Dumlupinar Universitesi Sosyal Bilimler Dergisi EX013 Ozel Sayisi

COK DEGISKENL I SETAR MODEL 1 iLE TURK IYE'DE DOLAR VE ALTIN
FIYATLARINA DA iR BIR UYGULAMA

Dr. Umran M. KAHRAMAN OznuvBINER
Necmettin Erbakan Universitesi Kigkeli Universitesi

uteksen@gmail.com agydiner@hotmail.com
Ozet

Kendinden uyarimli gksel otoregresif (SETAR [Self-exciting thresholgtaregressive]) model,
dogrusal olmayan zaman serisi modellerinden biridinddl, bir zaman serisinin kendi gegmi
degerlerinden etkilenerek farkh rejimlerde farkh gtasal otoregresif siireclere sahip olmasini
ifade etmektedir. Tsay (1998), gamhasinda tek dgskenli kendinden uyariml séksel
otoregresif sureci ¢cok geskenli yapi icin geniletmistir.

Bu calsmada, cok d@skenli kendinden uyarimliséksel otoregresif model uygulamasi igin TL
cinsinden gunlik Dolar (USD) kuru ve altin fiyatlaerisi kullaniimgtir. Altin fiyatlari serisi
gosterge dasken olarak alinip cok d@gskenli SETAR model olgturulmus ve modelin
performansini dgerlendirmek Uzere modelden 6ngoruler elde edtimi

Yapilan calgmada, altin fiyatlarinin gosterge gigken olarak alingy cok deiskenli Dolar ve
altin fiyatlari modelinden elde edilen dngoérilerilsein gozlenen dgerleri ile yakin bir seyir
izlemektedir. Buna gore kurulan modelin 6ng6ri yagnegin uygun oldgu soylenebilir. Elde
edilen cok dgiskenli SETAR modele goére, Turkiye piyasasinda alten Dolar fiyatlarinin

birbirini etkiledigi ve birlikte modellenebilegg sonucuna varilngtir.

Anahtar Kelimeler: Cok de&iskenli SETAR model, kksel lineer olmama testi, Turkiye'de
altin ve Doviz fiyatlar
JEL Kodu: C32

AN APPLICATION OF THE DOLLAR AND GOLD PRICES IN TUR KEY WITH
MULTIVARIABLE SETAR MODEL

Abstract

Self-exciting threshold autoregressive (SETAR) nhaddeone of the non-linear time series
models. The model represents that a time serigshvidh influenced by its own past values, has
different regimes in different linear autoregressprocesses. Tsay (1998) extends the univariate

self-exciting threshold autoregressive processnhaitivariate structure in his study. In this
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study, daily exchange rate of dollar (USD) and gwides series in TL are used for multivariate
self-exciting threshold autoregressive model apgibe. Gold prices series has been taken as
indicator variable and multivariate SETAR model bagn created. Then, predictions have been
obtained from the model to evaluate performandbd®imodel. Accordingly, the model is said to
be suitable to make predictions. According to tbidained multivariate SETAR model, the

prices of gold and dollar affect each other in Byrknarket and they can be modelled together.

Keywords: Multivariate SETAR model, test of threshold nonlanéy, gold and currency prices
in Turkey
JEL Classification: C32

1. Introduction

Threshold autoregressive model (TAR) is one of ribalinear time series model. Threshold

autoregressive models are firstly discussed by Td@®93§8) and Tong and Lim (1980). Then,

Tong (1990) was explained the self-exciting thréshautoregressive model (SETAR) more

broadly. Original source of the model is limitedps and circular structure of time series. Also,
limited asymmetric loops can be modelled (Tong,099

Purpose of this study is to choose the structuaempeters of SETAR model by using the Tsay’s
(1989; 1998) method which provides an easy appicaif determining the model process. To

determine the threshold value from structural pa&temns, a test statistic based on some
prediction residuals and a threshold linearity tast applied. Also, graphical tools are used for
possible threshold number and values. By usingetieegtistics, SETAR model will be created.

In this study, a multivariate SETAR model was ah¢ai using daily gold prices in TL and data

of Dollars (USD) exchange in free market and cowgrihe period 03.01.2005-30.12.2011.

Codes were created in MATLAB 7.7.0(R2008b) progfarmumerical calculations.

