IMO-Resolution MSC.307(88). Surface flammability
ones are compliant to Part 5 and fire tests on A and B
divisions are achieved in conformity to Part 3. Furthermore,
there are threshold values related to the transmission of
noise and vibrations established by the ISO 20283-5:2016
(Measurement of vibration on ships — Part 5: Guidelines for
measurement, evaluation and reporting of vibration about
habitability on passenger and merchant ships).

To highlight the potential localized interventions, it is
important to briefly describe the composition of a standard
cabin module, which is comprised of steel ceiling and wall
panels (in most cases galvanized) or aluminium alloy.
The internal face of each of them is finished by applying
decorative coatings. Rock wool is the traditional material
used to insulate and fire-proof the external facing. Bulkheads
between cabins will be comprised of two adjacent panels,
with a small hollow space between them. In the same way,
if a passenger cabin is adjacent to a public passageway, the
tools and methods of partitioning and finishing will be
similar since the corridors too are assembled with similar
prefabricated panel elements.

2.1. Thermo-acoustic material selection outlines

The research activity has started with a classification of the
main insulating materials applied in the shipbuilding sector,
considering the constituent type of the fibres (Fig. 1).

A main difference between Natural-based and
Petrolchemical materials is taken into account, each of
them further divided into organic (Table 1, 2) and inorganic
groups (Table 3, 4).

Natural-based

o Organic
« Cellulose

¢ Expanded Cork

o Inorganic
* Glass Wool
* Mineral Wool
* Vermiculite

« Calcium Silicate

Thermal and Acoustical Insulating Materials

Petrolchemical
o Organic
* Melamine Foam (MF)
¢ Phenolic Foam (PF)
¢ Polycarbonate (PC)
* Polyethylene Terephthalate
Foam (PET)

Polymethyl Methacrylate
(PMMA)

Polyimide Foam (PI)

* Polystyrene Foam (PS)
Polyurethane Foam (PUR)
Polyvinyl Chloride (PVC)

.

.

o Inorganic
+ Oxidized Poly-Acrylonitrile (OPAN)

Figure 1. Thermoacoustic material classification.
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o 8 It could be possible thanks to the application of Granta
= f - c::; EduPack Software, currently used in an interdisciplinary
S §z matter in the academic field to perform complex analysis
é 75 ug £ which can synoptically consider engineering, design and
& g % S sustainable development aspects. The user can perform
< Eas analysis based on three stages. Level 1 database contains

an introductory approach of more than 60 records or

i common engineering materials (metals, plastics, ceramics,
E 23 glasses, composites and natural materials). A limited set of
= ﬁo g attributes is linked to records for processes that are used to

shape, join or finish them.

Level 2 contains a comprehensive set of mechanical,
thermal and electrical properties, as well as Eco Properties
and Durability Information, for more than 100 common
materials. The materials and the content of the records enable
a wide range of selection studies and environmental audits of
products. The process records include a simple cost model
that allows cost-comparisons between alternative processes.

Acoustic
velocity
[m/s]

Belonging to this level is the Building Environment
repository, which contains more than 120 materials
commonly used in Architectural applications. A set of
mechanical, thermal, electrical, hygro-thermal, acoustic is
provided, along with durability information.

Specic heat
capacity
[J/kg°C]
700-750

Level 3 contains a comprehensive set of the previous
data, together with mechanical, optical, magnetic and
environmental properties for over 4,000 engineering
materials. Eco Design database also encompasses
environmental properties such as whether a material
is restricted, NOx and SOx values, water usage, carbon
footprint, embodied energy, and end of life information.

[W/m°C]
0.031

Thermal
conductivity

Density
[kg/m’]
100

A crossed use of the second and the third level, together witha
scoping review activity of the cutting-edge solutions actually
present on the market and the support of the scientific
literature, helped to create the material classification.

It should be stressed that specific heat and thermal
conductivity are related to an ambient temperature set at
23°C. In order to further characterise each substance, the
acoustic velocity variable (m/s) has been used, as measure
of the speed of longitudinal sound waves in a solid. It is
calculated as follows (Equation 1):

Technical

description

Material derived from
polyacrylonitrile polymer.

