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 Buildings are a fundamental component of the built environment, and accurate information 
regarding their size, location, and distribution is vital for various purposes. The ever-
increasing capabilities of unmanned aerial vehicles (UAVs) have sparked an interest in 
exploring various techniques to delineate buildings from the very high-resolution images 
obtained from UAV photogrammetry. However, the limited spectral information in UAV 
images, particularly the number of bands, can hinder the differentiation between various 
materials and objects. This setback can affect the ability to distinguish between different 
materials and objects. To address this limitation, vegetative ındices (VIs) have been employed 
to enhance the spectral strength of UAV orthophotos, thereby improving building 
classification. The objective of this study is to evaluate the contribution of four specific VIs: the 
green leaf index (GLI), red-green-blue vegetation index (RGBVI), visual atmospherically 
resistant index (VARI), and triangular greenness index (TGI). The significance of this 
contribution lies in assessing the potential of each VI to enhance building classification. The 
approach utilized the geographic object-based image analysis (GeoBIA) approach and a 
random forest classifier. To achieve this aim, five datasets were created, with each dataset 
comprising the RGB-UAV image and a corresponding RGB VI. The experimental results on the 
test dataset and a post-classification assessment indicated a general improvement in the 
classification when the VIs were added to the RGB orthophoto. 
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1. Introduction  
 

Among the myriad of urban features, buildings 
represent a fundamental component [1]. As such, 
obtaining accurate and detailed information on buildings 
is crucial for urban planning, infrastructure 
development, disaster management, and other 
applications [2]. In remote sensing, the term ‘building 
extraction’ is used to describe the process of delineating 
building footprints or roof outlines from remotely sensed 
data, such as very high-resolution (VHR) aerial and 
satellite images. These datasets are the most widely used 
as they offer rich spatial details. Furthermore, the 
enhanced spatial resolution of these datasets improves 
the ability to distinguish various objects in urban 
settings, thereby facilitating the extraction of individual 
building information [3].  

The recent advancements in unmanned aerial vehicle 
(UAV) technologies, coupled with the sophistication of 
imaging sensor systems, have resulted in an increased 
use of these systems to capture aerial images of areas of 
interest. The VHR images obtained can be quickly 
processed to obtain orthophotos, thus providing an 

alternative dataset to extract building outlines [4]. This 
development has sparked an interest in exploring 
various methods to delineate building objects from VHR 
UAV imagery.  

Conventional methods for building extraction involve 
manual approaches, which include delineating the 
outlines of buildings using various computer-aid designs 
(CAD). Also, rule-based techniques that leverage 
knowledge of buildings have been employed in building 
extraction. While the manual approach shows promise, it 
is repetitive and time-consuming when applied to larger 
areas [5-6]. In contrast, rule-based techniques rely on 
straight lines and use low-level edge detection and 
perceptual grouping to extract building outlines [7-8]. 
However, these line-based approaches encounter 
limitations with certain building geometries and struggle 
with low signal-to-noise ratio (SNR) in VHR images [9– 
10]. Some methods employ template matching, which 
involves the use of manually generated templates and 
similarity measures for building extraction [11–14]. 
Despite their flexibility and accuracy, template-based 
approaches require extensive prior knowledge of the 
geometrical shape parameters for the design and 
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generation of the templates. Moreover, the need to 
develop different templates for different applications 
increases the computational costs and reduces the ability 
to process extensive data [9, 11].  

Other studies utilise knowledge of building 
geometries, such as box-shape, T-shape, L-shape, or E-
shape, and the spatial or contextual relationship between 
buildings and the background, such as shadows, are used 
to delineate buildings [15–19]. The drawback of these 
approaches is their reliance on building knowledge, and 
the task of transferring implicit knowledge into explicit 
detection rules is challenging. If the rules are too strict, 
buildings may be missed, whereas overly loose rules can 
lead to many false detections [9–11]. Furthermore, 
several factors can make the extraction of buildings using 
rule-based techniques a challenging task. These factors 
include such as the intricate shape and size of buildings, 
occlusion, and imaging angles. 

