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ABSTRACT Artificial neural networks (ANN), an Artificial Intelligence (AI) technique, are both bio-inspired
and nature-inspired models that mimic the operations of the human brain and the central nervous system
that is capable of learning. This paper is based on a system that optimizes the performance of an uncertain
unmanned nonlinear Multi-Input Multi-Output (MIMO) aerodynamic plant called Twin Rotor MIMO System
(TRMS). The pitch and yaw angles which are challenging to control and optimize in practice, are being used
as the input to the Nonlinear Auto-Regressive with eXogenous (NARX) model, and eventually trained. The
training features use the Matlab Deep Learning Toolbox. The NARX structure has its core in the neural
networks’ architecture. Data is collected from the TRMS testbed which is used to train the network. ANN
as a Hybrid intelligent control strategy of ANN in combination with Pattern Search and Genetic Algorithm, is
then utilized to optimize the parameters of the neural networks. At the end it was validated, tested and the
optimized system run in simulation and compared with other intelligent and conventional controllers, with the
proposed controller outperforming them, giving a very fast-tracking control, stable and optimal performance
that satisfactorily met all our design requirements.
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INTRODUCTION

The modelling, optimization and control of rigid bodies and flexi-
ble structures/systems (Ahmad et al. 2000a,b; Moness and Diaa-
Eldeen 2017) (such as plates, shells, beams, frames, etc.) are increas-
ingly gaining a considerable attention from researchers globally
(Tavakolpour et al. 2010; Nasir and Tokhi 2014; TRahman et al.
2019). These bodies and structures are highly essential manufac-
turing elements in electro-mechanical, civil, marine and aerospace
engineering. In this paper, the application of Feedforward Neural
Networks (NN) is applied to the beam of a nonlinear uncertain
system called, the TRMS. It is a highly nonlinear, high-order, com-
plex system (Moness and Diaa-Eldeen 2017; Toha and Tokhi 2009;
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Alam et al. 2004; Toha and Tokhi 2010; Ahmad et al. 2016) the
nonlinearities and complexities emanate from the cross-couplings
between the twin-rotors. These pose as a serious challenge to
effectively model, control and optimize. The modelling, control
and optimization of the TRMS can be carried out in either the
model-based/model-driven or data-driven approaches. The data-
driven (i.e. black-box modelling) approaches for which this paper
is based, requires some input/output dataset (Ljung and Gun-
narsson 1990)[obtained through system simulation, offline and/or
online. With this dataset, the system is identified through System
Identification (SI) techniques.

The drawback of SI is that it has demonstrated a computational
inadequacy with nonlinear systems, but much less uncomplicated
with linear systems (Ahmad et al. 2000a). In spite of this, it is
still indispensable and a powerful design strategy, especially if
the system can be linearized about some equilibrium points. To
use SI methodologies, require training of the network used in
the design process, which can be parametric or non-parametric.
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The non-parametric SI (which is of interest here) involves the use
of Artificial Intelligence, such as ANN (Sjöberg et al. 1994; Chu
et al. 1990) or an Adaptive Neuro-Fuzzy Inference System (ANFIS)
(Castillo et al. 2006). For brevity, ANN is simply referred to as NN.
However, they suffer from being caught in a local minimum and
a very slow convergence resulting from system complexities of
nonlinear systems. To solve these problems metaheuristic methods
are employed for faster convergence optimization. With this, the
solution being trapped in a local minimum or local minima is
prevented, thus guaranteeing an accurate solution (TRahman et al.
2019).

A number of these metaheuristics’ approaches have been suc-
cessfully used in the training of ANNs in engineering and scientific
applications. Some of these methods include Symbiotic Organisms
Search (SOS) scheme employed to train a feed forward NN to solve
a classification problem (Wu et al. 2016), Genetic Algorithm (GA)
(Sivadasan and Shiney 2023) Harmony Search, Simulated Anneal-
ing and Differential Evolution (DE) (Rere et al. 2016), a hybrid
algorithm composed of Particle Swarm Optimization (PSO) used
for optimization of a Convolutional NN to also solve a classifica-
tion problem (Yaghini et al. 2013), ANN models trained for stock
market price predictions/forecasts (Ghasemiyeh et al. 2017), the
newly developed Stochastic Fractal Search Algorithm SFS by Sal-
imi (Salimi 2015) and used to train ANNs (Mosbah and El-Hawary
2017; Khishe et al. 2018). Also, the successful applications of ANNs
in estimating the nonlinear dynamics of dynamical systems have
been reported for kinematics in (Xia and Wang 2001; Yoo et al. 2006;
Abbas and Liu 2022) for dynamics in (Lin and Goldenberg 2001;
El-Fakdi and Carreras 2013) and for control in (Xia and Wang 2001;
Wai 2003; Palepogu and Mahapatra 2023)