It undergoes preoxidation and
stabilization processes to
enhance its thermal stability
and fire resistance

y= \/% Equation 1. Acoustic velocity formula

where E is Young Modulus (Pa) and p is the material density
(Kg/m?).

The speed of sound in a solid material can be used as a
further indicator of its insulating properties. It depends on
the density and compressibility of the matter through which
it propagates. In general, in denser and more rigid materials,
such as metals, the speed of sound is higher, while in less
dense and more flexible ones, such as thermal insulators
like wool, fiberglass and foam, the speed of sound is slower.

The parameters considered are related to the substances
used and not to the finishes applied, as they could undergo
variations in their weight, depending on the different
thicknesses applied and their relative stratigraphy. In many

Table 4. Petrochemical inorganic materials
[6] Reference values for Zoltex Carbonized PX 35 felt

Type

Oxidized Poly-Acrylonitrile (OPAN) [6]
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Table 5. Aerogels test methods

Testing category Test method

Description

References

Thermal conductivity Cryogenics test laboratory

Non-destructive method
for mechanical properties

Diametral compression test

Mechanical properties
of silica aerogels

Micro-indentation technique

Dynamic compressive test

Fracture toughness tests Single-edge-notch bending

(SENB)
Torsional oscillator
measurements

Density measurement

Hydrophobicity and
Hydrophilicity

Contact Angle Measurement

Aging and Stability Tests Long-Term Stability

Environmental Resistance Optical absorption -

UV-Vis tests

Used to determine apparent thermal
conductivity (k-value) of thermal
insulation systems

Application of stress load or force
to the point where a material object
is split in half (down the diameter
of the object)

The sample material is indented using
a sharp, pointed probe, with a controlled
force application

Tests of cross-linked silica aerogel
using a split Hopkinson pressure bar
(SHPB) for Poisson's ratio determination

Specimen is subjected to three-point
bending loads

Body suspended by a thread or wire
which twists first in one direction and
then in the reverse direction, in the
horizontal plane

Determine the contact angle of water
on the aerogel surface to assess its
hydrophobic or hydrophilic properties.
Subject the aerogel to aging tests to
simulate real-world conditions and
evaluate its stability over time.

Proton irradiation tests Test the

aerogel's resistance to ultraviolet
(UV) radiation

Johnson et al. (2010)

Haj-Ali et al. (2016)

Moner-Girona et al.
(1999)
Luo et al. (2006)

Ehrburger-Dolle et al.
(1995)

Crowell et al. (1990)

Slosarczyk (2021)

Perego (2008)

Wau et al. (2020)

solutions on the market these materials often constitute the
core of sandwich and honeycomb compounds to combine
the aforementioned properties with structural capacity.

3. SMART AND HIGH-PERFORMANCE
MATERIALS FOR ADVANCED INSULATION
AND FINISHING SOLUTIONS

They are related but distinct concepts in the field of materials
science (Ritter, 2006). Smart materials (SM) are known for
their adaptability and responsiveness to external stimuli,
allowing them to change their properties or behaviour
based on variable conditions, examples of which include
Shape Memory Alloys and Self-Healing Polymers. On the
other hand, high-performance materials (HPM) stand
out in terms of their intrinsic properties, such as strength,
durability, or conductivity, and are chosen for applications
where outstanding, specified characteristics are crucial.
While these categories are different in functionality, it's
possible for some materials to belong to both if they
combine high-performance attributes with adaptive
capabilities (Addington, Schodek, 2005).

3.1. Aerogels (HPM)

Aerogels are highly porous, ultra-lightweight substances with
very low thermal conductivity (0.017 W/m°C) (Aegerter et
al,, 2011), primarily composed of air. They are manufactured
through a supercritical drying process that removes the liquid
content of a gel. Various materials have been implemented,

with silica being the most commonly used (Pierre, Anderson,
2011). Historically, aerogels production has been relatively
costly, constraining its usage to advanced aerospace operations
(Jinetal., 2023). However, as manufacturing expenses decline,
they are finding their way into a wider array of applications,
including their incorporation into composite materials such
as laminated glazing for thermal insulation or integration into
blankets for heat protection and acoustic absorption.

