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ABSTRACT  
In the study, the rates of impact energy absorption of Acrylonitrile Butadiene Styrene (ABS) 
fractures produced by the Fused Deposition Modeling (FDM) method were examined. 
Charpy impact test results were determined using layer thickness, printing speed, support 
angle, build orientation, notch type, and unfill type. Box-behnken experimental design 
design in the study. Notch impact samples are produced on an ABS Three-dimensional 
Printer (3DP). Then, charpy impact tests were performed on the impact test device. Data 
were evaluated using the Minitab 21 program. Later, Deep Learning (DL) and Extreme 
Learning Machines (ELM) file models were created based on this development. The best 
results were obtained as 0.844 kJ/m2 with a layer thickness of 0.09 mm. At 60 mm/s 
printing speed and 30° support angle, the impact energy absorption is 0.803 kJ/m2. The 
extinction edge of the highest impact energy is 0.841 kj/m2. The most effective impact 
absorption was obtained as 0.827 kJ/m2 in the U notch type. In the full infill type, impact 
energy absorption is obtained as 0.777 kJ/m2. In DL, man is the programming and tanh is 
the activation function. DL, Mean Squared Error (MSE) value was calculated as 0.000923, r2 
was calculated as 0.97427. In ELM, the activation function is sigmoidal at the input and 
linear at the output.  

 

3D-FDM'de Charpy Darbe Testinin Yapay Zekâ ile 
Optimizasyonu  

ÖZ 
Çalışmada FDM yöntemiyle üretilen ABS parçaların darbe enerjisi emilim oranları 
incelenmiştir. Charpy darbe testi sonuçları, katman dağılımı, yazdırma hızı, destek açısı, yapı 
yönü, çentik tipi ve dolgu tip kullanılarak belirlendi. Çalışmada Box-behnken deneysel 
tasarım tasarımı kullanıldı. Çentik darbe numuneleri 3D yazıcıda ABS malzemeden üretildi. 
Daha sonra darbe test cihazında charpy darbe testleri yapıldı. Veriler Minitab 21 programı 
kullanılarak değerlendirildi. Daha sonra bu sonuçlara dayanarak DL ve ELM modelleri 
oluşturuldu. En iyi sonuçlar 0,09 mm katman kalınlığında 0,844 kJ/m2, 60 mm/s baskı 
hızında ve 30° destek açısında darbe enerjisi emilimi 0,803 kJ/m2 olarak belirlendi. En 
yüksek darbe enerjisinin edge yönünde 0,841 kj/m2, U çentik tipinde 0,827 kJ/m2, full 
dolgulu tipinde 0,777 kJ/m2 olarak elde edildi. DL'de adam optimizasyon algoritması, tanh 
ise aktivasyon fonksiyonudur. DL, MSE değeri 0,000923, r2 ise 0,97427 olarak hesaplandı. 
ELM'de aktivasyon fonksiyonu girişte sigmoid, çıkışta ise doğrusaldır. 
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1. Introduction  
 

There are ma1ny researchers and studies working on Additive Manufacturing (AM) and Reverse 
Engineering (RE) related issues. Three-dimensional (3D) printing has brought some advantages in its 
own way. These are design flexibility, high precision and less material usage. FDM and polyjet are 
widely used in 3D printing methods. Since the mechanical, and rheological properties of the parts in 
additive manufacturing are relatively low, their printing potential is quite weak [1–4]. 
 
Pattnaik et al. He evaluated the advantages and disadvantages of the limitations in production sound 
in AM. Thus, it has been observed that high costs and long periods of time have been reduced in some 
critical sectors [5]. Anwer and his colleagues developed simulations with computer-aided tolerance 
systems to model the effects of tolerances [6]. Chiu et al minimized the time required for repeatability 
fabrications by optimizing 3D fabrication parameters [7]. Alvarez et al. studied the effect of filler 
density on the impact and tensile strength of ABS samples [8]. Martinez-Garcia et al. surveyed the effect 
of different AM techniques on the mechanical properties of polymer parts. Some other researchers have 
investigated the dimensional and shape changes in Polyjet samples printed by different techniques [9]. 
In their study, Aroca and colleagues introduced 3D parts with a robot to enable low-cost mass 
production [10]. Cheng et al. They conducted a theoretical and experimental study for efficient 
optimization of the density of the cellular structure in AM [11].  
 