Contrastingly, image classification approaches (pixel-
based and object-based) categorize pixels in images into 
specific classes, primarily buildings, and non-buildings in 
the building extraction domain [20]. Pixel-based 
classification operates by examining pixels in isolation 
and leverages the spectral characteristics of each pixel to 
assign them to distinct classes. While this approach is 
relatively simple, it encounters difficulties with spatial 
variability when applied to VHR images. On the other 
hand, the object-based approach groups image pixels 
into spectrally homogenous segments using various 
image-segmentation algorithms. Subsequently, an 
algorithm is adopted to classify the segments into 
predefined categories. This transition from focusing on 
individual pixels to evaluating at the segment level 
introduces complexity into the classification process. As 
a result, this approach can capture spatial relationships 
and complex patterns in VHR images [21–22]. The object-
based approach, alternatively referred to as geographic 
object-based image analysis (GeoBIA), has emerged as an 
efficient approach for automating the extraction of 
objects from remote sensing data [23]. GeoBIA integrates 
image segmentation algorithms to segment VHR images 
into image objects, extract and employs machine learning 
algorithms such as support vector machine (SVM), 
random forest (RF), and decision trees (DT), among 
others, to classify the image objects, based on their 
spatial information, and spectral characteristics. This 
process makes GeoBIA particularly suited for building 
extraction [24 – 25].  

Several researchers have since explored the use of 
GeoBIA for extracting buildings from VHR images. 
Aminipouri et al. [24] conducted a study that leveraged 
VHR satellite imagery to extract spatial information 
about slum settlements using object-oriented 
techniques. The study aimed to determine the feasibility 
of using VHR orthophotos to create an accurate inventory 
of buildings for estimating the slum population. The 
researchers used eCognition software for image 
segmentation and classification of building roofs in three 
different slum areas in Dar-Es-Salaam. The proposed 
model achieved a roof extraction accuracy of 91%. The 
estimated population represented 82.2%, 72.5%, and 
68.3% for the wards of Charambe, Manzese, and Tandale, 
respectively. In another study, Benarchid et al. [26] 

presented an automatic building extraction approach in 
Tetuan City. This method employed an object-based 
classification and shadow information derived from VRH 
multispectral images. The shadow information was 
extracted using invariant color features. The quality 
assessment was performed at two different levels: area 
and object. The area level evaluated the building 
delineation performance, whereas the object level 
assessed the accuracy in the spatial location of individual 
buildings. The results showed an overall building 
detection percentage of 87.60% when the parameters 
were properly adjusted and adapted to the type of areas 
considered. 

The methodology adopted by Chen et al. [9] presented 
an object-based and machine learning-based approach 
for automatic house detection from RGB high-resolution 
images. The study utilised thresholding, watershed 
transformation, and hierarchical merging for image 
segmentation. In addition, the study proposed two new 
features, namely edge regularity indices (ERI) and 
shadow line indices (SLI), to capture the characteristics 
of house regions effectively. The researchers employed 
three classifiers, namely AdaBoost, random forests, and 
support vector machine (SVM), to identify houses from 
test images. The proposed ERI and SLI features improved 
the precision and recall by 5.6% and 11.2%, respectively. 
Norman et al. [22] focused on urban building detection 
using object-based image analysis (OBIA) and machine 
learning (ML) algorithms. The study employed a 
medium-resolution Sentinel-2B image and applied SVM 
and DT algorithms for the classification of buildings. The 
study underscored the significance of segmentation 
parameters and feature selection, with SVM 
outperforming DT and achieving an accuracy of 93%. 