The following table show the test methods aimed at
characterizing aerogels main properties (Table 5).

In cruise ship design, suitable features and applications can
include:

o Internal cabin insulation: it can be used aerogels low
thermal conductivity helps maintain comfortable inside
temperatures, reducing the reliance on heating and
cooling systems. This can lead to energy savings and
lower operational costs;

o Energy-Efficient Windows: aerogels can be integrated
into windows frames to enhance their thermal insulation
properties. This helps reduce heat gain during sunny
days and heat loss during cold weather, contributing to
energy savings in the ship's overall HVAC system;

o Soundproofing: in addition to thermal insulation,
aerogels can provide soundproofing benefits. Installing
aerogel-based insulation in cabin walls and ceilings
can help minimize noise transfer between cabins and
common areas;
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Table 6. Vacuum Insulation Panels (VIPs) test methods

Testing category Test method Description References
Standard specification for ASTM C1484-10(2018) Specification covers the general Nikafkar and Berardi
Vacuum Insulation Panels requirements for vacuum insulation (2020)

panels
Thermal testing DIN EN 12667:2001 Determination of thermal resistance Davraz and Bayrakei

(2013)

Fire test method ISO 834-11:2014 One side of the specimen is exposed Y. U. Kim et al.

to the furnace and measured according (2021)

to its appearance and ignition

Insulation performance ASTM C 1363
test
Airtightness test ASTM E 783

Temperatures of the constant temperature
chamber and the low are measured

Pressure of the test specimen is increased

in steps and the airtightness is measured
until the flow rate becomes stable

International Energy
Agency (IEA) - Annex 39

Cold Climate Housing
Research Center, Mobile
Test Lab (CHRC’s MTL)

Aging and Durability
Testing

Thermal cycling and humidity exposure
to assess their durability over time

Used to evaluate different wall
configurations for durability under
high interior moisture loads.

J. Kim et al. (2017)

Garber-Slaght and
Craven (2012)

+ Fire Safety: aerogels are non-combustible materials,
which is crucial for safety in cruise ship design;

o Space Constraints: the thin profile is helpful in cruise
ship design, where space is often limited. It allows for
effective insulation without compromising cabin space
or vessel design.

3.2. Vacuum Insulation Panels (VIPs) - (HPM)

VIPs consist of a core material (typically a rigid, porous
material like fiberglass or silica aerogel), enclosed in a
vacuum-sealed panel, which minimizes heat transfer by
eliminating air molecules. They provide high insulation
efficiency in a thin profile, making them suitable for space-
constrained applications (Baetens, 2010). Here's how VIPs
work and why they can be effective also in the maritime field:

o Vacuum Core: core material is placed in a vacuum
or near-vacuum environment, which reduces the
conduction and convection of heat;

o Airtight Encapsulation: core material is sealed within
a gas-tight envelope made of high-quality barrier
materials, often metallic or laminated films. This
envelope prevents air from entering and disrupting the
vacuum, ensuring long-term insulation performance;

« Longevity: if properly maintained and protected from
physical damage or perforations, VIPs can maintain
their insulation properties for an extended period,
making them a durable and cost-effective insulation
solution over the long term.

The following table show the test methods aimed at
characterizing VIPs main properties (Table 6).

3.3. Phase Change Materials (PCMs) - (SM)

This category includes all smart materials capable of
undergoing reversible changes in response to external
stimuli, in particular they exhibit phase changes dependent
on temperature (Delgado et al.,, 2018). In the construction

and architecture sectors, the term "PCM" has gained
relevance concerning materials and products utilized for
temperature regulation purposes. PCMs store and release
heat energy during phase transitions, such as from solid
to liquid or vice versa. They can absorb excess heat during
the day and release it at night, helping to maintain a stable
indoor temperature. PCMs can be embedded in insulation
materials or used as standalone panels.

The following table show the test methods aimed at
characterizing PCMs main properties (Table 7).

