

AQUATIC SCIENCES AND ENGINEERING

Aquat Sci Eng 2024; 39(2): 95-105 • DOI: https://doi.org/10.26650/ASE20231412574

Research Article

Seasonal Feeding Biology of Catfish, *Pachypterus atherinoides* (Bloch, 1794) with Special Reference to Lentic and Lotic Ecosystem

Arun Jana¹, Godhuli Sit¹, Angsuman Chanda¹

Cite this article as: Jana, A., Sit, G., & Chanda, A. (2024). Seasonal Feeding biology of catfish, *Pachypterus atherinoides* (Bloch, 1794) with Special Reference to Lentic and Lotic Ecosystem. Aquatic Sciences and Engineering, 39(2), 95-105. DOI: https://doi.org/10.26650/ASE20231412574

ABSTRACT

The study of food and feeding biology is extremely crucial in fishery. *Pachypterus atherinoides* (Bloch, 1794) is a good food and ornamental catfish in the world. The present study aims to examine the seasonal variation of feeding habits of *P. atherinoides* in both lentic and lotic ecosystems. The study was conducted over two years in selected lentic and lotic aquatic ecosystems of the Jhargram and Paschim Medinipur districts of West Bengal, India. The study reveals that *P. atherinoides* shows carni-omnivorous nature. Pearson's correlation represents gastro-somatic index, relative gut length, and hepato-somatic index have significant positive correlation among them. Based on posthoc tests, it has been observed that the gastro-somatic index, relative gut length, and hepato-somatic index vary significantly both seasonally and in both lentic and lotic ecosystems. This study would help aquaculturists in the culture, captive breeding, and conservation of *P. atherinoides* and also help researchers in the biometric study of another fish.

Keywords: Carni-omnivorous, Catfish, Feeding biology, Lentic, Lotic, Pachypterus atherinoides

INTRODUCTION

The study of food and feeding behaviors is extremely crucial in fishery biology. Fish mostly obtain their energy from food, which has a big impact on their population size, growth rate, and overall health. Because they enable fish to consume all of the potential food in water bodies without competing with one another and living in communities with other fish, diet and feeding habits are crucial in aquaculture (Victor et al., 2014). To determine the fullness of the stomach and the feeding status of the species, the gastrosomatic index (GaSI) is used and the relative gut length (RGL) is applied to determine the eating habits and to measure a certain relationship with the length and life stage of the fish species. The RGL value is often used to predict a wide range of food groups and show which foods different fish species like to eat. The study of fish-eating habits and gut content analysis has several objectives, including learning about their food preferences, determining whether they obtain enough food seasonally, and determining when feeding intensity peaks and troughs. The study of a species' feeding ecology can indicate how the creature has evolved ecologically to manage the challenge. It is also vital for the species' propagation to get a better understanding of its feeding behavior, as this information can be used to exploit natural fish food. The HSI measures the liver weight to body weight ratio. An indicator of eating and metabolism status is the HSI biomarker. Changes in HSI and GSI values are good indicators of fish with compromised reproductive function. HSI and GSI can go up during Vitelogenesis. Pachypterus atherinoides (Bloch, 1794), often known as Indian potasi, is a common catfish belonging to the family Schibeidae found in rivers and ponds throughout India (except Kerala), Pakistan, Bangladesh, Nepal, Myanmar, Bunna (Menon, 1999). It has high nutritional and also ornamental value. The fish meal of the species contains energy 343

ORCID IDs of the author: A.J. 0000-0003-3547-6247; G.S. 0000-0002-5821-7937; A.C.0000-0003-1781-5057

¹Natural and Applied Science Research Centre, Post Graduate Department of Zoology, Raja Narendra Lal Khan Women's College (Autonomus), MidnaporePaschim Medinipur, West Bengal, India