2. Multivariate Threshold Autoregressive Model

Tsay (1998) extended the univariate threshold agtessive process for multivariate structure in
his study. Let a time series withdimensionsX; = (X, X5, ..., Xs)' is takenX, is considered
as a vector autoregressive process. A multivaB&E&AR model withk regimes is defined as

below.

Xe = CE)I) + Z?iﬂ ¢§‘1)Xt—i + 8%1)’ -1 < Z—g =1 1)
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WhereC(()i) are 6§ x 1)-dimensional constant vectors a¢§” are § x s)-dimensional parameter

@ _

matrices fori =1, ..., k. sgi) vectors at.. regime satisfy the,” = Zl.l/z a; equality.zl/z’

;/7's are
positively defined symmetric matrices afwl,}, is a sequence of serially uncorrelated random
vectors with mear0 and covariance matriX, the ¢ x s)-dimensional identity matrix. The
threshold valu€Z;_, is assumed to be stationary and this variablerdgpen past observations

of X;_4. For example;
Zi_g =K'X_g 2)

an arrangement can be made as abayes a vector { x 1)-dimensional. Ifk is chosen as
k = (1,0,..,0), threshold value becomés_; = X; ;4. If k = (5,5, ...,3)', the threshold value

will be average of all of the elementsXp_; (Chan, Wong, & Tong, 2004).

2.1. Multivariate Nonlinearity Test

The purpose of the multivariate SETAR model isest the threshold nonlinearity &%, under
the assumption of known variablesandd for the given observations ¢X;,Z,_,}, t =

1, ...,n. Null hypothesis establishes as the linear fornX oflf it is alternative hypothesiX; is
threshold which means it is nonlinear. For thisgegression application is created by using least

squares method.
X, =X ®+¢€,, t=h+1,..,n (3)

Here, h is max(p,d) and X, = (1, X',_,, .., X't_,) are ps + 1)-dimensional regressor®,
indicates the parameter matrices. If null hypothésitrue then the predictions of least squares
will be useful in equality (3). However, if altetnge hypothesis is true, predictions will be
biased. In this case, the residuals which are aedly sequentially revision of equation (3),
will inform. Z,_, threshold variable is out of the values= {Z,,1_4, ---, Zn_q} fOr equality (3).

Let Z;) the smallest th element ofS t(i) indicates the time index df, and the linear
regression which is the increasing sequence othiotd valueZ;_;, can be written as in the

equation (4).

X't()+a = X,t(i)+d¢ +€iy4d, i=1..,m—h (4)
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Dynamic structure o, series does not change as seen in equation (4auBe for each
correspond taX,, X, regressors do not change. Only the order of thia datered into the
regression changes. Tsay
(1998), develops a method which based on the predicesiduals of recursive least squares
method to determine model alteration in equality. (4 the structure of serieX; is linear,
recursive least squares predictions of sequantiakegression will be consistent and prediction
residuals have white noise process. In this casedigiion residuals are expected to be
uncorrelated With?t(l-)m regressors. However X; series has a threshold model, prediction
residuals cannot have white noise because theqgimw of least squares are biased. In this
situation, the prediction residuals are relateitt@m regressors.

Let ®@,, be the least squares estimate®dbr i = 1, ..., b in equation (4). It means that it is the
sequential regression estimates which is obtaingdthe smallest data number with b

observations of;_;. Then,

ét(b+1)+d = Xt(b+1)+d - &),by{t(b+1)+d (5)

ét(b+1)+d = gt(b+1)+d/[1 + 52,t(b+1)+d[/'b)?t(b+1)+ul]1/2 (6)

Hereby,V, = [Z?=1Xt(i)+d)?lt(i)+d]_1 and (5) and (6) shows prediction residuals ofesgjon
and standardized prediction residuals in equaklty These values can be obtained from

recursive least squares algorithm. After that,
’é't(l)+d = X,t(l)+dlp + W't(1)+d , l=by+1,..,n—h (7)

regression is handled, indicates the beginning observation number ofitee regression,

is recommended to be betwedgn and 5v/n (Chan, Wong, & Tong, 2004). The regression
problem is in equation (7) is to test the hypothéki W = 0 against the alternative hypothesis
Hy:W # 0. The test statistic prepared by Tsay (1998) fatirtg this hypothesis, is in the

equation (8).