Potential applications aboard cruise ships may include:

+ Temperature Control: PCMs are effective at stabilizing
indoor temperatures by absorbing and releasing heat
during phase transitions. In cruise ship cabins, PCMs can
absorb excess heat during the day when the sun is intense
and release it at night when temperatures drop, ensuring a
consistent and comfortable environment for passengers;

o Space Efficiency: they are typically applied as thin layers
within walls or ceilings, making them ideal for cruise ship
cabins with limited space. Their slim profile allows for
efficient insulation without sacrificing valuable cabin space;

« Condensation Prevention: PCMs can help prevent
condensation on cabin surfaces, which is essential
for maintaining a healthy and comfortable indoor
environment. Condensation can lead to moisture-
related issues like mold growth and corrosion;

« Retrofitting Capabilities: in some cases, existing cruise
ships may undergo renovations or upgrades to improve
energy efficiency and passenger comfort. PCMs can
be integrated into cabin insulation during retrofitting
projects to enhance insulation properties;

o Emergency Energy Backup: in the event of a power
outage or HVAC system failure, PCMs can temporarily
maintain indoor temperatures, ensuring passenger
safety and comfort until normal operations are restored.



96

Seatific, Vol. 3, Issue. 2, pp. 89-110, December 2023

Table 7. Phase Change Materials (PCMs) test methods

Testing category Test method Description References
Latent Heat of Fusion Calorimetry Measure the heat absorbed or released Kotzé et al. (2014)
during the phase transition
Thermal Cycling Stability Repeated Heating and Assess the stability of the material over Putra et al. (2019)
Cooling Cycles multiple cycles, checking for performance
degradation
Thermal Conductivity Standardized Methods Measure the material's ability to conduct C. Xu et al. (2022)

heat during solid and liquid phases

Encapsulation Efficiency Encapsulation Assessment

Evaluate the efficiency of the encapsulation

Y. Huang et al. (2023)

process, ensuring containment and leak
prevention

Durability and Long-Term
Performance

Extended Testing Periods

Material Compatibility Compatibility Tests with

Other Materials

Conduct long-term tests to assess durability
and performance over extended periods

Investigate how well the PCM interacts
with materials commonly used in specific

Egea et al. (2022)

Ostry et al. (2019)

applications

Environmental Impact Environmental Assessment

Evaluate the environmental impact,

Di Bari et al. (2020)

considering factors like recyclability
and potential hazards

3.4. Shape Memory Materials (SMMs) - (SM)

These materials have the remarkable ability to "remember"
a specific shape and return to it when exposed to a certain
stimulus, typically heat (Sun et al, 2012) (Vili, 2007).
Shape-memory alloys (SMA) exhibit two distinct crystal
structures linked to a phase transformation between a low-
temperature, martensitic phase and a high-temperature,
austenitic phase. In the first configuration, the metal can
easily be deformed into any shape; when the alloy is heated
the memory metal is able to recall the shape it had before
the deformation. This property enables the creation of
dynamic, shape-changing structures and components like
self-opening/closing windows and furniture mechanisms
that can change their shape or configuration based on
temperature changes (Jani et al, 2014).

Stimulus-responsive configurations refer to the ways in
which shape memory materials (SMMs) can be triggered
or activated to exhibit their shape-changing properties.
Different types of shape memory materials respond to
various stimuli, allowing for a range of applications in
diverse fields. Here are some common stimulus-responsive
configurations:

o Thermal Activation: the most common stimulus for
shape memory materials is temperature change. For
shape memory alloys (SMAs), heating above a certain
transition temperature (often called the austenitic finish
temperature) causes a reversible phase transformation,
allowing the material to recover its original shape;

« Light Activation: some shape memory materials,
particularly polymers, can be activated by exposure
to light. Photothermal heating induces the required
temperature change for triggering the shape memory
effect. This feature is often exploited in biomedical
applications where light can be precisely controlled;

o Electrical Activation: Applying an electric current to shape
memory alloys can generate Joule heating, causing the

material to undergo the phase transformation and recover
its original shape. This electrical activation is useful in
micro actuators and other electronic applications;

« Magnetic Activation: certain shape memory alloys, such
as nickel-titanium, are responsive to magnetic fields.
This latter induces mechanical deformation, making it
possible to control the shape memory effect remotely;

o Chemical Activation: reversible chemical reaction,
leading to a change in the polymer's structure and,
consequently, in its shape;

o pH Activation: they can to respond to changes in
pH. The pH-induced changes can alter the polymer's
structure, leading to a reversible shape change;

+ Moisture Activation: particularly in hydrogels They
can react to changes in moisture levels. Absorption
or loss of water can induce a change in the material's
conformation and trigger the shape memory effect;

+ Mechanical Activation: in some cases, shape memory
materials can be activated by applying mechanical
stress. This might involve stretching, compression, or
other mechanical deformation to initiate the shape
memory response;

o Dual/Multi-Stimulus ~ Activation: some advanced
configurations involve materials that respond to
multiple stimuli simultaneously or sequentially.