Frishila and Kamal [27] aimed to examine the 
effectiveness of spectral features in identifying and 
mapping building objects and assess the accuracy of the 
mapping result. The location of the study sample was in 
parts of Padang City, West Sumatra, and the image used 
was a pan-sharpened GeoEye-1 image (0.5 m pixel size). 
Image segmentation was done by the multi-resolution 
segmentation method to delineate candidate segments 
for building objects. Each segment was then assigned to 
building and non-building classes by applying a rule-
based classification algorithm. Several spectral features 
were incorporated in discriminating the objects, 
including several band ratios that involve all bands in 
GeoEye-1 (Blue, Green, Red, and near-IR), iron oxide 
indices, mean value of red and NIR bands, border 
contrast of red and NIR bands, HIS, and Quantile of the 
bands. The map result indicates that building and non-
building objects could be separated using spectral 
features of the GeoEye-1 image. However, there are some 
classification inaccuracies, mainly for the densely 
populated urban areas where buildings objects are close 
to each other. An area-based accuracy assessment 
indicated that the use of spectral features provides an 
overall accuracy of 68.7%. 

Hossain and Chen [28] introduced several 
modifications to previously proposed hybrid 
segmentation methods for building extraction. They used 
the reference polygon to identify optimal parameters, a 
donut-filling technique to reduce over-segmentation 
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caused by roof elements, and illumination differences to 
restrict merging with shadow. Their methodology was 
tested on a UAV image with visible bands only and 
achieved better results compared to other methods. One 
of the strengths of their method was that there was no 
parameter tuning and user interaction at running time. 
In addition, it was able to segment both small and large 
buildings without using any scale or object size 
parameters. 

Dornaika et al. [29] presented a generic framework 
that exploits recent advances in image segmentation and 
region descriptor extraction for the automatic and 
accurate detection of buildings on aerial orthophotos. 
The proposed solution is supervised in the sense that the 
appearances of buildings are learnt from examples. For 
the first time in the context of building detection, they 
used the matrix covariance descriptor, which proved to 
be very informative and compact. They introduced a 
principled evaluation that allows selecting the best pair 
segmentation algorithm-region descriptor for the task of 
building detection. The proposed approach presents 
several advantages in terms of scalability, suitability, and 
simplicity with respect to the existing methods. 
Furthermore, the proposed scheme (detection chain and 
evaluation) can be deployed for detecting multiple object 
categories that are present in images and can be used by 
intelligent systems requiring scene perception and 
parsing, such as intelligent unmanned aerial vehicle 
navigation and automatic 3D city modeling. 

Argyridis and Argialas [30] developed a GEOBIA 
approach that integrates Deep Learning classification 
and Fuzzy Ontologies to monitor building changes in 
suburban areas of Greece. They employed deep belief 
networks (BDNN) on the lowest level of the 
segmentation hierarchy for the initial detection of areas 
of possible change. The classification result was then 
refined based on interpretation rules developed on the 
upper levels of the hierarchy. Their accuracy assessment 
indicated that 93.5% of the total number of changes were 
successfully detected, while the commission error was 
less than 20%. 

While GeoBIA has shown considerable promise in 
building classification and segmentation, the spectral 
limitations of UAV-RGB imagery pose a challenge, 
especially when distinguishing between buildings and 
other urban features (3). Researchers have since used 
various ancillary datasets to address this drawback when 
VHR multispectral images are adopted for building 
extraction, the near-infrared (NIR) information has been 
established to be highly effective in differentiating 
vegetation from buildings [4]. Most often, various 
spectral indices such as the normalised difference 
vegetation index (NDVI), normalised difference built-up 
index (NDBI), and the normalised difference water index 
(NDWI), among others, are utilised to enhance building-
background separability, thereby improving building 
extraction [31-33]. 

To address this challenge, many researchers have 
resorted to ancillary datasets, such as the RGB vegetative 
indices (VIs), to distinguish buildings from vegetative 
features [1, 4]. VIs can capture subtle spectral variations, 
and they present a promising approach for enhancing 
building classification and segmentation when 

integrated with the spatial context analysis of GeoBIA [1, 
34]. 

While some research works have concentrated on 
improving building classification using RGB VIs, a 
comprehensive comparison evaluating the impact of 
each VI on classification accuracy has yet to be 
conducted. This study aims to bridge this gap. 
Consequently, the primary objective of this study is to 
investigate the impacts of incorporating RGB-based VIs 
into the GeoBIA classification pipeline for building 
extraction. To achieve this objective, four well-
established VIs were utilized. These include the green 
leaf index (GLI), red-green-blue vegetation index 
(RGBVI), visual atmospherically resistant index (VARI), 
and triangular greenness index (TGI) were employed. 
These VIs were combined with UAV-RGB imagery to form 
separate datasets for the building classification task. The 
efficacy of each dataset was evaluated using key 
performance metrics, including overall accuracy (OA), 
precision (P), recall (R), and F-1 score. 