C(d) =[n—h—by— (sp+ 1)] X {In[det(S,)] — In[det(S;)]} 8)
Here,d indicates the delay of threshold varialdle ; and S, = ﬁ ?;b’f)+1é’t(l)+dét(l)+d
—n=Uo

1 — —~ ~ . —~ . .
and §; = mZ?zb’gﬂw’t(mdwt(l)m are given.w', are the residuals obtained from least
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squares in equality (7X; is linear under the null hypothesi&.d) has a Chi-square distribution
with degree of freedom(ps + 1) (Tsay, 1998).

2.2. Determining of Model Parameters

To create the& (d) statistic in equation (8 andd values must be known. Choicedidepends
on p so firstly, determining problem will be focused. To determine degree dbmagressive,
values of partial autocorrelation were used in anate time series. For multivariate systems,
partial autocorrelation matrices (PAM) will be usaad p value will be chose. Tiao and Box
(1981) say that if data is suitable fayrder vector autoregressive process, PAM structutiee|
delay is final coefficient matrices. Partial augmession matrice of a vector AR(process is
zero forl > p. Elements and standard errors of partial autossgre matrices are obtained by
applying the classical multivariate least squareshad to autoregressive model for 1,2, ...
(Tiao & Box, 1981).

@1, ..., @', predictions are asymptotically normal distributgch stationary ARY) model.
The elements of partial autoregression matrices lm@rshown with + and — to summarize
usefully. For example; when a coefficient in PAMgi®ater than 2 times own standard error or
smaller than -2 times, it is included in matrix kvéign + and -. Values in between is shown with
a dot.

Also, to determine the order of autoregressive hddelihood ratio statistic can be used. .

¢, = 0 null hypothesis versup; # 0 alternative hypothesis is tested by equation (9).

S =Xram X — G X — apxt—p) X (X;— P1Xpoq — o — ‘YJpXt—p)’ 9)

When S(1) is the matrix of residual sum of squares and cpeslucts after fitting an AR,

likelihood ration statistic can be defined as iQ)(1

U=IsOIl/Is( -1 (10)

If the statisticM(l) = —(N —3 — Is)In(U), is defined forU, the statistic is asymptotically
distributed asy? with s? degrees of freedom (Bartlett, 1938). In this casiéh the presence
constant terrW = n — p — 1 is the effective number of observations (Tiao &Bb981).

After determiningp order, delay parameter given the greafst) statistic and provided < p

condition, is stated.
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2.3. Prediction

If p,d, k and®R;, = {ry, ...,1,_1} are known, multivariate autoregression can diyiti¢o

regimes in equation (4). For thieh regime of data a general linear model can evritis in (11).

X; = AipV — g (11)
In this case
X; = (X’(nj_1+1)+d'X’(nj_1+2)+d' s X' (7)) 4a ) ’ (12)
¢D = (co, ¢, .. ;") (13)
g = (8,(7'[}-_1+1)+d' € (nj_y+2)+ar 1 € (m)+d ) ' (14)
/1 X )ra-1 7 X)) o X(g+1)ra—p
A] — 1 X’(nj—1:|‘2)+d—1 X,(n'j._1+2) X,(n'j_l-.I-Z)+d—p (15)
L Xaprar 0 Xay 0 Xmeap

are defined. Herebyg; is the greatest value gf such that{r;_; < Z, <1;} is given for
j=1,..,k—1.my = 0 andm, = n — p are defined. The number of observation it regime is
n; = m; — m;_,. Least squares prediction ¢iU)can obtain from classical multivariate least

squares method. It means

¢V = (44,)7 (4;X;)) (16)
and forj th regime of residuals variance-covariance magrice

% = nl].271'21{‘%(711-_1+t)+d§l(rr]-_1+t)+d} (17)

can be written (Chan, Wong, & Tong, 2004). AIC &ided as in (18) for the model in equality
(1) (Tsay, 1998).
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AIC(p, d, k, Ri)=X%_1{n; In|Z;| + 2s(sp + 1)} (18)

The most important problem is to determine the rnemdd regime k) as well asZ; threshold
variable in multivariate SETAR model. ¢f andd values are knowrk and®R, parameters can
search through minimizing AIC. Tsay (1998) conssdirat regime number is chosen 2 or 3 for
convenience in calculation. Also, he suggestsdhbabrding to the different percentilesff ; ,
data divided into subgroups. Applying the testistiatto these subgroups in equation (8) it can
be seen whether a changing appears in the mod#ie atibgroups. Finally, to correct the order
of AR in each regimep{, < p), AIC can be used (Chan, Wong, & Tong, 2004).