The following tables show the test methods aimed at
characterizing SMM main properties (Table 8, 9).

Between the possible application we can list the following
cases:

o Adaptive Insulation: since SMM can change shape
or thickness in response to temperature fluctuations,
during colder periods they can expand to provide
additional insulation and during summer, they could
contract to allow better ventilation. This adaptability can
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Table 8. Shape memory polymers (SMPs) test methods

References

Description

Testing method

Testing category

Zhou and Huang (2015)
Abdullah et al. (2012)
Li & Wang, (2016)
Zhao et al. (2015)
Lendlein (2010)

Tcharkhtchi et al. (2014)
Martins (2019)

Subject the material to a deformation at a certain temperature,
then allow it to recover its original shape upon heating

Shape Fixity and Recovery Test

Shape Memory Effect (SME)

Assess the material's ability to go through multiple shape

memory cycles without significant degradation

Programming and Recovery Cycles

Measure the heat flow associated with the phase transitions

in the SMP, such as the glass transition and melting

temperatures

Differential Scanning Calorimetry (DSC)

Thermal Characterization

McKinley (2004)

Staszczak et al. (2022)
Fisher et al. (2020)

Kim et al. (2021)
Ohki et al. (2004)

strength, and elongation, both below and above their transition

Assess the tensile properties of SMPs, such as modulus,
temperatures

Tensile Testing

Mechanical Testing

Tobushi et al. (2015

Investigate SMP response to compressive forces and shape recovery
Evaluate dimensional changes in response to temperature variations

Compression Testing

Fulcher et al. (2010)
Ibarra et al. (2022)

Coefficient of Thermal Expansion (CTE)

Thermo-Mechanical Analysis (TMA)

Mohamed et al. (2022)
Azra et al. (2013)

Study flow and deformation behavior under shear stress

Shear Testing

Rheological Testing

Measure viscoelastic properties under dynamic loading conditions

Frequency Sweep

Dynamic Mechanical Analysis (DMA)

Wang et al. (2023)

Jacobson and Iroh (2021)
B. Wang et al. (2023)
Gall et al. (2002)

Expose SMP to different chemical environments for stability

assessment

Exposure Tests

Chemical Resistance Testing

Goda et al. (2020)

Examine microstructure effects of deformation and recovery

Scanning Electron Microscopy (SEM)

Microscopic Analysis

X. Huang et al. (2021)
Rybak et al. (2021)

Assess electrical conductivity in deformed and recovered states
Evaluate thermal conductivity and heat transfer characteristics

Electrical Resistance Measurement
Thermal Conductivity Testing

Electrical and Thermal Conductivity Testing

Pradhan et al. (2022)

help maintain optimal cabin temperatures
without relying entirely on HVAC systems;

o Sealing and gasketing: SMMs can be
employed in sealing and gasketing applications
to ensure airtight seals around doors, windows,
and other openings. They can change their
shape or compress when necessary to maintain
a tight seal, preventing drafts and heat loss.

It is important to note that SMMs are not
commonly used for large-scale applications
like cruise ship design at present. While they
offer peculiar advantages, their adoption has to
be assessed by factors such as cost, complexity,
and the need for reliable control mechanisms.