 
2. Material and method 

 
This study utilized the Google Earth Engine (GEE) 

Platform to perform the building extraction. GEE is a 
planetary-scale platform designed for Earth science and 
data analysis. The platform offers a web-based code 
editor equipped with a Javascript API for executing 
scripts. Consequently, it enables the use of cloud 
computing to quickly develop and perform complex 
geospatial workflows with ease. 

The orthophoto of the study area had to be uploaded 
to the platform so as to perform the building extraction 
using the GeoBIA approach. The dataset was 
subsequently imported into the code editor, followed by 
the performance of the analysis. The workflow involved 
generating RGB VIs using the individual bands of the 
orthophoto, creating the datasets of each VI from the 
bands of the original orthophoto, adding each VI and the 
RGB image, performing an object-based segmentation on 
each dataset, selecting features for building and non-
building classes, and training and testing a machine-
learning classifier on the selected features. 

The Randon Forest (RF) machine-learning classifier 
was adopted for this study, whereas the simple linear 
iterative clustering (SLIC) algorithm was exploited for 
the segmentation step. Figure 1 depicts the workflow 
adopted for this study. 

 
2.1. Study area and dataset 
 

The New Mankessim community is within the 
administrative jurisdiction of the Tarkwa Nsuaem 
Municipal Assembly, located approximately 19.30 
kilometres southwest of the municipal capital, Tarkwa, in 
the Western Region of Ghana. From a geographical 
perspective, the community is positioned at latitude 5°5’ 
29.45” N and longitude 2°6’ 4.70” W, nestled at an 
average altitude of 55 meters above mean sea level. In 
response to the evolving mining dynamics, a prominent 
mining company operating in the region initiated a 
resettlement program to relocate the community 
members from their previous dwellings to the current 
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location. Consequently, a well-planned layout is a notable 
feature of the New Mankessim community. In addition, a 
consistent architectural style marks this layout and 
reflects a cohesive and deliberate approach to urban 
development.  

Aerial images of the area were acquired using a 
Phantom 4 UAV. These images were processed using 
Agisoft Metashape Pro photogrammetric software to 
obtain a georectified image of the community. Figure 2 
depicts the georectified image of the study area. 

 
2.2. Geographic object-based image analysis 

(GeoBIA) 
 

GEOBIA is an image analysis approach that is 
commonly applied to VHR remote sensing data. It serves 
various purposes, such as land-cover mapping and 
identifying specific geographic objects like buildings, 
cars, and trees [35-36]. The workflow of the GeoBIA 
approach includes image segmentation, feature 
extraction, image classification, and accuracy 
assessment. These steps were all implemented using the 
Google Earth Engine platform.  

 

 
Figure 1. Methodological workflow. 

 
 

 
Figure 2. UAV image of New Mankessim. 

 
2.2.1 Image segmentation 
 

This is the first step of geographic object-based image 
analysis, and it involves segmenting images into 

homogenous objects [23]. Image objects are groups of 
neighbouring pixels representing objects within the 
orthophoto with similar spectral and spatial attributes. 
There are various methods for performing image 
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segmentation; however, the simple linear iterative 
clustering (SLIC) algorithm proposed by Achanta et al.  
[37] was utilized. SLIC is a seed-based clustering 
technique that uses a modified k-means clustering 
strategy to create highly efficient superpixels. Unlike 
prior methodologies, SLIC excels in preserving 
boundaries while offering improved speed and memory 
efficiency. 

It also enhances segmentation performance and can 
be extended for super voxel generation. This method 
carefully incorporates considerations of both color 
homogeneity and shape uniformity, achieving a well-
balanced trade-off between these aspects [38]. To obtain 
optimum and homogenous image objects using SLIC, 
several parameters, such as compactness, seed size, and 
grid type, need to be defined.  

