
*Corresponding author.
*E-mail address: mkarta@agri.edu.tr
This paper was recommended for publication in revised form by Sania 
Qureshi

Sigma J Eng Nat Sci, Vol. 41, No. 2, pp. 344−355, April, 2023

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2023.00041

ABSTRACT

21-

Cite this article as: Karta M. Numerical approach of fisher's equation with strang splitting 
technique using finite element galerkin method. Sigma J Eng Nat Sci 2023;41(2):344−355.

Research Article

Numerical approach of fisher's equation with strang splitting technique 
using finite element galerkin method 

Melike KARTA1,*
1Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrı, 04100, Turkiye

ARTICLE INFO

Article history
Received: 21 November 2021 
Revised: 03 January 2022 
Accepted: 12 March 2022

Keywords:
Symmetric Strang Splitting;  
Reaction-Diffusion Equation; 
Quadratik B-Splines; Finete 
Element Method

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION

 The reaction-diffusion equations that play a large role 
in physical phenomena are widely used in various processes 
as biological systems, chemical reactions, nuclear reactor 
physics and population dynamics. Recent studies on these 
subjects can be given as [1–4].

 The commonly known form of the reaction-diffusion 
equation is defined as in the following form 

(1)

 Here, function 𝑓 is nonlinear reaction system. U = U(x, 
t) is a real valued function where t is time, x is space vari-

able.  is the diffusivity term. A special case having the 
reaction term 𝜇 U(1 − U) of equation (1) is presented by

(2)

where μ is real parameter. Because Eq.(1) is an equa-
tion has multiple uses fields of science and engineering, it 
has been studied by many researches. Firsty, Fisher [5] used 
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nonlinear equation (2) to define the propagation of gene in a 
habitat. The Fisher-Kolmogorov-Petrovsky-Piscunov equa-
tion referred to as Fisher KPP equation was investigated by 
Kolmogoroff et al. [6]. For each initial condition of 0 ≤ 𝑈 
(𝑥, 0) ≤ 1, −∞ < 𝑥 < ∞, they displayed that Fisher’s equation 
(2) has a unique solution bounded for all times, and also 
found that the problem accepts a progressive wave solu-
tion with minimum speed. Canosa [7] discovered that the 
propagation speed of the waves is linearly proportional to 
their thickness by phase-plane analysis. Gazdağ and Canosa 
[8] applied the accurate space derivative (ASD) method. 
Nonlinear Fisher’s equation was studied numerically with 
help of Petrov-Galerkin finite element method by Tang 
and Weber [9]. Qiu and Sloan [10] examined the viability 
of moving mesh method for progressive wave solutions of 
equation. They showed that progressive wave solution can 
be used to build a monitor function produced correct solu-
tions by choosing the appropriate mesh method. Zhao and 
Wei [11] analyzed the approximate solutions of the equation 
by discrete singular convolution (DSC) algorithm predicted 
long-time travelling wave behavior. By comparing the 
numerical results of the (DSC) algorithm with those in the 
Fourier pseudospectral, the accurate spatial derivates and 
the Crank-Nicolson schemes, they found that (DSC) algo-
rithm gave better results. The wavelet-Galerkin approach 
for equation using complex harmonic wavelets have been 
presented by Cattani and Kudreyko [12]. Mittal and Arora 
[13] seeked the effective B-spline approximation to solve 
numerically equation. Dağ et al. [14] suggested Galerkin 
method using quadratic B-spline base functions for equa-
tion. To approach the solution of the nonlinear parabolic 
partial differential equation with Neuman’s boundary con-
ditions, Mittal and jain [15] proposed finite element collo-
cation method based on cubic B-spline. Mittal and Jain [16] 
suggested modified cubic B-spline collocation method for 
equation. S¸ahin et al. [17] developed an efficient B-spline 
Galerkin scheme for equation. S¸ahin and O¨ zmen [18] 
performed collocation method with quintic B-spline func-
tions. Ersoy and Dağ [19] used collocation method based 
on the extended cubic B-spline functions. For solving of 
Fisher’s equation, exponential B-spline collocation method 
were suggested by Dagğ and Ersoy [20]. Rohila and Mittal 
[21] applied fourth-order B-spline collocation method to 
find numerical solution of equation. Tamsir et al. [22] sug-
gested an exponential modified cubic B-spline differen-
tial quadrature algorithm by using Runge-Kutta method. 
Dhiman et al. [23] used collocation method based on re-de-
fined quintic B-spline with technique the discretion of time 
derivative Crank-Nicolson(CN). Kapoor et al. [24] pro-
posed Hyperbolic B-spline based on differential quadrature 
method for solving non-linear Fisher’s equation.