Harynska et al. With the outstanding printability of Polylactic acid (PLA)/TPS, they investigated the 
characterization of self-produced bio-based PLA and TPS tailored for 3D printing technology [12]. 
Castro et al. They examined the mechanical properties of sandwich panels produced by AM [13]. 
Andrzejewski et al. investigated that the addition of TPS and PBAT greatly improved impact strength 
and elongation [14]. Tanveer et al. They studied the effect of filler density on the impact and tensile 
strength of PLA samples [15]. Caminero et al. They examined the effect of layer thickness on impact 
performance in nylon samples [16]. According to Feket et al., rubber was used to increase the ductility 
of PLA filaments and provide deformability compared to samples prepared using 3DPAR filler [17]. 
Korga et al. They studied the relationship between the percentage filling of the sample and the 
absorbed energy in AM [18]. Hadid et al. P430 investigated the effect of layer-by-layer shot peening on 
the low-speed impact properties of ABS parts and demonstrated high toughness and impact strength 
[19]. Sood et al. The effect of production parameters such as layer thickness and scanning angle on the 
mechanical properties of 3D parts produced by the FDM method was investigated and it was stated 
that they had an effect on the strength [20]. Ameri et al. the fracture behavior of 3D printed structures 
under dynamic loading conditions was investigated [21]. Hetrick et al. Investigated the effect of AM 
fabricated Kevlar fiber reinforced Onyx composites on impact energy absorption [22]. Kontárová et al. 
He worked on improving the mechanical and thermal properties of PLA-PHB mixtures [23]. Leon et al. 
Charpy tested polycarbonate and nylon+carbon fiber samples. According to the results, they found that 
the absorbed energy was higher for PA+CF material [24]. Velarde et al. They found that adding agave 
fibers to the filaments improved their crystallinity, impact strength and absorption values [25]. Ning et 
al. Tensile strengths of carbon fiber reinforced plastic composite parts produced by FDM method were 
examined and the effect of layer thickness on yield and tensile strength was examined [26]. Sa'ude et 
al. He investigated the mechanical properties of copper powder added ABS materials produced by FDM 
method and revealed that they had a significant positive effect [27]. Also ABS etc. There are other 
studies examining mechanical tests using polymer filaments [28”–30]. These were made with different 
3D printers and the results regarding mechanical properties were compared [31,32]. 
 
In the literature, there are many Deep Artificial Neural Network (ANN) studies involving convolutional 
neural networks (CNNs) created in computer vision and image recognition [33], [34] [35]. Ma et al. 
trained a deep convolutional neural network based on DeepLab. In their study, they applied a 
symmetric overlap-square strategy and a local processing method based on symmetric correction to 
increase the accuracy of the results with 3D information [36]. Oborski and Wysocki (2022) examined 
the quality control system with DL and revealed that the neural network created for visual quality 
control worked with 99.820% accuracy [37]. Lin et al. investigated to achieve high accuracy prediction 
performance using one-dimensional convolutional neural network, Fast Fourier Transform Long 
Short-Term Memory Network and Fast Fourier Transform-Deep Neural Networks. [38]. Pan et al. They 
worked on the accuracy rate of estimating surface roughness with deep learning [39]. Li et al. 
introduced a modeling approach to predict the ra (surface roughness) of AM-produced parts. It has 
shown that 3D printed components can predict the surface roughness with high accuracy [40]. 
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Dimitriou et al. they propose a system that automates diagnostics with ANN [41]. Yun et al. (2020) 
established a vision-based defect inspection system using defect images obtained from the metal 
production line. They stated that the proposed method showed an effective performance [42]. Zhang 
et al. presented a data-based prediction model with deep learning in the FDM method and stated that 
it performed better than other machine learning techniques [43]. Essien and Giannetti worked on the 
model consisting of DL and Deep convolutional LSTM encoder-decoder architecture [44]. Serin et al. 
have tried to monitor the team status with the DL method [45]. Wang et al. worked on a DL model for 
welding processes [46]. Cardoso et al. They stated that with the Machine Learning approach, useful 
results can be produced that will assist in providing appropriate resources, decision-making and 
operation of the system [47]. Klein et al. used random forests (RF) machine learning to estimate the 
size and surface quality characteristics of holes [48]. 
 