Submitted: 31.12.2023

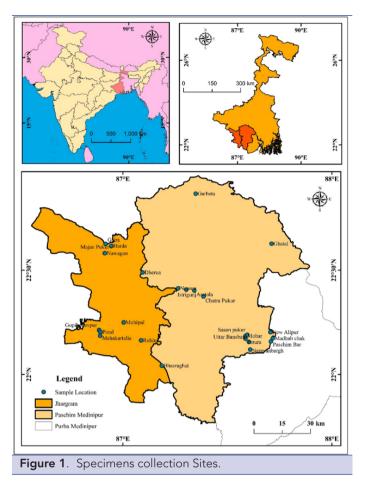
Accepted: 24.02.2024

Online Published: 19.03.2024

Correspondence: Angsuman Chanda E-mail: chandaangsuman182@gmail.com

Kcal, moisture 16 gm, protein 58gm, fat 09 gm, mineral 17 gm, calcium 1597 mg, phosphorus 595 mg, Iron 41 mg each 100 gm (Gopalan et al., 2004). Aquarists are attracted to it because of its bright color and small size. This species has been gradually decreasing due to pollution, habitat destruction, selective captive breeding, removal from aquatic bodies for their carnivorous nature, and also the high preferences of exotic catfish [African catfish Clarius gariepinus (Burchell, 1822) and Thai catfish Pangasius sutchi due Fowler, 1937]. Globally, there has been very little research on the feeding biology of Pachypterus atherinoides (Bloch, 1794). In India, except for Gogai et al., 2020, there is no study on the feeding biology of this species. However, they did not observe seasonal feeding behavior and habitat/ecosystem differentiation, and they did not study both lentic and lotic ecosystems. In West Bengal, some aspects of various indigenous fish species have been studied by different researchers (Dasgupta, 2004; Chattopadhyay et al., 2014; Gupta and Banerjee, 2014; Jana et al., 2021; Jana et al., 2022A; Jana et al. 2022B; Sit et al. 2020; Chanda and Jana., 2021; Sahil et al., 2022; Sit et al. 2022A; Sit et al. 2022B; Sit et al., 2023A; Sit et al., 2023B) but not to observe the feeding habit of the said species. The interspecific interaction and productivity of water bodies can be determined by studying fish feeding habits. Fish nutrition and feeding have an impact on their development, reproduction, and health (Srivastava et al., 2014). Most research on the food and feeding habits of fish from diverse habitats has shown that those species varied in time and place, as well as at different stages of growth, emphasizing the need for more research into a species' food and feeding habits.

MATERIALS AND METHODS


Collection of fish specimens: Specimens were collected every fifteen days from lentic (selected Ponds) and lotic (selected River sites) ecosystems/habitat of Paschim Medinipur and Jhargram districts, West Bengal, India, during the Pre-monsoon/Summer (March-June), monsoon (July-Oct), and Post-monsoon/Winter (Nov-Feb) seasons since March 2020 to February 2022 (Figure 1).

Measured length and weight: Seasonally and ecosystem/habitat-wise, the total weight and total length of each specimen were measured by a digital weighing machine with 0.01 gm accuracy and a digital slide caliper instrument with 0.01 mm accuracy, respectively.

Dissection and Internal organ measured: All internal organs were collected by dissection with the help of scissors, forceps, needles, and a brush. The liver and digestive tract were dissected out and kept in a vial with a labeled 10% formalin solution. Digital slide calipers were used to measure the length of the digestive tract. After that, the stomach was separated from the digestive system. An electronic balance was used to weigh the liver and stomach.

Observed stomach fullness: Stomach distention per species, as determined by season, has been observed. According to Nagar and Sharma (2016), the stomach's distension was graded as 'full', '3/4 full', '1/2 full', '1/4 full', and 'empty' by eye assessment.