 The present work is summarized as follows: In section 
2, Strang splitting method is presented. In section 3, Fisher’s 
reaction diffusion equation is split into two sub-equations 
and each equation is applied quadratic B-spline Galerkin 
method. Quadratic B-spline base functions is used for 

both element shape functions and weight functions. Each 
sub-problem is coverted into system first order difrential 
equations and solved with Strang splitting method using 
Quadratic B-spline Galerkin method. In Section 5, three 
test problems given with the initial and the boundary con-
ditions are handled. The error norms L2 and L∞ are com-
pared with those available in the literature. In Section 6, to 
emphasize the importance of the present method, a brief 
conclusion is given. For Eq.(2), the condition given at initial 
time and conditions given at the boundaries are gotten as

  (3)

  (4)

or

  (5)

TIME SPLITTING TECHNIQUE

 Now it is time to give fundamental concepts lying 
under the operator splitting methods: First of all, a given 
complex problem is divided into not only simpler problems 
but also for smaller time steps. By this way, it is aimed to 
solve various parts of the problem using and appropriate 
integration methods [26]. To begin with, we assume that a 
Cauchy problem is of the following form

  (6)

where U (x, t) is a semi-discretized function given on 
spatial direction. While applying the splitting technique, 
the focus will be on states in which the operator Λ = 𝐴̂ + 
�̂� can be expressed as a summation of two linear (and/or 
nonlinear) operators. Under these conditions, the above 
equation can be written as 

  (7)

in which the vector U(x, t) represents the solution vector 
found out using the initial condition 𝑈0 ∈ 𝑋, and the oper-
ators ⋀, 𝐴̂, �̂� are either bounded or unbounded operators 
defined in a finite or infinite 𝑋 Banach space. If Lie operator 
formulation is used, the expression (7) can be rewritten as

  (8)
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here 𝐴 and 𝐵 are Lie operators and 

 order to solve Eq.(8) 
approximately, the present technique splits the given prob-

lem into    and tries to 
find the solution either numerically or analitically [27]. 
When the operators 𝐴 and 𝐵swap their places and the com-
bination for half time steps are taken as follows

 

the so-called symmetric Marchuk or more widely 
known Strang splitting [28] techniques having the schemes 
′′A − B − A′′ and ′′B − A − B′′ are obtained. The procedure 
for Strang splitting scheme is given as follows

  

(9)

where  and the aimed solutions are 
obtained from equation . This tech-
nique involves an error called splitting error. The local 
turncation error of this technique 

and this indicates to be second-order of present 
technique.

THE FINITE ELEMENT QUADRATIC B-SPLINE 
GALERKIN METHOD

 Let’s first give the B-spline functions before starting the 
application of the method. Quadratic B-spline functions

𝜑𝑚(𝑥) over the solution domain [𝑋𝐿, 𝑋𝑅] by the knots 
𝑥𝑚 are described as

  
(10)

in which m = −1, . . . , N. The solution domain for 
Fisher’s equation is restricted over an interval 𝑋𝐿 ≤ x ≤ 𝑋𝑅. 
This interval [𝑋𝐿, 𝑋𝑅] is partitioned into uniformly subin-
tervals [𝑥𝑚, 𝑥𝑚+1] as 𝑥𝐿 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑥𝑅 by the 
nodal point 𝑥𝑚, the mesh size ℎ = 𝑥𝑚+1 − 𝑥𝑚 for m = 0(1)
N. The set of quadratic B-splines {𝜑0, 𝜑1, … , 𝜑𝑁 } forms a 
basis over the solution domain [𝑋𝐿, 𝑋𝑅]. A local coordinate 
system for the finite element [𝑥𝑚, 𝑥𝑚+1] can be submitted 
with help of transformation 𝜂 = 𝑥 − 𝑥𝑚, 0 ≤ 𝜂 ≤ ℎ, so, 

we convert quadratic B-spline functions (10) to quadratic 
B-spline basis functions with form

  

(11)

  The approximate solutions 𝑈𝑁(𝑥, 𝑡) on the finite ele-
ment [𝑥𝑚, 𝑥𝑚+1] is given by