However, due to the vast search space of the 
parameters, choosing the optimum combination of 
parameters is challenging. If the parameter combination 
is not carefully chosen, it can result in under-
segmentation or over-segmentation. Thus, there is a high 
chance of low performance when the wrong parameter 
combination is used [25]. For this work, the parameters 
were determined using a trial-and-error approach, 
adopted according to the approach in [39, 40]. 
 
2.2.2 Feature extraction and selection 
 

This step involves capturing substantial information 
from the image segments’ objects to characterize 
features within an image. Commonly extracted features 
include spectral information, texture, shape, size, and 
contextual relationships. The most relevant features are 
subsequently selected to contribute to and optimize the 
computational efficiency of the subsequent classification 
process [3]. 

The spectral attributes, primarily the mean values of 
the red, green, and blue (RGB) bands, were extracted for 
this study. In addition, the mean of the spectral indices, 
that is, the green leaf index (GLI), red-green-blue 
vegetation index (RGBVI), visual atmospherically 
resistant index (VARI), and triangular greenness index 
(TGI), were extracted. These mean spectral values were 
chosen as the primary features for building extraction 
and further characterization because they capture colour 
information for distinguishing building objects from 
other urban features. 

A total of 916 samples, 456 representing buildings 
and the remaining non-building objects, were selected to 
train the machine learning classifier. The samples were 
randomly divided into training (80%) and validation or 
test (20%) sets to facilitate model training and 
evaluation. This partitioning ensures that the machine 
learning classifier is robust and reliable, permitting 
effective learning. Moreover, it enables assessing the 
model’s performance in distinguishing between building 
and non-building classes. 
 

2.2.3  Classification  
 

The step involves using a machine learning classifier 
to classify the segments into respective classes. For this 
research, the random forest (RF) classifier that Breiman 

[41] proposed was employed to classify the selected 
features as either buildings or non-buildings. RF is an 
ensemble machine learning algorithm that combines 
multiple decision trees to make predictions. Each tree in 
the forest is trained on a different subset of the data with 
bootstrapping and random feature selection. The final 
prediction is determined by a majority vote or averaging 
of individual tree predictions, making it robust, accurate, 
and less prone to overfitting, making it robust and 
effective in handling complex classification tasks [42, 43].  

For this research, the RF classifier was trained using 
the 769 training samples, with the mean values of each 
dataset serving as input features. Like the SLIC algorithm, 
RF also has several parameters that must be fine-tuned 
for optimum classification. These include the number of 
trees, variablesPerSplit, minLeafPopulation, bagFraction, 
and maxNodes seed. Choosing a prejudiced parameter 
can result in overfitting or underfitting. Other than the 
number of trees set to fifty (50), default values were 
maintained for all the other parameters. 

Subsequently, the performance of the trained RF 
model was assessed using the test data. This was to 
ascertain how the RF model fared on unseen datasets, 
prior to classifying the entire dataset. 

The final step was to assess the binary raster 
produced by each dataset. As such, the classified datasets 
were exported, and an evaluation was performed using 
ArcMap. The create accuracy assessment points and 
update accuracy assessment points functions in the 
spatial analyst toolbox were adopted for this approach. 
Using the create accuracy assessment points function, 
the equalized stratified random sampling technique was 
used to generate 1500 data points each for the building 
and non-building classes. The ground truth mask, 
generated from the digitized building polygons, was used 
as the target field for this operation. 

Subsequently, the update accuracy assessment points 
function was utilized to generate reference points for 
each classified dataset. These reference points were used 
to assess the validity of the classified images with regard 
to the ground truth mask. 
 
2.3  Evaluation metrics 
 

A comprehensive validation approach was adopted to 
assess the accuracy of the building classification. The 
trained RF classifier was applied to the validation data to 
classify buildings and non-buildings. The results were 
then compared with ground truth data to evaluate 
classification performance. This evaluation was based on 
four metrics: overall accuracy, precision, recall, and F1-
score, all of which were computed using a confusion 
matrix.  