Due to the extreme and profoundly serious (i.e., massive) non-
linearities the control of Unmanned Aerial Vehicles (UAVs), of
which class the TRMS falls, is a challenging one (Agand et al. 2017).
Rahideh et al. proposed a Model Inversion Control law to control a
1-DOF pitch model of the TRMS using ANN (Rahideh et al. 2012a).
The ANN was used adaptively to tune the system model. The
obtained control law was consequently used to achieve control
and tracking. The scheme used an adaptive nonlinear iterative
learning control (Patan and Patan 2023; Bensidhoum et al. 2023) for
compensation of the errors due to modelling, thereby identifying
the system. The use of the NARX neural networks based on a Back
Propagation (BP) algorithm for network training was proposed
by Tijani et al in (Tijani et al. 2014) to solve a multi-objective opti-
mization problem. The algorithm used a multi (or many)-objective
DE algorithms to identify and control the nonlinear TRMS using
real-time data from experiments. The motivation of this work
stems from the fact that unlike linear systems and processes which
a tremendous depth of knowledge exists on the control of such
systems and processes, for nonlinear control systems are quite very
challenging. Since most or nearly all control systems are nonlinear
attention has shifted by researchers and control engineers globally
on development of control techniques, methodologies and strate-
gies to address these systems. Nowadays the research direction
has shifted focus on Artificial Intelligence (AI) and Computational
Intelligence (CI) which are at the cutting edge. From studies on the
use of ANN, an AI-based technique, developing a controller using
NN structure is quite very difficult, because of the dynamic nature
of such systems, where the states are also dynamic in nature and
constantly changing. This pose as a serious challenge to control
such a system.

In this study, the use of Deep Neural Networks architecture
using NARX Shallow NN for the ANN training is used to identify,

optimize and control the nonlinear TRMS lab-scaled helicopter.
The NARX model is used here identifies/ capture the nonlinear
dynamics of the nonlinear TRMS testbed. The NARX network is a
feedforward neural network composed of 2 layers, with a sigmoid
transfer or activation function in the hidden layer and a linear
transfer function in the outer layer. Tapped delay lines are also
used by the network to store previous values of the input and
output sequences. Here, the outputs are fed back into the inputs
through the delay lines, since if y(t) is the output, then y(t) is a
function of

y(t − 1), y(t − 2), . . . , y(t − d). (1)

The learning rules algorithms employed mostly are the
Bayesian Regularization (trainbr), Levenberg-Marquardt (trainlm),
and the Scaled Conjugate Gradient (trainscg). The first two algo-
rithms are based on the Jacobian calculations while the last training
method is based on the gradient calculations. In this paper, the
2 inputs (elevation and azimuth) and the outputs/target vectors
(pitch and yaw) are composed of 181 datasets each, at random,
roughly divided into 70% for the training phase, 15% for the vali-
dation phase and 15% for the test phase to generalize the network.
2 different set of numbers of hidden neurons of 10 and 1000 were
used, with a tapped delay line of 4. The paper is organized as
follows: Section 2 presents the experimental arrangements as well
as the governing equations of motion; Section 3 presents the NN ar-
chitecture and theoretical background; Section 4 gives the training
results and final simulations.

SETUP OF EXPERIMENT

Figure 1 (a) The Real-world experimental setup at the Botswana
International University of Science and Technology (BIUST),
with the beam inclined at 60° to the horizontal at rest and show-
ing I/O communication cables (b) Schematic graphic (Abdul-
wahhab and Abbas 2017; Ezekiel et al. 2020, 2021).