3.5. Thermochromic materials (TMs)-(SM)
Thermochromic materials can be integrated
into cruise ship cabin design to enhance
insulation and improve the overall passenger
experience (Boscolo et al., 2007). They change
colour or optical properties in response to
temperature variations, which can be used to
create adaptive insulation systems and achieve
energy efficiency in cruise ship cabins:

o Smart Window Systems: thermochromic
coatings or films can be applied to cabin
windows to control solar heat gain and
glare. When exposed to sunlight or high
temperatures, these materials darken, reducing
the amount of heat and light entering the cabin.
In cooler conditions or at night, they become
transparent, allowing natural light to enter and
potentially aiding in passive solar heating.

o Temperature-Responsive Surfaces: they
can be used on cabin walls, ceilings, or other
surfaces to visually indicate temperature
changes. When the temperature inside the
cabin rises or falls, these surfaces change
colour or appearance, providing passengers
with a visual cue about the thermal
conditions. This can help passengers make
informed decisions about adjusting the
cabin temperature and HVAC settings.

o Customized Cabin Experience: cruise
ship cabins often host passengers with
varying preferences for temperature and
lighting. Thermochromic materials can be
incorporated into cabin controls, allowing
passengers to adjust the cabin environment
to their liking. For example, passengers can
control the tint level on windows or the
colour of cabin surfaces.

The test methods aimed at characterizing
TH main properties are included in the
following section table, since both smart
materials acts in a similar way (Table 10).
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3.6. Electrochromic materials (ECMs) - (SM)

Electrochromic materials change their optical properties
in response to an applied electrical voltage quicker than
the previous class. To manage solar heat gain and reduce
heating or cooling, windows can be controlled by controlling
their transparency or reflectivity (Somani, Radhakrishnan,
2003). However, they can contribute to energy efficiency and
passenger comfort in cruise ship cabins through the control
of natural light and glare (Grangyvist et al., 2018). Here's how
electrochromic materials can be applied in cruise ship design:

o Smart Windows: cruise ship cabins can incorporate
electrochromic windows to control the amount of
incoming natural light and reduce glare. They provide
passengers with control over their cabin's lighting
conditions, allowing them to adjust the opacity of the
windows to control visibility from outside the cabin,
thus enhancing privacy.

 Energy Efficiency: while not a direct insulation material,
electrochromic windows can contribute to energy
efficiency by reducing the need for artificial lighting
and shading in cabins. By optimizing natural light
levels, cruise ships can lower their energy consumption
for lighting and cooling, resulting in cost savings and
reduced environmental impact.

The following tables show the test methods aimed at
characterizing TM and EM main properties (Table 10).

3.8. Dynamic insulation systems

They can be designed to mitigate the effects of vibrations and
motions experienced by passengers in their cabins. These
systems use sensors, actuators, and control algorithms to
counteract ship motions caused by waves, engine vibrations,
and other factors, thereby enhancing passenger comfort
(Fawaier, Bokor, 2022). Here's how active vibration control
works in cruise ship cabins:

« Sensors: vibration sensors are strategically placed in
the cabin to detect any vibrations and motions. These
sensors continuously monitor the cabin's movement in
multiple axes, capturing data about the ship's vibrations
and oscillations;

o Control Algorithms: advanced control algorithms
process the sensor data in real-time. They calculate
the optimal corrective actions needed to counteract
the vibrations and motions and maintain a stable and
comfortable environment inside the cabin;

« Actuators: devices able to generate forces to counteract
the detected vibrations and motions. They are typically
located beneath the cabin's floor or within the cabin's
structure. These actuators can include hydraulic pistons,
electromechanical devices, or other mechanisms
capable of applying forces in various directions;

« Feedback Control: it uses feedback from the sensors
to adjust the actuators' output. By applying forces in
the opposite direction to the detected vibrations and
motions, the system effectively cancels out or dampens
the cabin's motions;

« Adaptive Control: some advanced systems use adaptive
control techniques that continuously adapt to changing
ship conditions and passenger preferences. They can
optimize their performance based on real-time data
and adjust to different sea conditions, cruise speeds, and
passenger activities;

o User Interface: passengers may have control over the
system through a user-friendly interface in the cabin.
They can adjust the level of vibration control or turn it
off if they prefer a more natural experience.

Potential benefits of applicating active vibration control in
cruise ship cabins can include:

o Improved Comfort: Guests experience less discomfort
and motion sickness, especially during rough sea
conditions or when the ship is manoeuvring.

o Safetyand Structural Benefits: These systems can also help
protect the structural integrity of the ship by reducing the
wear and tear caused by vibrations over time.