Recall is a metric that quantifies the proportion of 
building image objects that were successfully classified 
as buildings. It measures how effectively the proposed 
methodology captures all existing buildings within the 
validation dataset. Conversely, precision offers insights 
into the correctness of the approach by elucidating the 
probability that a detected structure is indeed a building 
[33]. 

F1-score is a metric that considers precision and 
recall, thereby providing a balanced assessment of the 
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approach’s performance. It is an essential metric when 
there is an imbalance between positive and negative 
instances in the dataset.  

Overall accuracy is a metric that measures the ratio of 
correctly classified building instances to the total 
number of building instances in the dataset. Equations 
(1) to (4) give the mathematical formulations for the 
evaluation metrics. 
 

Recall R= 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

   

Precision P= 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

   

Overall Accuracy OA= 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3) 

   

F1-score F1= 
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

In Equations (1-4), TP represents correctly identified 
building segments, TN indicates correctly identified non-
building segments, FP represents non-building segments 
erroneously classified as buildings, and FN denotes 
building segments incorrectly classified as non-building. 
 
2.4 RGB-vegetative indices 
 

Most consumer-grade UAVs are equipped with RGB 
cameras. RGB vegetation indices (VIs) are derived 
through mathematical equations applied to two or more 
spectral bands to emphasize specific aspects of 
vegetation greenness, thereby facilitating the 
identification of distinctive vegetation features within 
the imagery. This is possible as the digital number values 
of each band can be used to compute the pixel value in 
the RGB image. Several RGB VIs have since been created 
and developed [34, 44]. The RGB VIs utilized in this 
research are depicted in Figure 3, and their respective 
equations are in Table 1. 

 
 

 
Figure 3. RGB VIs (a)GLI, (b)RGBVI, (c)VARI, and (d)TGI. 

 
Table 1. RGB-VIs Utilized. 

VI  Formula Reference 

Green Leaf Index  GLI = 
(2 ×𝐺𝑟𝑒𝑒𝑛)−𝑅𝑒𝑑−𝐵𝑙𝑢𝑒

(2×𝐺𝑟𝑒𝑒𝑛)+𝑅𝑒𝑑+𝐵𝑙𝑢𝑒
 [45]  

Red-Green-Blue Vegetation 
Index 

 RGBVI = 
𝐺𝑟𝑒𝑒𝑛2−𝐵𝑙𝑢𝑒 ×𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛2+𝐵𝑙𝑢𝑒 ×𝑅𝑒𝑑
 [46]  

Visual Atmospherically 
Resistant Index 

 VARI = 
𝐺𝑟𝑒𝑒𝑛−𝑅𝑒𝑑−𝐵𝑙𝑢𝑒

𝐺𝑟𝑒𝑒𝑛+𝑅𝑒𝑑+𝐵𝑙𝑢𝑒
 [47]  

Triangular Greenness Index  TGI = 𝐺𝑟𝑒𝑒𝑛 − (0.39 × 𝑅𝑒𝑑) + (0.61 × 𝐵𝑙𝑢𝑒) [48] 
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3. Results  
 

This study generated five distinct datasets by 
combining the RGB VIs with the UAV-RGB image. These 
composite datasets included RGB with GLI, RGB with 
RGBVI, RGB with VARI, RGB with TGI, and RGB with all 
indices. Subsequently, each combination was used to 
train and validate the Random Forest (RF) classifier 
using selected spectral information.  

The evaluation results obtained for each 
combination are detailed in Table 2. These results were 
derived from the 147 test datasets using the evaluation 
metrics, and these findings provide insight into how the 

random forest model performed on the test datasets. A 
visual representation of Table 2 is presented in Figure 4. 
The confusion matrix from the validation process using 
the test data is illustrated in Figure 5. 

The quantitative assessment derived from the 
classification result for each dataset is outlined in Table 
3. These findings give insight into how each classified 
output corresponds with the ground truth. Figure 6 is a 
bar chart providing a visual representation of Table 3. 
The confusion matrix for the post-classification 
assessment is depicted in Figure 7, and Figure 8 presents 
the classification results obtained by each dataset.  
 