ELM was first introduced as a learning scheme for single-layer feedforward networks (SLFNs) and was 
stated to be able to estimate nonlinear function through random hidden neurons. In particular, the 
parameters of hidden neurons occur randomly and the activation function is a nonlinear continuous 
function. ELM was originally designed to solve the supervised learning problem. Later it is used in 
regression and classification problems [49–53]. The equation of a single hidden layer and feedforward 
neural network with n number of hidden nodes is shown as in Eq 2. The ai and bi in the equation are 
the learning parameters. Bi, i. are the weights of the hidden node. G(x) is the activation function [49,50]. 
 
f_N (x)=∑_(i=1)^NB_i ,G((a_i,b_i,x),xϵ R,a_i  ϵ R)                 (1) 
 
Looking at the literature, ABS etc. There are also studies examining the mechanical properties of 
filaments. In this study, notch impact specimens were produced from ABS material in a 3D printer using 
the experimental design box behnken-RSM method in the first stage. Then, charpy tests were carried 
out on the AOB impact tester and statistical analyzes of all data obtained were performed in the Minitab 
21 program. A model was created with DL and ELM methods through the data obtained in the second 
stage. 
 
When the literature is examined, there are studies examining the mechanical properties of ABS etc. 
filaments. In the first stage of this study, notch impact specimens were produced from ABS material on 
a 3D printer. In the production of these specimens, the Response Surface Methodology (RSM)-Box 
behnken method, which is rarely encountered in the literature on the mechanical properties of 
filaments, was used as an experimental design.  In addition, another important point that stands out 
differently from the literature is that AI models were created with DL and ELM methods depending on 
the data obtained in the experimental results. 
 

2. Material and Methods 
 
Box-Behnken RSM method, one of the surface response methods, was used in the study. Box-Behnken 
presents a data-driven relationship between the independent variable and the response function. In 
this context, the model is a first-order model if it shows a predictive result on the response surface as 
a linear func. of the independent variables (Equation 2). In case of degree of curvature in the response 
surface, it is a second-order model as in Equation 3. 
 
𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2 𝑥2 + ⋯ + 𝛽𝑘𝛽𝑘 + 𝜀                                  (2) 
 
𝑦 = 𝛽0 ∑ 𝛽𝑖

𝑛
𝑖=1 𝑋𝑖 + ∑ 𝛽𝑖𝑖

𝑛
𝑖=0 𝑋𝑖

2 + ∑ ∑ 𝛽𝑖𝑗
𝑛
𝑗=1 𝑋𝑖𝑋𝑗

𝑛
𝑖=0 + 𝜀0               (3) 

 
(Table 1) below presents additive manufacturing parameters and levels. The results were analysed in 
Minitab 21 software. Sample production according to the parameters was made using the FDM method 
on a Zortrax M200 (Figure 1) 3D printer. Charpy impact specimens were fabricated using layer 
thickness, print speed, support angle as continuous factors and build orientation, notch type and filler 
type as categorical factors (Table 1). Here, the levels of 0.09 mm, 0.14 mm and 0.19 mm were selected 
for layer thickness on the 3D printer. For printing speed, 40, 60 and 80 mm/s, for support angle 20, 30 
and 40 were selected. These choices were made by considering the literature. In the same way, flat, 
edge and upright production build orientation were selected for build orientation (Fig. 2a). The notch 
type, which is another important parameter of the study, was selected as U, V and Kh (Figure 2b), and 
full and mesh methods were selected for the fill type. ABS was used as the filament material. Charpy 
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impact test specimens (Figure 2) were produced in conformity with ASTM 6110 standard. Charpy 
impact energy were performed 1J on the AOB impact test device (Figure 3a) and the test sample and 
post-test sample status are given (Figure 3b). 
 