Figure 2 The electrical circuit connection of the DC motor of the
TRMS
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The model of the DC motors is given in (Darus and Lokaman
2010; Rahideh et al. 2008) as:

diaγ

dt
=

1
Laγ

(Vγ − Eaγ − Raγiaγ) (2)

Eay = Kay pyvy (3)

Jyr = cyaw = −Gs (4)

Tey = Kayyiay (5)

Tzy = Kty0y|wy| (6)

Where, Vγ is the control voltage input to either the vertical or
the horizontal channel, Eaγ, iaγ, Raγ, and Laγ are respectively the
e.m.f, current, resistance, and inductance in the armature of the
main/tail motor; kαγ and ktγ are constants; ϕγ is the flux linkages;
ωγ is the angular velocity of either the main or tail motor, Teγ,
TLγ are the magnetic torque and load torque respectively in the
main/tail motor; Jγr, Bγr are the moments of inertias and viscous
friction damping coefficients of the rotors in the main/tail motors.

Figure 3 Planar (vertical plane) representation of the TRMS, show-
ing the gravity and propulsive forces (Rahideh et al. 2012b)

Governing Equations of Motion of the TRMS
Being a dynamical system that has rotational motion, Newtonian
mechanics for rotational dynamics or Lagrangian mechanics may
be used to develop the dynamic equations of motion. Based on
Newtonian mechanics for rotational dynamics, the dynamic equa-
tions of motion (using Newton’s laws of motion for rotational
dynamics) (Coelho et al. 2007a, 2008, 2007b) of the TRMS, repre-
senting the flight in the pitch (or vertical) plane and the yaw (or
horizontal) plane are respectively given by:

dSv

dt
=

Mv

Jv
=

lmFv(ωm)− ΩvKv + g[(A − B) cos αv − C sin αv]

Jv

− 1
2

Ω2
h(A + B + C) sin 2αv

Jv

=
lmFv(ωm) + g[(A − B) cos αv − C sin αv]− Tfric,v

Jv
(8)

dSh
dt

=
Mh
Jh

=
ltFh(ωt) cos αv − ΩhKh

D sin2 αv + E cos2 αv + F
=

ltFh(ωt) cos αv − ΩhKh
Jh

(8)

where, Ωv and Ωh are the angular/rotational velocities of the
rotors for the pitch and yaw orientations, respectively, given by:

Ωv =
dαv

dt
= Sv +

Jtrωt
Jv

(9)

Ωh =
dαh
dt

= Sh +
Jmrωm cos αv

Jh
= Sh +

Jmrωm cos αv

D sin2 αv + E cos2 αv + F
(10)

where A, B, C, D,E,F are constants, and are given by:
A =

(mt
2 + mtr + mts

)
lt; B =

(mm
2 + mmr + mms

)
lm; ‘ ‘L

C =
mb
2

lb + mcblb; D =
mb
3

l2
b + mcbl2

cb;

E =
(mm

3
+ mmr + mms

)
l2
m +

(mt
3

+ mtr + mts

)
l2
t ;

F = mmsr2
ms +

mts
2

r2
ts

The aerodynamic propulsive forces, Fv(ωm) and Fh(ωt), are
produced by the main/tail rotors in the vertical/horizontal planes,
respectively, and are given by:

Fv(ωm) =
JvΩ̂v + g[(A − B) cos αv − C sin αv]− Tfric,v

lm
(11)

Ω̇v =
d2αv

dt2 (12)

Fh(ωt) =
JhΩ̇h − Tfric,h

lt cos αv
(13)

Ω̇h =
d2αh
dt2 (14)

The variables Mv and Mh represent the sum of moments in the
pitch and yaw planes, respectively. Similarly, Jv and Jh denote the
sum of moments of inertias in the vertical and horizontal planes.
Tfric,v stands for the frictional torque developed in the pitch plane.
The masses mmr and mtr correspond to the composite mass of
the Main/Tail rotor plus Main/Tail DC motor. mm and mt are
the masses of the beam’s Main/Tail portion, mcb is the mass of
the counterweight, and mms and mts represent the masses of the
Main/Tail shield. The lengths lb, lcb, lm, and lt refer to the coun-
terbalance beam length, the distance from the pivot joint to the
counter-balance or counterweight, and the lengths of the beam’s
Main/Tail portion. The angles αv and αh represent the angles for
the pitch and yaw, respectively.