Gastrosomatic index (GaSI): The following formula (Desai, 1970) was used to figure out the Gastrosomatic Index (GaSI), or the amount of food eaten each month:

$$GaSI = \frac{Weight of the stomach}{Weight of fish} \times 100$$

Relative gut length (RGL): The following formula was used to compute the Relative Gut Length (RGL) (Al-Hussain, 1949).

$$RLG = \frac{Length of gut}{Total body length}$$

Hepatosomatic index (HSI): HSI was determined by Rajaguru's 1992 formula.

$$\textbf{HSI} = \frac{Weight \ of \ liver}{Weight \ of \ fish} \times 100$$

Food content analysis: To identify the various foods that the fish swallowed, the stomachs were dissected, and 1 mL of the food contents were taken in a glass vial and examined under a light microscope (XSP L101). Hynes's (1950) frequency of occurrence method was used to look at the foods, and the following equation was used:

Percentage of occurrence of a food type = $\frac{Number of guts where the food occurred}{Total number of guts analyzed} \times 100$

Data analysis

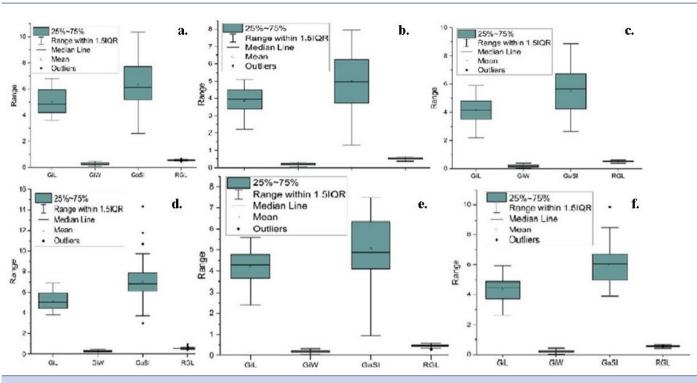
Finally, data were analyzed (Descriptive statistics, MANOVA, Pearson's Correlation, Post Hoc test,) with the help of Microsoft Excel (2019), SPSS (2021), and Origin Pro (2023) software systems.

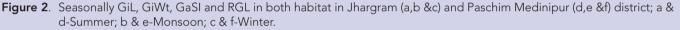
RESULTS AND DISCUSSION

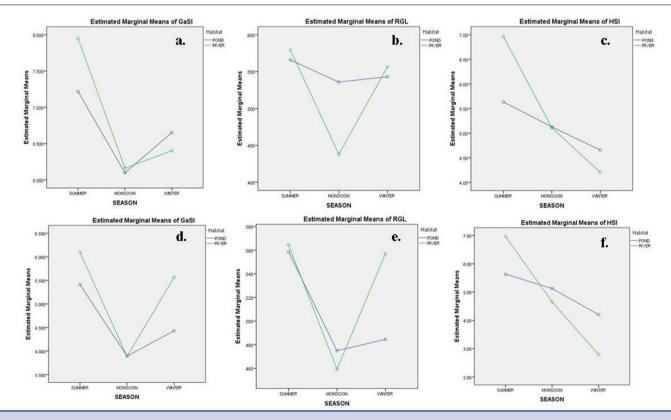
Seasonally, habitat-wise maximum, minimum, and average values of gastrointestinal length and weight of *P. atherinoides* in both districts were represented in Table 1. GaSI values were highest during the Summer season (6.65 ± 1.11 , 7.06 ± 1.81 , 7.95 ± 1.90 , and 7.08 ± 1.56), followed by the Winter (6.09 ± 1.05 , 4.85 ± 1.37 , 6.40 ± 1.01 , and 6.09 ± 1.41) and the monsoon (2.93 ± 1.00 , 4.70 ± 1.53 , 6.16 ± 0.96 , and 5.41 ± 1.42) in both habitats (pond and river) of two districts (Table 2 and Figure 2-3). Gogoi et al. (2020) recorded the average GaSI value of *P. atherinoides* was 2.683 ± 0.495 gm, with the highest GaSI value (2.832 ± 0.754) during the winter-spring season (Feb-April) and minimum (2.525 ± 0.363 gm) during the summer-rainy (May-July) in the Sub-ansiri river, Assam. In the present study, the value of GaSI is great-