  
(12)

where 𝛿𝑚−1, 𝛿𝑚, 𝛿𝑚+1 are unknown time dependent 
parameters and 𝜑𝑚−1, 𝜑𝑚, 𝜑𝑚+1 are element shape func-
tions. At the nodal points 𝑥𝑚, using quadratic B-spline basis 
functions and the approximate functions (12), the values of 
𝑈𝑁 and the first order derivative of 𝑈𝑁 can be given in terms 
of the element parameters 𝛿𝑚 by

  
(13)

  Firstly, Eq.(2) is split into two sub-equations with the 
following form 

  (14)

  (15)

To implement the Galerkin method to Fisher’s equation, 
respectively, we multiply all terms in equations (14) and 
(15) with a weight function 𝑊 and integrate the resulting 
equation on the region [𝑋𝐿, 𝑋𝑅]. Thus, we obtain the weak 
form of equations (14) and (15) as

  (16)

and

  
(17)

where the weight functions 𝑊(𝑥) with approximate 
functions are gotten as quadratic B-spline functions. 
Specially, the equations (14) and (15) are valid on the finite 
element [𝑥𝑚, 𝑥𝑚+1] in form

 

  (18)
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And

  (19)

respectively. By applying partial integration to the term 
𝑊𝑈𝑥𝑥 in equation (18), we have on integral form needing 
weaker contiunity property on base functions as follows

  
(20)

where the first term is zero due to boundary conditions. 
So, equation (18) is converted into the following form:

  (21)

by using 𝜂 = 𝑥 − 𝑥𝑚, transformation, the equations (19) 
and (21) turn into the following forms

  
(22)

  
(23)

where the equations (22) and (23) are the element equa-
tions for a typical element. Replacing approximation (12) in 
equations (22) and (23), we obtain the following equations 

  (24)

and

  (25)

their matrix forms are

 

and

  

where 𝛿𝑒 = (𝛿𝑚−1, 𝛿𝑚−1, 𝛿𝑚+1)𝑇 is a vector and 
denote ′′. ′′ the derivative according to time. Here 𝐴𝑒, 𝐵𝑒, 𝐶𝑒 
are element matrices introduced in form

 

For the purpose of the program, it would be better if 𝐿𝑒 
matrix is given as 3 𝑥 3 dimensional matrix 𝐶𝑒. In this case, 
it is can be stated bound up with the element parameters 
𝛿𝑒 by

 

Combining all the element on the domain [𝑎, 𝑏], system 
of differential equations in following form are obtained

  (26)

  (27)

  Here, 𝛿 = (𝛿−1, 𝛿0, … , 𝛿𝑁)𝑇 includes whole the element 
parameters and 𝐴, 𝐵 and 𝐶 are band matrices in

(26) and (27), if we use the forward difference 

 and Crank-Nicolson formula 

we obtain the following penta-diagonal matrix system, 
respectively

  (28) 

  (29)

In the systems (28) and (29), if the parameters  
are eliminated using boundary conditions (4), the systems 
(28) and (29) turn into a penta-diagonal band matrix sys-
tem 𝑁 𝑥 𝑁 . The resulted systems is solved by using Thomas 
algoriths. The matrix equations (28) and (29) are non-linear 
because the matrix 𝐶 depends on parameter 𝛿 So, To min-
imize the non-linearity, two or three times inner iteration 
in the form of   is applied at 
each time step.



Sigma J Eng Nat Sci, Vol. 41, No. 2, pp. 344−355, April, 2023348

INITIAL STATE 𝜹𝟎

 The initial vector 𝛿0 must be calculated from the initial 
condition and its first order derivative to begin the itera-
tion. It is created (𝑁 + 1)𝑥(𝑁 + 1) equation system in form 
𝐴∗𝛿0 = 𝐵∗ using the following expression

 

where

The solution of 𝐴∗𝛿0 = 𝐵∗ is obtained by Thomas 
algorithm.

NUMERICAL EXPERIMENTS AND RESULTS

In this chapter, we will handle three numerical exam-
ples commonly existing in literature to Fisher’s equation to 
determine the efficiency of the present method with Strang 
splitting technique using quadratic B-spline Galerkin 
method. For this purpose, we compute the error norms 𝐿2 
and 𝐿∞ and relative error described as