 

Table 2. RF performance on test dataset for various combinations. 
Dataset Metric 

OA P R F1 
UAV-RGB only 0.9565 0.9643 0.9529 0.9586 

RGB + GLI 0.9632 0.9897 0.9411 0.9648 
RGB +RGBVI 0.9660 0.9671 0.9671 0.9671 
RGB + VARI 0.9799 0.9806 0.9806 0.9806 
RGB + TGI 0.9714 0.9880 0.9535 0.9704 

RGB + All Indices 0.9507 0.9570 0.9368 0.9468 

 
Table 3. Classification performance of various datasets.  

Dataset Metric 
OA P R F1 

UAV-RGB only 0.9553 0.9401 0.9727 0.9561 
RGB + GLI 0.9673 0.9655 0.9693 0.9674 

RGB +RGBVI 0.9647 0.9491 0.9820 0.9653 
RGB + VARI 0.9603 0.9429 0.9800 0.9611 
RGB + TGI 0.9657 0.9580 0.9740 0.9660 

RGB + All Indices 0.9660 0.9575 0.9753 0.9663 

 

 
Figure 4. Plot of RF validation result. 
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Figure 5. Confusion matrix for test data validation. 

 

 
Figure 6. Bar plot of classification validation. 

 
4. Discussion 
 

From Table 2, which is the validation result based on 
the test data, it is observed that the combination of RGB 
and VARI achieved the highest overall accuracy (0.9799), 
recall (0.9806), F1-score (0.9806), and third-best 
precision (0.9806). This dataset improved the 

performance of the approach in classifying building 
instances, attaining a mean improvement of 1.9975. 

The RGB and TGI combination achieved the second-
highest OA of 0.9714, the highest precision and F1-score 
of 0.9880 and 0.9704, respectively, and the third-best 
recall value of 0.9368, amounting to an average 
improvement of 0.6900. 
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Figure 7. Confusion matrix for classification result validation. 

 

 
Figure 8. Building Extraction Results RF Classifier (a) UAV Image, (b) RGB + GLI, (c) RGB + RGBVI, (d) RGB + VARI, (e) 

RGB + TGI, and (f) RGB + All Indices. 
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The combination of RGB and RGBVI had the second-
best recall (0.9671), third-best OA (0.9660), and F1-score 
(0.9671) values, and the fourth-best precision (0.9671). 
Thus, combining the RGBVI with the RGB orthophoto 
improved the classification approach by an average of 
0.7075. 

The RGB and GLI combination achieved the highest 
precision (0.9890). Notwithstanding, it ranked fourth in 
terms of overall accuracy (0.9632) and F1-score (0.9648) 
and fifth in recall (0.9411), which was lower than the 
standalone RGB combination. This combination attained 
a mean improvement of 0.6625. 

The combination of all the RGB VIs and the RGB 
orthophoto had the least values for all the metrics, 
attaining an OA of 0.950, precision of 0.9570, recall of 
0.9368, and F1-score of 0.9468. This result implies that 
combining all the VIs with RGB orthophoto decreased the 
performance of the building extraction approach by an 
average of -0.3975.  

When considering only the RGB orthophoto, the 
overall accuracy, precision, recall, and F1-score values 
were 0.9565, 0.9643, 0.9529, and 0.9586, respectively, 
with the recall value ranking third, surpassing the RGB 
with GLI and RGB with all indices combinations.  

The quantitative assessment of the classification 
result in Table 3 indicated that the RGB and GLI 
combination attained the best classification compared to 
the ground truth. The RGB and GLI attained the highest 
overall accuracy (0.9673), precision (0.9655) and F1-
score (0.9674). Interestingly, this combination attained 
the lowest recall value of 0.9693.  

Combining all the VIs with the RGB orthophoto 
achieved the second-best overall accuracy (0.9660) and 
F1-score (0.9663). This dataset combination also 
attained the third-best scores for precision (0.9575) and 
recall (0.9753). These scores contrast sharply to those 
attained for the test sample, where the dataset attained 
the lowest scores. 