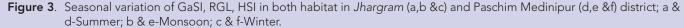
er than that of Gogoi *et al.* The GaSI values change seasonally, and the highest during pre-breeding and lowest during breeding have been similar to the studies of Gupta and Banerjee (2014), Kurbah and Bhuyan (2018), Sharma *et al.* (2018) and Gogoi *et al.* (2020) but not similar to the study of Chaturvedi and Saksena (2013). GaSI values indicated maximum food intake during the pre-spawning season and minimum during the breeding season. GaSI ranges from 2.91 to 6.08, representing the voracious nature of fish (Lanthaimeilu and Bhattacharjee, 2018), so the present result indicates the species has been the same (Table 2). In the present study, the RGL values ranged from 0.52 \pm 0.057 to 0.572 \pm 0.059, and seasonal fluctuation was observed in the ecosystem of both districts for *P. atherinoides* (Table 2 and Figure 3). Gogoi *et al.* (2020) observed that the average RGL value was 0.486 \pm 0.046 with a minimum of 0.440 \pm 0.058 mm and a maximum of

Table 1.Gastro- intestinal length and gastro-intestinal weight of Pachypterus atherenoides in both ecosystem of Jhargram
and Paschim Medinipur districts.

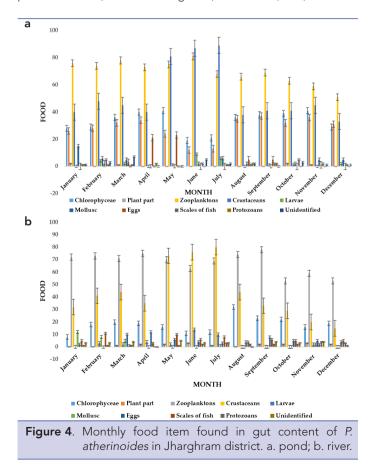

District	Habitat	Season		G	iL (cm)			Gi	Nt (gm)	
			Min.	Max.	Mean	SD	Min.	Max.	Mean	SD
JHARGRAM	POND	Pre-monsoon	2.20	5.80	4.1094	0.90531	0.16	0.47	0.2988	0.09967
		Monsoon	3.60	6.80	5.0188	0.95189	0.04	0.29	0.1763	0.09879
		Post-monsoon	2.20	5.10	3.8594	0.77078	0.04	0.39	0.2338	0.06757
	RIVER	Pre-monsoon	2.6	5.8	4.4281	0.90313	0.19	0.47	0.3175	0.08281
		Monsoon	3.80	6.90	5.2219	0.89973	0.08	0.30	0.1806	0.06345
		Post-monsoon	2.40	5.60	4.1938	0.81119	0.06	0.45	0.2603	0.09654
PASCHIM	POND	Pre-monsoon	2.20	5.90	4.1594	0.90371	0.09	0.45	0.2500	0.11843
MEDINIPUR		Monsoon	3.60	6.80	5.0344	0.95161	0.06	0.31	0.1522	0.07417
		Post-monsoon	2.30	5.10	3.9219	0.76189	0.04	0.33	0.1931	0.07464
	RIVER	Pre-monsoon	2.60	5.90	4.5000	0.92632	0.10	0.44	0.3097	0.09163
		Monsoon	3.90	6.90	5.2375	0.89542	0.04	0.38	0.1991	0.09730
		Post-monsoon	2.40	5.60	4.2063	0.81317	0.04	0.31	0.2013	0.06748

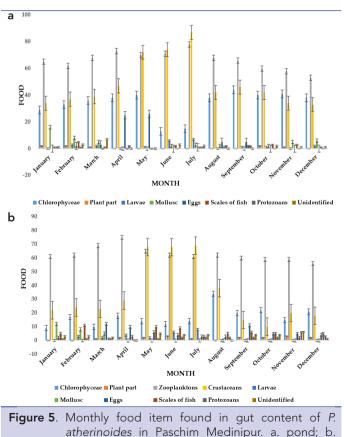

Table 2.Gastro Somatic index (GaSI) and Relative gut length (RGL) of *P. atherinoides* in both ecosystem of Jhargram and
Paschim Medinipur districts.