THE NEURAL NETWORK STRUCTURE

The NN structure presents the layers arrangements and the no. of
neurons in each layer. Each of the two planes/axes of our plant in
question (i.e., the pitch and yaw) are presented with a Feedforward
NN structure.
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Figure 4 The NARX shallow NN for the (a) pitch (b) yaw angles
(Rahideh et al. 2012a,b).

Figure 5 The actual NARX shallow (1-layered) NN controllers for
the (a) pitch (b) yaw, each having 10 neurons with network weights
attached as seen above (c) the configuration showing the single-
input single-output network (d) the feedforward configuration for both
pitch and yaw angles.

The Feedforward Neural Network
For the first NARX shallow Neural Networks (Fig. 4a) having one
hidden layer with 10 hidden neurons, since 4 input tapped delays
are employed for this research work, then the pitch angle of the
beam is the inputs to the NN at the current time, and delayed 1, 2,
3, and 4 samples, i.e., αv(t), αv(t− 1), αv(t− 2), αv(t− 3), αv(t− 4).
In a similar vein, the second NARX NN model is for the yaw angle
with inputs at the current time instant, and those delayed by 1, 2,
and 3 samples, i.e., αh(t), αh(t − 1), αh(t − 2), αh(t − 3), αh(t − 4).
For both models, the output vαd(t) is expressed as:

vαd(t) = bw +
n

∑
j=1

wj f j

(
bvj +

3

∑
i=1

vijxi

)
= WTF(VTX) (15)

X =



1

x1

x2

x3


(16)

xi = αv(t − i + 1) = αh(t − i + 1), i = 1, 2, 3 (17)

W =



w1

w2

...

wn


, n = 10, 1000 (18)

V =


bv,1 · · · bv,10

...
. . .

...

v3,1 · · · v3,10

 and V =


bv,1 · · · bv,1000

...
. . .

...

v3,1 · · · v3,1000

 (19)

f j(zj) =
1

1 + e−αizj
, j = 1, 2, . . . , 10 (20)

F =



1

f1(z1)

...

f10(z10)


(21)

where, X= the input vector, W= the network weights, ,V= the biases
matrices,F= the activation function Widrow and Hoff (1960).

Training the Network

The neural network must be trained in order for biases and weights
adjustments so as to obtain the optimum system parameters. This
training could be carried out in offline or online scenarios, but
here the offline training is adopted. The network weights and
biases are updated/adjusted with the main aim of minimizing the
tracking error response of the plant (TRMS). This adjustment is
done according to the following formulations (Widrow and Hoff
1960):

Ẇ = −
[(

F − FVTX
)

rT + β∥e∥W
]

ΛW (22)

V̇ = −ΛV

[
XrTWTFT + β∥e∥V

]
(23)

where ΛW , ΛV represent the network learning rates, and with
β > 0 ensures tracking the error of the system e and the neural
networks weights are bounded uniformly. e is given by:

e =

αv,ref − αv

α̇v,ref − α̇v

 (24)

F =



0 0 . . . 0

∂ f1(z1)
∂z1

0 . . . 0

0 ∂ f2(z2)
∂z2

. . .
...

0 . . .
. . . ∂ f2(z2)

∂z2

0 . . . 0 0


(25)

rT = (eT PB)T (26)

where, P is the Lyapunov candidate solution for the nonlinear
equation:

AT P + PA + Q = 0 (27)
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where Q must be a positive-definite matrix (i.e., Q > 0), A and B
are matrices for the tracking error (e), given by:

A =

 0 1

−kp −kd

 (28)

B =

0

1

 (29)

Validation of the Model
The tools used for validating the nonlinear model of the TRMS
include, One Step-Ahead (OSA) Prediction, Mean Squared Error
(MSE), Correlations Tests (Autocorrelation and cross-correlation
functions) and Normalization.

OSA Prediction
The OSA prediction for the NARX network or model occurs
when the feedback loop of the network is open. The NARX net-
work/model thus predicts the next value of the output vαd(t) from
the previous ones of vαd(t) and the input αγ(t). For a Multi-Step-
Ahead prediction, the feedback loop must necessarily be closed.
The OSA is a measure of the accuracy in modeling. It is given by:

v̂αd(t) = f [αγ(t), αγ(t− 1), . . . , αγ(t−nαγ ), vαd(t− 1), . . . , vαd(t−nvαd )]
(30)

where, f is a nonlinear function approximator, αγ, vαd represent
the input/output respectively, v̂d(t) is the prediction value and γ
represents pitch or yaw. The OSA is an extension of the NARX
model, where the NARX model is given by:

vαd(t) = f
[
vαd(t − 1), . . . , vαd(t − nvαd ), αγ(t − 1), . . . , αγ(t − nαγ )