2.4. The Adequacy of the Model

Tiao and Box (1981) propose using partial autorggiom matrices and likelihood ratio statistic
to examine the residuals in multivariate SETAR niobfethis way whether the residuals contain

any model can be determined.
3. An application

For the implementation of multivariate thresholdosegressive model, daily Dollar (USD) rate
(Xy:) and gold prices X,;) in TL series were used. Time series consistedl3f1 daily
observations between the date 03.05.2005-30.12.2KRakhraman, 2012). Exchange rate was

obtained fromhttp://evds.tcmb.gov.tr/ (20LIyhe graphs given the series versus time, is shown

in Figure 1.
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Figure 1.USD and gold TL prices

Unit root research was made for series and thdtreSADF test statistic are given in Table 1.
According to this, both of the series include thet woot. Return series were calculated with

R = (Ry: Ry;)' for both of them.

Table 1.Results of Unit Root Tests

UsD Altin
ADF /) /]
Cut and trend 0.4589 0.5807

"4}

Cut and without trend 0.6123 0.315
Without trend and cut 0.8378 0.9978

In this caseR;; indicates the return values of USD series Apdndicates the return values of

gold series.
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Ry; =100 * [In(Xy,) — ln(Xl(t—l))
R: = 100 = [In(X3) — In(Xz¢t-1))]

After series were converted, unit root structurs weamoved (Table 2).

Table 2.The result of ADF unit root test for return series

usD Altin
ADF P P
Cut and trend 0.0001 0.0001

Cut and without trend 0.0001 0.0001
Without trend and cut 0.0001 0.0001

The graphs of return series are given with Figurén2the study,R,; was used as threshold
indicator variable for multivariate SETAR modelRBg = Z; .
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Figure 2. Return series versus years

Firstly, to determine the autoregressive degreeveuftor time series partial autoregression

matrices (PAM) were created. Structure of PAM ahdlihood ratio statistic is shown in Table
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3. Also, to determine the model degree of vectdoragressive time series, AIC, SIC and
likelihood ratio statistic were calculated for fis0 delay. Only the likelihood ratio statistic gav

a result in determining the order of autoregressisult and the other two criteria did not
determine any order. Values of AIC, SIC and likebtid ratio statistic are in Table 4.

Table 3.R, vector autoregressive series regarding PAM strastand LR statistic

Delay 1-6 C o0 0 HC HC 0 )
6.696 4472 1544 1627 11.366.109

Delay7-12 (- ). ) ) )€ HC )
8902 4235 5198 6019 2.269.134

Table 4.AIC, SIC and likelihood ratio statistic values aotor time series

Delay LR AIC SC Delay| LR AIC SC
1 6.2629 | 6.7017 6.726p 26 0.2787 6.7719 7.2042
2 5.0529 | 6.7040 6.7448 27 3.7581 6.7751 7.2237
3 1.2872 | 6.7093 6.7664 28 1.99p1 6.7798 7.2447
4 1.2729| 6.7147 6.7881 29 2.2359 6.7843 7.2655
5 11.5321| 6.7118 6.8015 30 2.2306 6.7888 7.2863
6 4.8488 | 6.7143 6.8208 31 1.02p3 6.7943 7.3082
7 8.1614 | 6.7141 6.8364 32 3.3366 6.7978 7.3)280
8 3.7799 | 6.7174 6.8560 33 4.2403 6.8006 7.3471
9 54669 | 6.7193 6.8748 34 49215 6.8028 7.3657
10 6.0320| 6.7208 6.8921 35 1.36P8 6.8080 7.3872
11 1.8717| 6.7256 6.9132 36 2.4508 6.8123 7.4078
12 3.1364| 6.7294 6.9334 37 1.7347 6.8172 7.4290
13 8.7154| 6.7287 6.9489 38 3.1987 6.8209 7.4489
14 2.7331| 6.7328 6.969%4 39 1.65p9 6.8258 7.4702
15 7.8556| 6.7328 6.9857 40 3.6198 6.8291 7.4898
16 4.4116| 6.735¢ 7.0047 41 1.14Dp1 6.8345 7.5115
17 3.3968| 6.7391 7.0246 42 1.46P0 6.8396 7.5329
18 8.3994| 6.7386 7.0404 43 25122 6.8438 7.5534
19 5.0241| 6.7408 7.0590 44 1.79B9 6.8486 7.59746
20 0.6547| 6.7467 7.0811 45 1.00p5 6.8%41 7.5964
21 0.7458| 6.7524 7.1031 46 4.8455 6.8%63 7.6149
22 1.9903| 6.7571 7.1242 47 1.57p6 6.8613 7.6362
23 8.1776| 6.7567 7.1401 48 3.96P9 6.8642 7.6554
24 2.6994| 6.7608 7.1605 49 3.7748 6.8673 7.6749
25 1.7237| 6.7658 7.1818 50 5.3581 6.8690 7.6929
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The likelihood ratio statistic for comparison oéttable value ig? = 9.49. As shown in Table
3,p =5 andC(d) was calculated. In this case, valuesdofan bed = 1,2, ...,5. To calculate
C(d) statistic, differentd values and different beginning observation numi@uesm were
used and the performance of statistic was compditeel.values of’(d) statistic are shown in
Table 5.