Table 1. Box-behnken parametres and levels 

Continuous Factors 
Level values 

Low  High 

Layer thickness (mm) 0,09 0,19 
Print speed (mm/s) 40 80 

Support angle (°) 20 40 

  

Categorical Factors 
Level values 

1. 2. 3.  

Build Orientation  Flat Edge Upright 
Notch type V U Kh 

Infill type Full Mesh   

 
After obtaining the experimental data, artificial intelligence based DL and ELM models were tried to be 
created. recommended prediction model was created with ELM and DL for the Charpy impact test data. 
Artificial intelligence based analyses of the results were realised in Anaconda-Python 3.9. 
 

 
Figure 1.  3D printer in the study 

 
 

 
                                                                     (a)                                                                  (b) 

Figure 2.  Charpy impact test specimens a) build orientations b) notch type 
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                                                                                   (a)                                                              (b) 

Figure 3.  a) Charpy impact test device in the study and b) samples 
 

3. Results and Discussion 
 
3.1 Response surface method (RSM) 

 
This study, which was measured with the RSM method, the Box behnken method was used as the design 
of experiment (DOE). In accordance with this experimental design, notch impact samples were 
produced on the 3D printer. Charpy tests were performed on a Shimadzu brand impact tester and all 
the data obtained were processed (Table 2). The data achieved after the charpy test were analyzed in 
Minitab-21 software. Box-benhken analysis and Analysis of Variance (ANOVA) test were performed 
here. Additionally, figures and graphs were drawn to explain this study more effectively.  

 

Table 2. Box-behnken design and results 

Run 
Order 

Pt 
Type 

Blocks 
Layer 
thickness 
(mm) 

Print speed 
(mm/s) 

Support 
angle (°) 

Build 
orientation 

Notch 
type 

Infill 
type 

Data 
(kj/m2) 

1 2 1 0,19 80 30 Edge V Mesh 0,539 

2 2 1 0,14 40 20 Upright Kh Mesh 0,451 

3 2 1 0,09 60 40 Edge Kh Full 0,951 

4 2 1 0,14 40 20 Edge V Full 0,660 

5 2 1 0,09 60 20 Edge V Mesh 0,724 

6 2 1 0,09 80 30 Edge V Mesh 0,736 

7 2 1 0,19 60 40 Upright U Mesh 0,636 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

264 2 1 0,19 60 20 Flat U Mesh 0,657 

265 2 1 0,09 60 20 Edge Kh Full 0,973 

266 2 1 0,14 80 40 Upright Kh Full 0,517 

267 2 1 0,09 40 30 Edge U Mesh 1,081 

268 2 1 0,14 80 40 Upright U Full 0,622 

269 2 1 0,14 40 40 Flat U Mesh 0,726 

270 2 1 0,09 80 30 Edge Kh Full 0,984 

The effects of continuous and categorical parameters on the charpy impact test are demonstrate in 
(Figures 4&5). The impact strength data is inversely proportional to the layers thickness. It was 
concluded that the main reason behind this is that the smaller the diameter of the filament at the nozzle 
exit, the stronger the adhesion will be, as the surface area of adhesion to the previous layers will 
increase. Also, a thinner filament will create a tighter texture. In terms of charpy impact energy 
absorption, the high-odrer value  charpy impact energy absorption was achieved with a layer thickness 
of 0.09 mm. In terms of layer thickness, the lowest impact energy absorption values were obtained at 
a layer thickness of 0.19 mm. The highest impact energy value absorption was obtained as 0.844 kj/m2 
at 0.09 mm layer thickness. The results regarding the layer thickness are compatible with the searches 
in the literature [32,54,55]. 
 
When the effects of print speed on the charpy impact test data were commented and seen that most 
noteworthy results was at the median value of 60 mm/s. It was concluded that the main reason behind 
this is that the slow and fast writing process affects the adhesion and therefore the impact test value 
due to the cooling of the surface. The maximal charpy impact energy absorption was obtained as 0.803 
kj/m2 at 60 mm/s printing speed.  The results regarding the layer thickness are compatible with the 
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searches in the literature [54,55].  
 