The third-best classification result was obtained by 
combining RGB and TGI. This dataset obtained the 
second-best score for precision (0.9580), the third-best 
score for overall accuracy (0.9657), and the F1-score 
(0.9660). For recall, this dataset obtained the fourth-best 
score of 0.9740. 

From Table 3, the RGB and VARI dataset had the 
fourth-best classification output. This combination had 
the second-best recall value of 0.9800 and the fifth-best 
values for overall accuracy (0.9603) and precision 
(0.9429). Notwithstanding, the dataset attained the 
lowest value of 0.9611 for the F1-score.  

The RGB and RGVI dataset achieved the fourth-best 
values for overall accuracy (0.9647) and precision 
(0.9491). This dataset also gained the fifth-best result 
(0.9653) for F1-score and the lowest value (0.9820) for 
recall. 

Lastly, the RGB dataset had the lowest classification 
performance. This dataset had the lowest values of 
0.9553 and 0.9401 for overall accuracy and precision, 
respectively. Nevertheless, the dataset attained the 
fourth-best value for F1-score (0.9561) and the fifth-best 
value for recall (0.9727).  

These two results underscore the contribution of the 
VIs in the building extraction pipeline. Nonetheless, it is 

evident that the VIs had varying performances. From the 
test dataset, it is evident that the RGB and VARI dataset 
outperforms the other datasets in terms of overall 
accuracy (OA), precision (P), recall (R), and F1-score. It 
was also interesting to note that the RGB and all Indices 
dataset performed slightly worse than the UAV-RGB only 
dataset. This dataset attaining the worst performance on 
the test data can be attributed to the curse of 
dimensionality, where redundant spectral information 
from the VIs introduced noise and multicollinearity. 
Thus, the effectiveness of a classification model is 
hindered, and the chance of overfitting the training 
dataset is increased [49]. The result from the 
classification showed a slight difference from the testing 
sample results. While the RGB and VARI dataset still 
performs well, the RGB and GLI and RGB and all Indices 
datasets demonstrated an improved performance.  

The qualitative maps in Figure 8 show that the 
datasets produced similar visual outputs. All the datasets 
could identify and extract the outlines of the buildings of 
within the image. However, just like most attempts of 
automation in building extraction, there is the need for 
some manual editing and revision [50]. From Figure 6, it 
is noticeable that there was confusion among building 
rooftops and impervious surfaces such as roads and soil 
surfaces. This cataclysm resulted in commission errors, 
leading to an inconsistent classification. This can be 
attributed to the VIs’ strength in differentiating between 
vegetation and non-vegetation rather than among urban 
features. Figure 6 shows that all the datasets falsely 
classified a section of the central road as a building. 

 

5. Conclusion  
 

This study aimed to assess the contribution of four 
RGB VIs, GLI, RGBVI, VARI, and TGI, in improving building 
classification tasks from UAV imagery. To that aim, four 
datasets containing a combination of these VIs and RGB-
UAV were created, and a GeoBIA approach was adopted 
to classify building features from these datasets. In 
addition, a fifth dataset was created by combining all the 
RGB VIs and the UAV image.  

The experimental results highlight the advantages of 
integrating vegetative indices into building extraction 
from UAV-RGB imagery. The RGB and VARI dataset 
emerged as the top-performing combination, achieving 
the highest overall accuracy, precision, recall, and F1-
score on the test dataset. However, it is worth noting that 
the RGB and GLI dataset stood out for its exceptional 
precision. This result was useful during the classification 
step, where the dataset attained the result. Thus, it 
produced a classification result that was similar to the 
ground truth mask. 

In conclusion, integrating the RGB-based VIs into the 
GeoBIA classification pipeline significantly improved the 
accuracy of building extraction from UAV-RGB imagery. 
Nevertheless, the choice of VIs and their combination 
plays a crucial role in the performance of the extraction 
approach. The combined use of all indices does not 
consistently outperform individual indices, emphasizing 
the significance of selecting relevant combinations. 
Future research could focus on choosing the best 
combination of VIs that further enhance the performance 
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of building extraction. Also, other machine-learning 
classifiers can be adopted, and their performance can be 
assessed during the classification step. 
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