Example 1
 Fisher’s equation is considered with the initial condition

given together with BCs 𝑈(𝑥𝐿, 𝑡) = 𝑈(𝑥𝑅, 𝑡) = 0, 𝑡 ≥ 
0. Here the reaction and diffusion coefficient is choosen as 
μ=1 and 𝜆 = 0.1, respectively. For physcial nature of Eq.(2), 
we have shown various graphical profiles as in study [14] 
over the region [−50,50]. These ones are drawn in Figure 
1-3. For values h = 0.025 and ∆t = 0.05 and various time 
level 𝑡 = 0 to 𝑡 = 0.5. Figure 1 shows that near x = 0, U(x, 

t) reaches maximum value U = 1 but later the peak rapidly 
comes down since diffusion term U(1-U) dominate over 
reaction. Because of the influence of reaction, it is indicated 
the peak value is gradually increasing in time level from t = 
0 to 5 in Figure 2. At the same time, it is clearly seen that the 
peak value reaches until the top U = 1 at times 𝑡 = 0(5)40 
in Figure 3. These clarifications can also be cited as studies 
on [17, 18]. Table 1 presents a comparison of the Relative 
errors and it indicates that more correct results than [14] 
studies are obtained.

Figure 2. The numerical approaches of Example 1 for t=0 
(1)5.

Figure 1. The numerical approaches of Example 1 for t=0 
(0.1)0.5.
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Example 2
For this example, we consider Fisher’s equation

with initial condition

and boundary conditions

The analytical solution of the this problem is given as

Firstly, we take as 𝜆 = 1, 𝜇=2 coefficients of prob-
lem and give a comparison between the exact and the 
approximation solution by calculating the error norms 𝐿2 
and 𝐿∞ in various times levels for discretization param-
eters h=1, ∆t=0.01 on the region [−10,10], considering 
study [15]. For this, the graphical profile is drawn in Fig 

4 for values h=0.25, ∆t=0.01, t≤ 2. As it is understood 
from Table 2 and Fig.4 the numerical results obtained 
with Strang splitting technique using Galerkin finite 
element method based on quadratic B-spline are fairly 
better than [15]. Secondly, we take reaction diffusion 
coefficients 𝜇 =10000, 𝜆 = 1 respectively, discretization 
parameters N = 150 and ∆t = 0.000005 on the domain 
[−0.2,0.8]. In Figure 5, it is showed together the analyti-
cal solution and the numerical results at times 𝑡 = 0.0005, 
0.001, 0.0015, . . . , 0.0035 and presented graphically the 
error distribution in Figure 6. Table 3 presents the com-
parison of the error norms 𝐿2 and 𝐿∞ gotten by the pres-
ent scheme with existing studies in literature. For this, it 
is choosen as 𝑁 = 64,150 and ∆t = 0.000005 at different 
time taking into account the references given in Table 3. 
Additionally, to indicate the credibility and effectiveness 
of the presented approach, The approximate solution of 
this problem are shown to compare with analytical solu-
tion at various times graphically in Figs 7-8. For this pur-

pose, the parameters are taken 𝜇 = 2000 and 5000 for 𝑁 
= 200 with ∆𝑡 = 0.00001 on the solution region [-0.2,0.8] 
considering [16] and [24]. As it is known in literature, 
the approximate solution of equation is unstable in the 
disturbance wave [14]. To obtain the stable solutions, 
it is constructed an extra way suggested by Gazdag and 
Canosa [8]. They have achieved by setting the disper-
sion equal to zero at each step of time at whole nodal 
points where it has much smaller values than an empiri-
cal threshold value 𝜀, i.e., if

for proposed oscillation problem. We have found that 
the values 𝜀 = 2𝑥10−11 and 𝜀 = 1,5𝑥10−8 for 𝑁 = 64 and 
150 respectively is enough to avoid instability. As it is 
seen from the Table 3, except for the results FPS [10] and 
DSC [10] our results appear to be better than the results 
of other studies. So, the suggested method can be con-
sidered as an appropriate approach for numerical solu-
tion of other non-linear equations such as the Fisher’s 
equation.

Tablo 1. Comparison of relative errors for Example 1 at various times

Relative Error t=5 t=10 t=15 t=20 t=40
Present 1.383E − 2 7.835E − 3 6.029E − 3 5.067E − 3 3.417E -3
(Dağ et al., 2010) 1.386E − 2 7.860E − 3 6.054E − 3 5.090E − 3 3.434E -3

Figure 3. The numerical approaches of Example 1 for 
t=0(5)40.
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Figure 4.The approximate solutions of Example 2 for t ≤ 2 (h = 0.25, ∆t = 0.01).