4. SMART MATERIALS FINISHING SOLUTIONS
TO REDUCE HUMIDITY IN WET UNITS OF A
CRUISE SHIP CABIN

Reducing humidity in these area is crucial to guarantee
passenger comfort and preventing issues like mold
growth and moisture damage. Several smart materials and
technologies can be employed to achieve this target:

o Hygroscopic Coatings: they are designed to absorb
moisture from the air. Applying these coatings to cabin
surfaces, such as walls and ceilings, can help reduce
humidity levels. These coatings could be designed to
release the absorbed moisture back into the air when
conditions are drier (Hickey et al., 1990);

» Moisture-Absorbing Fabrics: textiles treated with moisture-
absorbing compounds can help absorb excess humidity
from the air. These fabrics could be used for shower
curtains, towels, and other cabin textiles (Wang, 2017);

o Membrane Dehumidification: these systems use
selectively permeable membranes to allow moisture
vapor to pass through while preventing liquid water
from entering (Zhao, 2015);

« Control Systems: a centralized control system that
monitors cabin humidity levels and coordinates the
operation of various humidity-reducing technologies
can ensure efficient and effective humidity management;

o Data Analysis and Feedback: collecting and analysing
data on cabin humidity cevels and the performance of
humidity-reducing technologies can provide valuable
insights for continuous improvement and adjustment.

4.1. Self-cleaning surfaces

Often referred to as "hydrophobic" surfaces, are designed
to repel dirt, water, and other contaminants, making them
resistant to staining and facilitating easier cleaning. These
can be achieved through the use of various technologies
and materials (Liu, Jiang, 2012) like:
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« Hydrophobic Coatings: designed to repel water, preventing
water droplets from adhering to the surface. This not only
prevents water spots but also helps to carry away dirt and
contaminants as water rolls off (Schmidt et al., 1994);

o Photocatalytic Coatings Surfaces: when exposed to
light, they can break down organic compounds and
pollutants on the surface. This process helps to keep the
surface clean by decomposing dirt and organic matter
(Yoshida et al., 2016). Furter characterization will be
provide in the next paragraph, with a specific focus on
their application in HVAC components;

« Superhydrophobic Coatings: they go beyond hydrophobic
coatings by creating a surface with extreme water-repellent
properties. These coatings can cause water droplets to form
near-perfect spheres and easily roll off the surface, taking
dirt and contaminants with them (Wang et al., 2020);

+ Self-Cleaning Glass: it is coated with a photocatalytic
and hydrophobic layer that breaks down organic matter
and allows rainwater to wash away dirt and debris
(Chabas et al., 2008);

o Electrodynamic Surface Cleaning: some surfaces can be
designed to generate an electrostatic charge that repels
dust and particles, helping to keep the surface cleaner
over time (Deputatova et al., 2018);

o Anti-Static Coatings: they can help preventing the arise
of static charges able to attract dust and dirt, keeping the
surface cleaner for longer (Al-Dahoudi et al., 2001).

» Oleophobic Coatings: Oleophobic coatings repel oils and
grease, making them particularly effective for surfaces that
come into contact with oily substances (Cao, Gao, 2010).

Applications of Self-Cleaning Surfaces in Interior Design
can include:

o Wet unit surfaces: self-cleaning surfaces in bathrooms
can prevent soap scum, mineral deposits, and water
spots on fixtures and tiles;

o Windows and Glass: self-cleaning glass can help
maintain clear visibility by repelling water and dirt,
reducing the need for frequent cleaning;

o Furniture and Upholstery: self-cleaning upholstery can
resist spills and stains, making furniture more durable
and easy to maintain.