When the support angle values were commented and seen that the best outcomes were achieved at 30° 
degrees. The difference between the support angle of 20° and 40° with the filament reveals the fact that 
the adhesion decreases. The highest charpy impact energy absorption was obtained as 0.803 kj/m2 at 
60 mm/s printing speed. 

 

 
Figure 4.  Main effects plot for continious parameters 

 
When the effect of categorical parameters is examined in Fig. 5, it gave extremely good results on 
the edge charpy impact test data from the build orientation values. Here, when the build orientation 
is considered together with the notch type, the edge gave good results because it is the surface that 
meets the impact load. Flat positioning followed this. Upright, where the samples were produced 
vertically, gave the weakest impact values due to both the oscillations during production and the 
elevation on a low cross-sectional area. The maximal charpy impact energy absorption was obtained 
as 0.841 kj/m2 at edge position. The results regarding the build orientation are compatible with the 
searches in the literature [22,29,56]. 
 

When notch type was examined, the highest charpy impact values were obtained in U type samples. 
This result can be explained as U-section absorbs the impact force by spreading it over a wide 
surface. The keyhole cutout also gave relatively good results. Again, the section where the impact 
force is distributed has gained importance here as well. The highest impact energy absorption was 
obtained as 0.827 kj/m2 at U notch type. The results regarding the layer thickness are compatible 
with the searches in the literature [18]. 
 

When the filling type is examined, as expected, the full filling type revealed the best results compared 
to the mesh filling type. The highest impact energy absorption was obtained as 0.777 kj/m2 at full 
infill type. The results regarding the layer thickness are compatible with the searches in the 
literature [18,22]. 
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Figure 5.  Main effects plot for categorical parameters 

 
The r2 value of the model emerging with the Box-behnken method is 0.9529. However, the estimated 
and adjusted r2 values were revealed as 0.9454 and 0.9377. These numerical results demonstrated that 
there is a statistical highly remarkable fit in the box behnken model (Table 3). 
 

Table 3. Model R results 
S R:sq R:sq(adj) R:sq(pred) 

0,0453935 95,29% 94,54% 93,77% 

 
ANOVA after charpy test is presented in (Table 4). The F result of the model obtained in ANOVA was 
126.81 and a remarkable effect rate of 95.29% was obtained. In addition, with p values of the model 
being <0.05, it was unveiled that the model was statistically significant in terms of both linear and 
square values, with all continuous and categorical variables. According to ANOVA, the most effective 
parameters on the charpy results were build direction (24.69%) and notch type (17.81%). 
 

Table 4. ANOVA for Process Parameters 
Source DF Adj:SS Adj:MS F:Value P:Value Contribution 
Model. 37 9,6682 0,26130 126,81 0,000 95,29% 
  Linear. 8 6,9118 0,86398 419,29 0,000 68,12% 
    Layer thickness 1 1,3926 1,39260 675,83 0,000 13,73% 
    Print speed 1 0,3111 0,31109 150,97 0,000 3,07% 
    Support angle 1 0,2878 0,28783 139,69 0,000 2,84% 
    Build orientation 2 2,5055 1,25277 607,97 0,000 24,69% 
    Notch type 2 1,8066 0,90331 438,38 0,000 17,81% 
    Infill type 1 0,6081 0,60814 295,13 0,000 5,99% 
  Square 3 2,7054 0,90179 437,64 0,000 26,66% 
    Layer thickness*Layer thickness 1 0,0100 0,00995 4,83 0,029 0,73% 
    Print speed*Print speed 1 1,4164 1,41642 687,39 0,000 11,96% 
    Support angle*Support angle 1 1,4178 1,41777 688,05 0,000 13,97% 
  2-Way Interaction 26 0,0510 0,00196 0,95 0,536 0,50% 
    Layer thickness* Print speed 1 0,0003 0,00028 0,14 0,713 0,00% 
    Layer thickness* Support angle 1 0,0023 0,00235 1,14 0,287 0,02% 
    Layer thickness* Build orientation 2 0,0019 0,00096 0,46 0,629 0,02% 
    Layer thickness* Notch type 2 0,0009 0,00044 0,21 0,807 0,01% 
    Layer thickness*Infill type 1 0,0000 0,00000 0,00 0,975 0,00% 
    Print speed*Support angle 1 0,0046 0,00462 2,24 0,135 0,05% 
    Print speed*Build orientation 2 0,0061 0,00307 1,49 0,227 0,06% 
    Print speed*Notch type 2 0,0118 0,00590 2,86 0,059 0,12% 
    Print speed*Infill type 1 0,0024 0,00236 1,15 0,286 0,02% 
    Support angle*Build orientation 2 0,0034 0,00169 0,82 0,441 0,03% 
    Support angle*Notch type 2 0,0004 0,00020 0,10 0,907 0,00% 
    Support angle*Infill type 1 0,0006 0,00059 0,29 0,592 0,01% 
    Build orientation*Notch type 4 0,0012 0,00030 0,15 0,965 0,01% 
    Build orientation*Infill type 2 0,0133 0,00667 3,24 0,041 0,13% 
    Notch type*Infill type 2 0,0017 0,00086 0,42 0,659 0,02% 
Error 232 0,4781 0,00206 