District	Habitat	Season	GaSI RGL							
			Min	Max.	Mean	SD	Min.	Max.	Mean	SD
JHARGRAM	POND	Pre-monsoon	4.167	8.861	6.65298	1.116203	0.400	0.659	0.52981	0.057801
		Monsoon	0.727	4.578	2.93009	1.001402	0.474	0.63	0.5432	0.049304
		Post-monsoon	3.417	7.947	6.09778	1.053266	0.395	0.622	0.53590	0.058751
	RIVER	Pre-monsoon	5.324	14.331	7.95290	1.906884	0.464	0.949	0.57953	0.091541
		Monsoon	3.095	7.500	6.16186	.967922	0.451	0.633	0.55654	0.048127
		Post-monsoon	4.310	9.845	6.40334	1.012078	0.421	0.691	0.57232	0.059477
PASCHIM	POND	Pre-monsoon	3.217	12.925	7.06904	1.812687	0.393	0.678	0.53297	0.057550
MEDINIPUR		Monsoon	2.727	8.989	4.70767	1.539878	0.468	0.630	0.54480	0.047737
		Post-monsoon	2.639	6.860	4.85507	1.370543	0.411	0.614	0.54326	0.053157
	RIVER	Pre-monsoon	3.689	10.553	7.08806	1.563371	0.441	0.702	0.57125	0.058865
		Monsoon	2.597	8.491	5.41102	1.425112	0.446	0.641	0.55706	0.049073
		Post-monsoon	3.003	8.616	6.09162	1.412353	0.421	0.691	0.56461	0.060830


N=128 Min=Minimum; Max=Maximum; SD=Standard Deviation

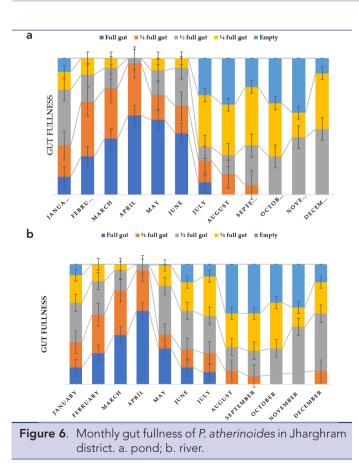
Aquat Sci Eng 2024; 39(2): 95-105 Jana, Sit and Chanda. Seasonal Feeding Biology of Catfish, *Pachypterus atherinoides* (Bloch, 1794) with Special Reference to Lentic and Lotic Ecosystem





0.511±0.029 mm for P. atherinoides. RGL values above 0.8 indicated herbi-omnivorous, 0.7 to 0.8 represented carni-omnivorous, below 0.7 was carnivorous fish, and above 1.6 always herbivorous fish (Koundal et al., 2013), RGL ranged from 0.60 to 0.87 representing omnivorous nature (Dinh et al., 2018), the average RGL value 1.08±0.16 indicated carni-omnivorous nature (Mojumder et al., 2020), RGL ranged between 0.6 to 0.67 with mean SD 0.64 ± 0.003 indicated carnivorous nature (Alam et al., 2020) and very low (<0.32) indicated species as highly carnivorous nature (Renjit Kumar and Roshni, 2021). The present finding agrees with those of Koundal et al. (2013), indicating that fish are carnivorous. However, in the current study, the gut contents of P. atherinoides show that it eats both plant- and animal-based feeds, including phytoplanktons, zooplanktons, crustaceans, larvae, molluscs, eggs, scales, protozoa, plant parts, and so on. This research revealed the largest proportion of zooplankton accepted as animal food (Figures 4-5). The enormous variety of feeding behaviors that fish have developed is due to evolution, which produced structural adaptations for getting food from an equally large variety of environmental situations (Gupta, 2015). HSI values of female P. atherinoides ranged from 4.203 \pm 0.979 to 6.97 \pm 3.32 with the maximum during Summer (5.63 \pm 1.62 and 6.97 \pm 3.325) followed by monsoon (7.38 \pm 5.23 and 5.11 \pm 0.933), Winter (4.65 \pm 1.625 and 4.203 \pm 0.979) and in male HSI values ranged from 4.10 ± 0.989 to 6.486 ± 1.618 with maximum during Summer (5.51 \pm 1.612 and 6.486 \pm 1.618) followed by monsoon (5.12 \pm 1.093 and 5.00 \pm 0.91), Winter (4.567 \pm 1.634 and 4.163 \pm 0.966) in both pond and river (Table 3 and Figure 3). Cek et al. (2001) and Mitu