5. SMART MATERIALS
IMPROVEMENT

FOR CABIN AIR

Smart materials can play a significant role in improving room
air quality by actively monitoring and addressing pollutants,
allergens, and other contaminants (Grinshpun et al, 2006).
Here are some types of smart materials, strictly related to the
previous ones, that can be used for cabin air improvement:

 Photocatalytic coating in HVAC system: a photocatalyst,
usually Titanium Dioxide, is applied as a thin coating
on a surface within the air purification system, which is
often part of a filter or a material that can be exposed to

UV light. UV-C LEDs lamps emit ultraviolet light with
a wavelength in the range of 254 to 365 nanometres,
coinciding with the peak UV absorption of virus RNA
(Nunayon et al., 2019). When this latter interacts with
the photocatalyst, it triggers a photocatalytic reaction,
generating highly reactive oxygen radicals, which break
down and oxidize a wide range of indoor air pollutants,
including volatile organic compounds (VOCs), bacteria,
viruses, and odorous compounds (Zaleska et al., 2010);

« Air-Purifying Paints: these paints contain photocatalytic
materials that react as described in the previous topic.
Among paints currently available on the market them we
can find also Activated Carbon Paints, which can adsorb
and trap volatile organic compounds (VOCs) and odours
from the air and Mineral-Based paints, which incorporate
natural minerals like zeolites, which can neutralize certain
pollutants, including ammonia and formaldehyde;

o Active Ventilation Systems: smart materials can be
integrated into ventilation systems to actively filter and
purify incoming air, removing contaminants before
they enter the room.

« Intelligent Air Quality Sensors: smart sensors that detect
pollutants, allergens, and other air quality parameters
can trigger ventilation or purification systems for real-
time air improvement.

6. SELF-HEALING FINISHING SOLUTIONS

Self-healing materials (SHM) can repair damage
automatically without external intervention, potentially
reducing the need for maintenance (Blaiszik et al., 2010).

They could be used in interior spaces to maintain aesthetics.
For example, in cabins or public areas, self-healing coatings
on furniture or wall surfaces could help minimize visible
damage (White et al., 2001). Here are some examples of
self-healing insulation materials and their characteristics:

o Microcapsule-based systems: they contain tiny capsules
filled with a healing agent or polymer. When the
insulation material is damaged, such as by a crack or
hole, the capsules break, releasing the healing agent,
which then fills the gap and solidifies, restoring the
insulation's integrity;

o Shape Memory Polymers: as seen in the dedicated
paragraph, they are materials that can "remember"
their original shape and return to it when triggered by a
specific stimulus, such as heat;

o Self-Healing Gels: they can autonomously repair
themselves when damaged. These gels typically consist
of a polymer matrix and a healing agent. When the
material is damaged, the healing agent is released and
reacts with the polymer to fill the damaged area and
restore original properties (Zhao et al., 2014);

+ Chemically Responsive Materials: certain materials are
designed to be chemically responsive to environmental
factors. For instance, they can sense changes in pH,
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moisture, or temperature and initiate self-healing
processes accordingly, often through chemical reactions
that bond or seal damaged areas;

o Nanotechnology-Enhanced Materials: they are self-
healing materials with nanoscale components. For
instance, nano capsules filled with healing agents
can be dispersed throughout the material to facilitate
autonomous repairs (Amendola, Meneghetti, 2009);

o Carbon Nanotube Networks: they can be used to reinforce
materials and provide self-healing capabilities (Joo et al.,
2018). When damage occurs, the carbon nanotube network
can redistribute stress and prevent further degradation;

o Microfluidic Systems: materials with embedded
microfluidic channels can transport healing agents
to damaged areas through a network of channels,
facilitating autonomous repair (DeMello, 2016).

o Electrochemical Materials: they rely upon an
electrochemical process to repair damage by
redistributing ions and rebuilding material structures.

The following tables show the test method aimed at
characterizing SHM main properties (Table 11).

7. CONCLUSION

In the cruise ship design field there are many constraints that
limit the choice of materials and the application of cutting-
edge technologies. However, through an analysis of the
current state of thermo-acoustic insulation, to the optical and
mechanical performance of surfaces, linked to sanitation and
wear activities, it is possible to consider the introduction of
adaptive solutions which can intrinsically react to external
stimuli. The analysis of smart materials has highlighted how
they can contribute to increasing safety and comfort on board,
even if there could be problems related to the scalability of the
solutions and the economic and their practical application
feasibility. The taxonomy of smart materials and solutions
presents, in a brainstorm-like attempt, a wide range of possible
implications which, permeating from and into other areas of
scientific research, could provide practical application in the
more or less distant future.
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