  
4,71% 

  Lack-of-Fit 196 0,3451 0,00176 0,48 0,999 3,40% 
  Pure Error 36 0,1329 0,00369 

  
1,31% 

Total 269 10,1462 
   

100,00% 
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3.2 Optimization with artificial intelligence (AI) 
 
Using these experimental data, ELM and DL prediction models were created. Before starting the 
analysis, dependent variables were not normalized, but independent variables were normalized in 
the [0,1] range. Normalization was applied to the data in both methods (DL and ELM). Sigmoid was 
applied as activation function in ELM. In ELM, the number hidden layer is set as 1. Eight different 
values were set for the number of neurons in the hidden layers (Table 5). 90% of the data was utilised 
for training the models and the of those who remain 10% was reserved for testing (Table 5). In DL, 
adam and rmsprop were applied as optimization algorithms, tanh, sigmoid and relu were applied as 
activation functions. In DL, the number of hidden layer is 3 and the number neurons in each hidden 
layer is 6 and 12. In DL, as in ELM, 90% of the data was utilised for training the models and the of 
those who remain 10% was reserved for testing. Epochs was set to 1000 (Table 5). 
 

Table 5. DL and ELM parameters 
AI Parameters  DL    Basic ELM P/ELM OP/ELM 

Optimization 
Algorithms 

Adam and 
Rmsprop 

- - - 

Normalization 
method 

Min/Max Scaling Min/Max Scaling Min/Max Scaling Min/Max Scaling 

Activation Function 
for Input Layer 

Relu, tanh, 
sigmoid 

sigmoid sigmoid sigmoid 

Activation Function 
for Output Layer 

- linear  linear  linear  

Input Layer Neurons 6 6 6 6 

Output Layer 
Neurons 

1 6 6 6 

Hidden Layers 3 1 1 1 

Hidden-1 Layer 
Neurons 

6;12 6;12;18;24 30;60;90;120 30;60;90;120 

Hidden-2 Layer 
Neurons 

6;12 - - - 

Hidden-3 Layer 
Neurons 

6;12 - - - 

DL Learning Rate 0,001    

Batch Size 16    

Training data size  0,9 0,9 0,9 0,9 

Test data size  0,1 0,1 0,1 0,1 

Epochs for DL 1000 - - - 

 
In this AI analysis, 96 trial runs were performed with DL parameters and 45 trial runs were 
performed with ELM parameters. The architectures of the AI (DL and ELM) models proposed as a 
result of these runs are presented in (Figures 6&7).  
 