]
(31)

eres = vαd(t)− v̂αd(t) (32)

Mean Squared Error (MSE)
The MSE (Mean Squared Error) is a validation test, providing the
average of the sum of mean squares of the differences between
the actual and predicted outputs (vαd(t), v̂αd(t)) of the TRMS sys-
tem. The outputs are generated using the input and the optimized
parameters of the network. MSE is given by:

MSE = f (e) =
1
n

n

∑
i=1

|eres|2 =
1
n

n

∑
i=1

|vαd(t)− v̂αd(t)|2 (33)

where, n is the number of input/output samples.
The MSE (Mean Squared Error) algorithm helps in adjusting

the network weights and biases, minimizing the MSE. Fortunately,
the MSE performance indicator is a quadratic function, which will
either have a global minimum, a weak minimum, or no minimum
at all, determined by the nature of the input vectors. Hence, a
unique solution may or may not exist. The MSE algorithm, or
Widrow-Hoff learning algorithm (Demuth and Beale 2000), ap-
proximates MSE based on the steepest descent algorithm at each
iteration.

Taking the partial derivatives of the MSE with respect to
weights and biases at the kth iteration, we get:

∂e2
res(k)
∂wij

= 2eres(k)
∂eres(k)

∂wij
, j = 1, 2, . . . , R (34)

∂e2
res(k)
∂b

= 2eres(k)
∂eres(k)

∂b
(35)

Taking the partial derivative w.r.t error

(eres)

∂eres(k)
∂wi,j

=
∂

∂wi,j
[t(k)− α(k)] =

∂

∂wi,j
[t(k)− (W p(k) + b)] (36)

or
∂eres(k)

∂wi,j
=

∂

∂wi,j
[t(k)−

(
R

∑
i=1

w1,i pi(k) + b

)
] (37)

where, pi(k) is the ith element of the input vector at the kth
iteration.
Further simplification yields:

∂eres(k)
∂wi,j

= −pj(k)

∂eres(k)
∂b = −1

 (38)

The Correlations Tests
These tests are statistical tests for bivariate dataset composed of
the autocorrelation and cross-correlation functions (Darus and
Lokaman 2010), given by:

ϕεε(τ) = E[ε(t − τ)ε(t)] = δ(t)

ϕxε(τ) = E[x(t − τ)ε(t)] = 0 ∀τ

ϕx2ε(τ) = E
[(

x2(t − τ)− x̄2(t)
)

ε(t)
]
= 0 ∀τ

ϕx2ε2 (τ) = E
[(

x2(t − τ)− x̄2(t)
)

ε2(t)
]
= 0 ∀τ

ϕε(εx)(τ) = E[ε(t)ε(t − 1 − τ)x(t − 1 − τ)] = 0 τ ≥ 0


(39)

where, ϕεε(τ) and ϕxε(τ) are the autocorrelation and cross-
correlation functions between x(t) and ε(t), and ε(t) is the error of
the prediction sequence.

Normalization
In practice, the correlations computed are normalized to ensure
all the values fall within a given bandwidth and/or range. The
normalized correlation function between two sequences ϕ1(t) and
ϕ2(t) is given by:

ϕ̂ψ1ψ2 (τ) =
∑N−τ

i=1 ψ1(t)ψ2(t − τ)√
∑N

i=1 ψ2
1(t)∑N

i=1 ψ2
2(t)

(40)

RESULTS AND DISCUSSION

The Nonlinear TRMS Modelling
The method employed in this research work involves the use of
a time-domain closed-loop control approach. Here, the NARX
shallow Neural Networks modelling is used as a compensator to
train the network and provide the closed-loop control signal. The
input signals to the TRMS and the NN are a uniform random signal,
exciting both the pitch and yaw subsections of the plant/system.
The Simulink model of the TRMS as well as the signals are given
below.
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Figure 6 Simulation of the TRMS (a) Pitch Random signals for the input (b) Its Log/Magnitude (c) Yaw Random signals for the input (d) Its
Log/Magnitude (e) Simulink model of the nonlinear TRMS