C(d) statistic was compared with the table vapde = 33.92 and(p, d)=(5,2) value which gave
the greatest value @f(d) statistic withm = 100 beginning observations was used to research
threshold value.

To determine the regime number and threshold valis criteria was used. Firstly, the model
which had two regimes and single threshold valwses studied fok = 2.

In this case, threshold value varied in the intlsrwvae [Q10(Z:—4), Q9o (Z:—4)]. AIC values were

obtained as Figure 3.

Table 5.Values ofC(d) statistic

m p d c(d)

54.4518
96.9948
60.3639
76.6433
77.9754
34.3138
38.1897
39.0557
29.9877
47.7874
7.1343
4.0483
9.7988
6.7465
9.5608
7.2559
3.6887
10.6245
7.2878
9.1101

100 5

125 5

150 5

175 5

A | W N| | O B W N | O B W N | O B W N|

143



Dumlupinar Universitesi Sosyal Bilimler Dergisi EXZ013 Ozel Sayisi

19190001900r4!

18190001900r4!

AIC 17190001900r4| -

16190001900r4! -

15190001900r4!
9190001900r5I

Observation Number

Figure 5. The change of AIC value for the case of two regimes

If the model with two regimes is discussed, AlCued decreased as the number of observation
increased in Figure 6. After that, in the discussid the model with three regimes and two

threshold values, it was found that AIC values weakeulated. Threshold values varied in the
intervalsry € [Q10(Z¢—q), Qu5(Zs—q)] andry € [Qss5(Z—q), Qoo (Zr—g)].

10190001900r6!
9190001900ré6!

AIC  8190001900r6!
7190001900r6!

6190001900r6!

-,60990
-,53490
-,48540
-,42240
-,37340
-31610
-,27070
-,21910
-,15920

rl and r2 values

Figure 6. According to two threshold values AIC variation

When Figure 6 is examined, the threshold valuesheattecided according to the change of AIC.
Seeing that the observations were clustered ifitsteregime for the data with two regimes, it
was thought that it would be much better to dividem into three. According to thig;, =
—0.0722 andr, = 0.1908 were chosen. Multivariate SETAR model was creskedbelow.
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The optimal delay number of each regime was detexthivith respect to AIC criteria and the
least squares predictions of parameters are giva@ialble 6. The numbers which are in brackets,

show standard deviation of coefficients.