The max. dynamic results of DL were determined by the mean square error. Here, the best results 
were obtained under the following conditions. Adam as the optimization algorithm, tanh as the 
activation function, the number of hidden layers 3 and the number of neurons 6, 6 and 6. The 
architectural design of the DL model is shown in (Figure 6). 
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Figure 6.  DL architecture of this study 

 
The ELM model used in the research is demonstrated in (Figure 7). In ELM, the activation function is 
sigmoid at the input layer and linear at the output. In ELM, the best MSE results were obtained with 
180 neurons in the hidden layer Optimally Pruned Extreme Learning Machine (OP-ELM). 
 

 
Figure 7.  ELM architecture of this study 

 

In this study, prediction models for ELM and DL were created using the Charpy test. The optimal MSE 
value in ELM was calculated as 0.00173 and r squared value as 0.96178. These results were obtained 
by using OP-ELM as the optimization algorithm and sigmoid as the activation function. The best MSE 
value in DL was calculated as 0.000923, and the r2 as 0.974274. These results were obtained using 
adam as the optimization algorithm and tanh as the activation function. Some of the other activation 
functions were also tried in ELM. However, since remarkable results are usually obtained in the 
sigmoid function, the results of other activation functions were not taken into account. Therefore, 
sigmoid was included in all ELM trials. All results are demonstrated in (Table 6).  
 
For the models presented in this study, it is demonstrated that both DL and ELM give very successful 
prediction results as efficient optimization, although DL results are relatively better. The proper choice 
of model for further research and analyses will vary depending on the data set and print parameters. 
 
Depending on the results obtained, it has revealed that that different artificial intelligence optimization 
practice can be applied in optimizing the outputs obtained with different parameters. More importance, 
it has become clear that AI-based optimizations give remarkable predictions as all the results obtained 
in additive manufacturing. 
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Table 6. Result of DL and ELM 

C
h

a
rp

y
 d

a
ta

 (
k

j/
m

2
) 

Method 
Optimization 

algorithms 
Neuron 
Number 

Activation function MSE Training MSE Test r2 

Deep  
Learning 

Adam 

(6,6,6) 

Relu, Relu, Relu 0,014889 0,008906 0,78231 

Sigm., Sigm., Sigm. 0.018986 0.014021 0.609101 

tanh, tanh, tanh 0.001104 0.000923 0.974274 

(6,12,12) 

Relu, Relu, Relu 0,001835 0,004677 0,88568 

Sigm., Sigm., Sigm. 0.01895 0.013402 0.626372 

tanh, tanh, tanh 0.001177 0.001948 0.945683 

(12,6,6) 

Relu, Relu, Relu 0,00273 0,006389 0,84384 

Sigm., Sigm., Sigm. 0.015924 0.012803 0.643054 

tanh, tanh, tanh 0.00096 0.001744 0.951383 

(12,12,12) 

Relu, Relu, Relu 0,001431 0,005228 0,87221 

Sigm., Sigm., Sigm. 0.017581 0.012305 0.656941 

tanh, tanh, tanh 0,000768 0,001786 0,95020 

RmsProp 

(6,6,6) 

Relu, Relu, Relu 0,009848 0,011644 0,7154 

Sigm., Sigm., Sigm. 0.018496 0.014314 0.60093 

tanh, tanh, tanh 0.003434 0.003451 0.903795 

(6,12,12) 

Relu, Relu, Relu 0,008579 0,010829 0,73532 

Sigm., Sigm., Sigm. 0.01887 0.014302 0.601273 

tanh, tanh, tanh 0.002399 0.00294 0.918035 

(12,6,6) 

Relu, Relu, Relu 0,002074 0,003994 0,90237 

Sigm., Sigm., Sigm. 0.017955 0.012302 0.657039 

tanh, tanh, tanh 0.001972 0.002593 0.927714 

(12,12,12) 