Shallow NN Modelling
Training with Levenberg-Marquardt (LM) It is known that for every
nerual network structure designed/implemented as a solution
to e.g. a control problem, the correction error functions must lie
within an acceptable predefined region which is depicted in figs 7
(a - e), otherwise the control design objective will not be acheiav-
able. Also, the Best validation performance for our design must
occur at an epoch where the best value falls the parameterized
training, validation and testing performance scores. And as can be
clearly seen, these were obtained at various epochs for individual
runs of the TRMS plant, forming the availabe simulation data to
the NN. 3 different runs each for 10 neurons (figs. 7 (g – i)) and
for 1000 neurons (figs. 7 (j – l) were used in order to show data
integrity fro the TRMS Simulink model obtained from first princi-
ples. For the training, testing and validation of the NN strucuture,
Levenberg-Marquardt training algorithm was used throughut this
reaserch and the step-by-sstep procedure is giving above in fig. 7
(m) in Matlab.using the nntool command.

Further Discussions Figs 9 – 13 below show the results obtained
from different controllers employed in this study. In Fig. 9, Clas-
sical PID control was used for simulation times of (a) 50 (b) 100
seconds, while in Fig. 10, ANN controllers were generated and
deployed for simulation times of (a) 50 (b) 100 seconds. In Fig.
11, the developed ANN controllers were combined with meta-
heuristic approaches of Pattern Search (PS) and Latin Hyperbole
(LH) to improve on the neural controller. In Fig. 12, the ANN
controllers were combined with PS and Genetic Algorithm (GA)
this time to obtain highly improved tracking control performances
for simulation times of (a) 50 (b) 100 seconds. Fig. 13 is merely

a comparison of these techniques above, combined, to depict the
strength of the ANN + PS + GA strategy over the other methods in
setpoint tracking of the commanded input to the TRMS prototype
helicopter.

Since the performance measures can be given in terms of time-
domain or frequency-domain specifications, here the performance
indices are expressed in terms of the usual time-domain specifica-
tion: rise time τr, settling time τs, and steady-state error ess. These
results have been presented and tabulated in Tables 1 and 2 below.
Note that the ISE and RMSE are functions of the squares of ess error
coefficients, statistically designed as indices of performances of the
control simulations. Since the results are presented in a composite
fashion, the combined ess for the pitch and yaw angles for ANN +
PS + GA is negligibly small compared to the other methods used,
as seen in Fig. 12 and Table 1. This explains the best tracking
performance and low control energy required.

Note: PS = Pattern Search; LH = Latin Hyperbole; τr=rise time;
τs=Settling time; ess=Steady-state error

Note: PS = Pattern Search; LH = Latin Hyperbole; τr=rise time;
τs=Settling time; ess=Steady-state error; ISE = Integral Squared
Error; RMSE = Root Mean Squared error

The TRMS plant is a highly uncertain and highly nonlinear
plant with high-frequency oscillations, particularly with the pitch
angle. This can pose as a serious control challenge in efforts to
remove the rippling oscillations. This is shown in the scope of the
designed control system using the conventional PID controllers
(Fig. 9). For the real system, this evidently would affect the plant
operation in the inability of the plant to settle within acceptable
limits specified for effective control. The need, therefore, for im-
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Figure 7 Levenberg-Marquardt training with (a) 10 (b) 1000 hidden neurons; Autocorrelation Error for (c) 10 (d) 1000 hidden neurons; Input-
Error Corelation for (e) 10 (f) 1000 hidden neurons; Best validation performance for (g)-(i) 10 (j) – ( l) 1000 hidden neurons (m) Matlab nntool
NARX NN GUI programming and execution.
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Figure 8 Control system designed to implement step input signal tracking control using (a) conventional PID controller (b) neural networks
controllers generated using the ‘gensim’ command

Figure 9 The tracking control for the elevation (pitch)-red and azimuth (yaw)-blue trackings of the TRMS using PID controllers for a simulation
time of (a) 50 (b) 100 seconds

Figure 10 The final acutal output shown for the elevation (pitch)-red and azimuth (yaw)-blue trackings of the TRMS using ANN controllers
realized using the “getsim”command for a simulation time of (a) 50 (b) 100 seconds

proved tracking becomes indispensable for such a safety-critical
system.