Table 6.The least squares predictions for three regimesod

[ | b, | ¢, | é; | b, \ b5
1. rejim
—0.075 0.107  0.011 0.023  0.030 —0.089 —0.001 —0.090 —0.018 —0.028 —0.009
(0.061) (0.046) (0.029) (0.047) (0.070) (0.047) (0.028) (0.045) (0.028) (0.039) (0.027)
0.196 —0.055 —0.092 —0.069 0.039 0.031 —0.032 —0.004 0.006 0.058  0.130
(0.092) (0.070) (0.043) (0.040) (0.060) (0.070) (0.043) (0.067) (0.042) (0.059) (0.040)
2. rejim
0.019 —0.030 —0.053 —0.019 0.940 0.063 —0.070 0307  0.051 0.100 —0.128
(0.120) (0.077) (0.095) (0.107) (1.290) (0.070) (0.094) (0.101) (0.083) (0.097) (0.098)
0.293 —0.013 —0.370 —0.100 —0.017 0.070 —0.279 —0.207  0.069 0.097  0.035
(0.128) (0.082) (0.101) 0.114 (1.375) (0.075) (0.100) (0.108)  0.089 (0.103) (0.105)
3. rejim
0.049 —0.025 0.021 0.059 —0.047 0.010  0.008 0.014 0.018 —0.111 0.004
(0.056) (0.039) (0.022) (0.034) (0.031) (0.040) (0.022) (0.036) (0.023) (0.042) (0.023)
0.076 —0.034 —0.011 —0.032 —0.012 —0.116 —0.001 0.101 —0.053 0.002  0.040
(0.100) (0.070) (0.039) (0.061) (0.055) (0.071) (0.004) (0.064) (0.040) (0.076) (0.041)

As variance-covariance matrices of each regimeslaosvn in Table 7, AIC value of model was
obtained as 159.972.

Table 7.Variance-covariance matrices of regimes and obtervaumbers

n b

565 (0003 2595)
131 (—10306022 1.547)
589 (—00801130 2.590)

To examine the residuals of model, PAM structureesfduals and results of likelihood ratio test

are given in Table 8.
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Table 8. PAM structures of residuals and LR statistic

pelay1-6 () )C O TYC (0 )

2624 0.76 3.8737.494 1406 7.838

Delay7-12 (. )(. -)C ) D€ I )

1863 3.577 4.307.421 5936 1.199

It can be said that residuals do not show any mstdettures 7 = 9.49).

Parametric bootstrap method was applied to préaot obtained multivariate SETAR model.
New series were created by using residual terrmaafel andB = 1000. After that, two series
were obtained by substituting into the model. Theaint predictions were made by using

average of predictions. Results are in Figure 7.
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94
92 -
90 -
88
00/mm/2012 00/mm/2012 00/mm/2012

Forecasting Period

Gold Prices

= = gozlenen Ongori ortalama

Figure 7. Prediction for gold and Dollar prices
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Predictions, which were made according to modehaftivariate Dollar and gold prices model
in which gold prices were used as indicator valere close to observation values of series, so
it can be said that the created model is suitablprédict. According to obtained multivariate
SETAR model, the results are that gold prices aodab prices affect each other in Turkey
market and can be modelled together. In the cawiin which return of gold prices was close
to zero £0.0722 < Z;_, < 0.1908 ), series was subject to multivariate AR(5) precé¥hen
return of gold prices was less than zero or mudatgr than zero, it was found that different

multivariate AR(5) processes arose.

4. Results

Threshold autoregressive models which have pdmiear structure stand out with a very wide
range application. Threshold autoregressive madateful especially in return series of data in
the area of economic and financial due to the cyddita structure. Due to structure of threshold,
if series is not return series, it will be usefulthis study, the researchers attempted to establi
multivariate SETAR model. Considering the studyTehy (1998), the statistic which test the
multivariate nonlinearity, was calculated and nioadirity hypothesis could not be rejected for
the data of daily gold and Dollar prices which #reught to be related to each other. The first
order difference was required for stagnation irhbseries. Gold prices were taken as basis for
multivariate SETAR model and according to the nuedirity test results, it was found that
concluded both of these series could be modellednegns of a common SETAR model.
Another point in the application is that the begmgnobservation number is very effective for
applying nonlinearity test. Accordingly, for thesgo series, especially depending on the first
few months period, it can be said that nonlineasitycture is strongr® = 100).

It was also found that if the valug&.(,) which is return of gold series two days ago,ltse to
zero, a regime arises for series, however if thisier moves away from zero, different regimes
can arise.

The adequacy of model was determined by examirhegPtAM structure and likelihood ratio
values of the residual terms of model. As seeniguré 7, values obtained from forecasting
period were close cruise to observation situation.

Modeling process of SETAR model, determining stitestof model, examining predictions and
residuals correspond to Box-Jenkins approach. Dieet convenience and flexibility of SETAR

model, it is useful for analyzing data of economic.
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