Tablo 2. Comparison of the error norms 𝐿2 and 𝐿∞ for values 𝜆 = 1, 𝜇 =2 and h = 1, Δ𝑡 = 0.01 of Example 2

Present [15]

t L2 L∞ L2 L∞
0.5  0.51E − 03 0.44E − 03 1.76E − 03 1.10E − 03

1 0.47E − 03 0.25E − 03   2.92E − 03 1.75E − 03
1.5 0.61E − 03 0.37E − 03 3.67E − 03 1.86E − 03
2 1.96E − 03 1.88E − 03 4.50E − 03 3.00E − 03

Table 3. Comparison of the error norms L2 and L∞ at different times t of Example 2 for λ = 1, µ = 10.000

Method N Error
t

0.0005 0.0015 0.0025 0.0035
Present 64 L2 2..39E − 4 0.01E − 1 1.48E − 2 0.38E − 1

L∞ 0.72E − 3 0.04E − 1 0.06E − 2 1.62E − 1
Present 150 L2 2.13E − 4 0.03E − 2 0.12E − 2 8.28E − 3

L∞ 0.72E − 3 0.07E − 2 0.50E − 2 3.53E − 2
Dag˘ et.al. [14] 64 L2 6.47E − 4 3.80E − 1 2.03E − 2 1.59E − 2

L∞ 2.55E − 3 1.62E − 1 8.65E − 2 6.98E − 2
Dag˘ et.al. [14] 150 L2 6.89E − 5 1.30E − 2 1.55E − 2 8.82E − 3

L∞ 2.57E − 4 5.65E − 2 6.63E − 2 3.93E − 2
Dağ and Ersoy[19] 64 L∞ 1.10E − 2 1.49E − 1 3.44E − 1 5.08E − 1
(p = 1)
Dağ and Ersoy[19] 64 L∞ 3.54E − 3 7.63E − 2 2.04E − 2 1.52E − 2

(p = 3E − 6) (p = 1.92E − 6) (p = 8.9E − 7) (p = 8.9E − 7)
CN [11] 64 L2 1.92E − 3 2.65E − 2 6.18E − 2 9.91E − 1

L∞ 1.03E − 2 1.25E − 1 2.80E − 1 4.48E − 1
ASD [11] 64 L2 2.09E − 3 1.06E − 2 2.02E − 2 2.35E − 2

L∞ 1.07E − 2 4.93E − 2 9.37E − 2 9.44E − 1
FPS [11] 64 L2 7.71E − 7 7.02E − 7 2.11E − 5 8.95E − 1

L∞ 3.13E − 6 3.90E − 6 7.82E − 5 3.42E − 1
DSC [11] 64 L2 1.24E − 6 5.92E − 7 1.16E − 6 1.64E − 6

L∞ 6.28E − 6 1.98E − 6 4.46E − 6 6.22E − 6



Sigma J Eng Nat Sci, Vol. 41, No. 2, pp. 344−355, April, 2023 351

Example 3
For this example, we take non-linear Fisher’s equation 

given as

 

with the IC

and BCs

The analytical solution of the equation is taken as

in solution domain [−30,30]. The coefficients found 
in this problem are choosen as 𝛼=1, 𝛽1=0.5, 𝛼1=1, c=1 
and the space step h=0.25, time step Δt=0.01 at times 
𝑡 = 2 and 𝑡 = 4 as in [12], [13], [16]. The compari-
son with other previous studies of values position and 
height and absolute error results of the present scheme 
are given in Table 4-7. These tables shows that our 
results are very good according the previous results. 
Figure 9 exhibits approximate and analytical solutions 
at 𝑡 = 1(1)5 for parameters h = 0.25, Δt = 0.01 taking 
into account [13] and [16] and Fig. 9 shows a good 
compromise between analytical and numerical solu-
tions . Also, with respect [23], we have compared the 
error norms at 𝑡 = 1,2,3,4,5 in Table 7 and showed as 

Figure 8. The approximate solutions for λ = 5000 and N = 
200 at t = 0.001, t = 0.002, 0.003,0.004, 0.005 for Example 2.

Figure 7. The numerical approaches for λ = 2000 and N = 200 
at t = 0.002, 0.003,0.004, 0.005, 0.006, 0.007 for Example 2.

Figure 6. Absolute error distribution for Example 2.