This informed the use of the neural networks (NN) controllers
(Fig. 10). The NN controllers were able to eliminate the undesirable
oscillations or ripples in the final outputs for the yaw angle at first
glance (Fig. 10), though with a large overshoot. When the network

weights of the ANN controllers were optimized using intelligent
schemes of Pattern Search with Latin Hyperbole (ANN + PS + LH)
and Pattern Search with Genetic Algorithm (ANN + PS + GA), the
GA-based ANN controllers completely eliminated the ripples for
both angles and brought the system within acceptable bandwidths
of control (Fig. 12) and fast tracking simulation time of 10 seconds.
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Figure 11 Improved step input tracking control for the pitch and yaw angles using neural networks controllers optimized using Pattern Search +
Latin Hyperbole for a simulation time of (a) 10 (b) 100 seconds

Figure 12 Final Improved step input tracking control for the pitch and yaw angles using neural networks controllers optimized using Pattern
Search + GA for a simulation time of (a) 10 (b) 100 seconds

Figure 13 Comparisons of the different controllers employed above for a step input tracking response for the (a) pitch and (b) yaw angles, for a
simulation time of (a1 & b1) 50 (a2 & b2) 100 seconds

The ANN + PS + LH also performed well with a fast tracking
response but with a very high overshoot for the yaw angle and a
large steady-state error (ess) (Fig. 11).

The best-performing algorithm as evidenced in Table 2 above
is the proposed ANN + PS + GA, with the best settling time for
the pitch angle (τs = 5.14) and the second-best settling time for the
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■ Table 1 Quantitative comparison of time-domain specifica-
tions between the proposed ANN + Pattern Search + GA con-
troller, and the 3 other controllers design strategies for pitch &
yaw angles

Controller Method
Horizontal plane

(ϕ angle )

Vertical plane

(θ angle )

τr τs es τr τs ess

PID 0.24 100 0.04 0.48 25.00 0.00

ANN 1.18 14.5 0.02 1.32 56 0.00

ANN + PS + LH 1.55 9.9 0.99 4 37 0.11

ANN + PS + GA 3.85 14.42 0.03 2.79 5.14 0.002

■ Table 2 Quantitative comparison of performance indices
between the proposed ANN + Pattern Search + GA controller,
and 3 other controllers design strategies for pitch & yaw angles.

Controller Method
Horizontal

(ϕ angle )

plane
Vertical plane

(θ angle )

ISE RMSE ISE RMSE

PID 1.402 0.087 1.135 0.001

ANN 1.862 0.016 1.556 0.223

ANN + PS + LH 1.835 0.002 2.243 0.123

ANN + PS + GA 2.034 0.032 72.36 0.758

yaw angle, as well as good rise times, i.e., very fast responses and
good steady-state errors for both the pitch and yaw angles.

CONCLUSION

Results for the NARX Feedforward NN methodology in the mod-
eling of the nonlinear TRMS have been presented in this report.
It has also been shown that different solutions are obtained for
every NN training undergone. This is due to the differing initial
weights conditions and biases as well as the arbitrary (i.e., random)
division of the dataset into training, validation, and testing in the
given ratios of 0.7, 0.15, 0.15. To ensure accuracy of the modeling
results, retraining should be performed several times.

The final output results for the ANN and Pattern Search with
Genetic Algorithm (ANN + PS + GA) show satisfactory control
for the optimized performance of the nonlinear plant, outperform-
ing three other controllers employed, as proven by the statistical
and graphical results presented. The proposed controller met all
our design requirements of within 5% of settling time, below 1%
(≫1%) of overshoot, as well as excellent rise times, i.e., very fast
(aggressive) responses for both the pitch and yaw angles, and no
steady-state error for the pitch angle, and a negligible steady-state
error for the yaw angle. Also of note was the minimum control
energy used by the controller in achieving these objectives.

The neural controllers designed were based on SISO control
architecture of the neural networks, each for the decoupled and
independent pitch and yaw subsystems. For future work, a more
robust and adaptive MIMO neural networks controller can be
developed/designed without going through the rigours of decou-
pling the TRMS helicopter model where some dynamics could be
lost due to system approximations and simplification in modelling.
The MIMO neural controller should automatically determine the
network gains and biases for a neural networks structure with
two-inputs two-outputs in a reasonable amount of time.
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