Relu, Relu, Relu 0,002517 0,010966 0,73196 

Sigm., Sigm., Sigm. 0.019488 0.01361 0.620579 

tanh, tanh, tanh 0,003791 0,004205 0,88277 

Extreme  
Learning  
Machines 

Basic ELM 

6 

Sigmoid 

0.014242 0.012677 0.646567 

12 0.012794 0.012072 0.663446 

18 0.007343 0.003898 0.891334 

24 0.009754 0.010598 0.704544 

48 0.001341 0.002177 0.94304 

P-ELM 

30 

Sigmoid 

0.006035 0.007112 0.801723 

60 0.001037 0.002518 0.929812 

90 0.001004 0.002458 0.94548 

120 0.001161 0.003248 0.909447 

180 0.002334 0.003001 0.916346 

OP-ELM 

30 

Sigmoid 

0.006506 0.00452 0.873975 

60 0.001254 0.002273 0.936618 

90 0.000908 0.004553 0.873054 

120 0.000539 0.002201 0.938638 

180 0.000563 0.00173 0.96178 

 

Comparisons of the predicted values achieved in the ELM and DL models with the values achieved 
in the experiments are displayed in (Figures 8&9).  In the graphs, Red-dashed line demonstrate the 
predicted data of the best model, and black-solid line demonstrate the actual data. When figures are 
analyzed in detail, the data of the proposed models revealed results very close to the original data. 
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Figure 8. DL's original data vs. model output comparison chart in terms of best test MSE Value 

 

 

Figure 9. OP-ELM's original data vs. model output comparison chart in terms of best test MSE Value 

 

4. Conclusion 
 
In the study, charpy impact tests were investigated out to determine the energy absorption of the 
specimens produced by the 3D-FDM method. In this study, notch impact specimens were produced 
from ABS material in a 3D printer using the experimental design box behnken RSM method in the first 
stage. Then, charpy tests were performed on the AOB brand impact tester and all the data achieved 
were analyzed in the Minitab-21 software program. In the context of these conclusions achieved in the 
next stage, a model is presented with DL and ELM methods from these data. All the conclusions of the 
research are as follows; 
 
• Charpy impact test data decreased with the increase in layer thickness values. A thinner filament is 
expected to produce a tighter texture. Among all experiments, the maximal charpy impact energy 
absorption was obtained as 0.844 kj/m2 at a layer thickness of 0.09 mm. 
 
• The effects of printing speed on the charpy impact test data were analysed and It has been seen that 
the best impressive result was obtained at 60 mm/s. It is thought that the slow and fast printing process 
affects the adhesion and thus the impact test value due to the cooling of the surface. The maximal 
charpy impact energy absorption was obtained as 0.803 kj/m2 at 60 mm/s printing speed. 
 
• Support angle values were analysed and the optimal results were achieved at 30°. The maximal 
charpy energy absorption was obtained as 0.803 kj/m2 at 30° support angle. 
 
• Build orientation values showed extremely effective results on edge charpy impact test data. When 
the build orientation is considered together with the notch type, the good results of the edge can be 
explained more because it is the surface that meets the impact load. The maximal charpy impact energy 
absorption was obtained as 0.841 kj/m2 at edge position. 
 
• When Notch type was examined, the highest charpy values were obtained in U type samples. The 
keyhole cut out also gave relatively good results. The maximal charpy impact energy absorption was 
obtained as 0.827 kj/m2 at U notch type.  
 
• As the filling type, the full filling type showed the best results compared to the mesh filling type. The 
maximal charpy impact energy absorption was obtained as 0.777 kj/m2 at full infill type. 
 
• In DL, adam was applied as the optimization algorithm and tanh as the activation func.  The number 
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of hidden layer in the runs that gave good results in the analysis was 3. 10% of the data was used for 
testing. DL, MSE value was calculated as 0.000923 and r square value as 0.97427. 
 
• The activation func. utilized in ELM is sigmoid for input and linear for output. In ELM, the best (MSE) 
results were obtained with 180 neurons in the hidden layer (OP-ELM). In ELM, the best MSE result was 
calculated as 0.00173 and r2 value as 0.96178. The results showed that the OP-ELM optimization 
algorithm resulted in an effective ELM model when the activation function was in the sigmoid. 
 
• For the models put forward this study, although the DL results are relatively better, it shows that both 
DL and ELM give very successful prediction results as the effective optimization. It is concluded that 
different artificial intelligence methods can be applied to optimize the outputs obtained with different 
parameters in each case. 
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