Figure 5. Solution profiles for Example 2.
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graphically to together analytical and approximate 
solution for values h=0.25, Δt=0.01 over domain 
[−20,20] in Figure 10. Table 8 shows that our results 

fairly better than [23] and Fig.10 appear to be almost 
the same of the behavior of analytical and approximate 
solutions at different times

Table 4. Amplitude and position of the wave at various values of x for t = 2 of Example 3

x [12] [13] Present Exact
-20 0.498681 0.498653 0.498650 0.498652
-16 0.495130 0.495745 0.495739 0.495740
-12 0.486758 0.486679 0.486668 0.486669
-8 0.459576 0.459478 0.459477 0.459478
-4 0.386681 0.386742 0.386791 0.386791
2 0.158878 0.159011 0.158850 0.158850
6 0.041822 0.041877 0.041851 0.041851
10 0.006455 0.006426 0.006465 0.006465
14 0.000750 0.000746 0.000755 0.000755
18 7.617E − 05 7.79E − 05 7.92E − 05 7.92E − 05

 Table 5. Comparison of absolute error at various values of x for t = 2 of Example 3

x [13] [21] Present
-20 1.52E − 06 1.76E − 09 1.46E − 06
-16 4.56E − 06 5.33E − 09 1.40E − 06
-12 9.42E − 06 1.78E − 08 1.25E − 06
-8 2.39E − 07 5.99E − 08 0.87E − 06
-4 4.91E − 05 1.65E − 07 2.77E − 07
2 1.61E − 04 2.28E − 07 9.24E − 08
6 2.54E − 05 1.23E − 07 0.48E − 07
10 3.92E − 05 3.74E − 08 0.11E − 07
14 9.46e − 06 6.18E − 09 0.02E − 07
18 1.23E − 06 7.39E − 10 0.02E − 08

Table 6. Amplitude and position of the wave at various values of x for t = 4 of Example 3

x [12] [13] Present Exact
-20 0.498678 0.499412 0.499411 0.499413
-16 0.498525 0.498146 0.498140 0.498142
-12 0.494757 0.494149 0.494138 0.494140
-8 0.481776 0.481763 0.481754 0.481756
-4 0.445508 0.445372 0.445397 0.445398
2 0.279025 0.280082 0.279942 0.279941
6 0.116980 0.117196 0.116963 0.116863

10 0.025927 0.025881 0.025974 0.025974
14 0.003695 0.003559 0.003622 0.003622
18 0.000409 0.000395 0.000406 0.000406
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CONCLUSION

In the present work, the approximate solutions of one 
dimensional Fisher’s equation given with convenient the 
initial-boundary conditions are computed with Strang 
splitting technique with help of quadratic B-spline Galerkin 

method. three test problem available in the literature are 
selected to measure correctness and efficacy of the recom-
mended method. Solutions acquired by the application of 
the numerical scheme are compared in tables with other 
studies. From the tables, as it is seen, it is understood that 

Table 8.The comparison of the error norms 𝐿2 and 𝐿∞ for Δ 𝑡 = 0.01, h = 0.125 on [−20,20] of Example 3

t
Present [23]

L2 L∞ L2 L∞
1 0.9539e − 04 2.3376e − 04 1.5509e − 04 4.1648e − 04

2 0.9595e − 04 2.3547e − 04 2.8126e − 04 7.5895e − 04
3 0.9634e − 04 0.2366e − 03 3.8053e − 04 1.000e − 03
4 0.9661e − 04 0.2374e − 03 4.5627e − 04 1.200e − 03
5 0.9681e − 04 0.2379e − 03 5.1233e − 04 1.400e − 03

Table 7. Comparison of absolute error at various values of x for t = 4 of Example 3

x [13] [21] Present
-20 1.53E − 06 1.78E − 07 2.01E − 06
-16 4.01E − 06 4.67E − 07 1.97E − 06
-12 8.86E − 06 1.57E − 06 1.84E − 06
-8 7.28E − 06 5.39E − 06 1.52E − 06
-4 2.53E − 05 1.70E − 06 8.67E − 07
2 1.41E − 04 2.74E − 06 1.17E − 07
6 2.33E − 04 4.40E − 05 1.80E − 07
10 9.30E − 05 2.08E − 05 6.83E − 08
14 6.29E − 05 4.86E − 06 1.34E − 08
18 1.12E − 05 6.88E − 07 0.19E − 08

Figure 9. Analytical and approximate solutions at t = 1 to 5 
for Example 3.

Figure 10. Analytical and approximate solutions at t = 0.1, 
= 0.5, 1 for example 3.
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our results are fairly good than existing studies. As a con-
clusion, we can say that performence of the present method 
applied for Fisher’equation is very well. Furthermore, Strang 
splitting techniques combined with cubic B-spline Galerkin 
method can be successfully applied to nonlinear equations 
of different types as Fisher’s equation in different fields as 
physics and engineering.
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