(2017) reported maximum HSI during the fish breeding season. Jan and Jan (2017), Mojumder et al. (2020), Gosavi et al. (2020) and Paul et al. (2021) observed the minimum HSI during the breeding season. The HSI value in the present study has been supported by the previous work of Jan and Jan (2017), Mojumder et al. (2020), Gosavi et al. (2020), and Paul et al. (2021). The gut of P. atherinoides was a maximum of 100 % full from March to May, 3/4 full from February to April, 1/2 full from November to January, and ¼ full and empty from July to October in both habitats in the study area (Figures 6-7). The feeding intensity may be highest before breeding season and lowest during breeding season (Mojumder et al., 2020). The present feeding intensity result is supported by research done by Gupta (2015). Begum et al. (2008) stated that fish started to feed heavily after spawning in July, with more than 60% of M. gulio having full stomachs; the current data contradicts this. Pearson correlations represent GiL's high positive significant correlation (> 0.01) with GiWt, GaSI with very low positive significant correlation with Giwt, Gil and RGL, HSI with low positive significant correlation (> 0.01) with GiL, GIWt, GaSI, RGL and Liv Wt in both aquatic ecosystems (Tables 4-5 and Figures 8-9). There is a significant difference between the groups in the feeding parameters related to the seasonal and ecosystem (lentic and lotic), according to the multivariate test of P. atherinoides in both districts, according to Wilk's lambda (Tables 6 and 9). When studied individually for the six variables, except RGL in Jhargram district, there are no significant differences between the other five parameters towards the lentic and lotic ecosystems in both districts; RGL varied due to food availability in the aquat-



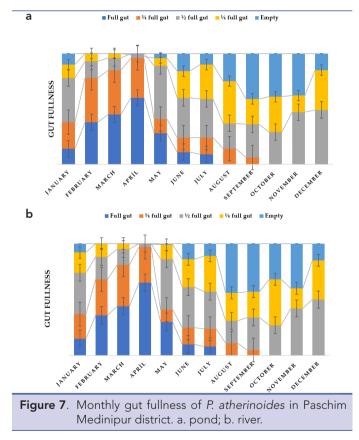

river.

Table 3. Seasonally liver weight and Hepatosomatic index (HSI) of *P. atherinoides* in both ecosystem.

	c	6		l	_vWt (g)				HSI	
Habitat	Season	Sex	Min.	Max.	Mean	SD	Min.	Max.	Mean	SD
POND	PREMONSOON	Female	0.02	0.35	0.1859	0.08904	1.90	8.44	5.6362	1.62325
		Male	0.03	0.26	0.1169	0.06104	1.89	8.34	5.5162	1.61245
	MONSOON	Female	0.12	0.41	0.2531	0.09413	2.34	7.38	5.2297	1.09303
		Male	0.07	0.41	0.2097	0.11338	2.34	7.28	5.1297	1.08304
	POSTMONSOON	Female	0.02	0.24	0.1281	0.06114	1.33	9.61	4.6555	1.62502
		Male	0.02	0.29	0.1513	0.07052	1.33	9.91	4.5675	1.63401
RIVER	PREMONSOON	Female	0.02	0.31	0.1575	0.08673	4.08	12.92	6.9707	3.32530
		Male	0.04	0.39	0.2172	0.09085	4.08	12.42	6.4868	1.61879
	MONSOON	Female	0.14	0.41	0.2653	0.08048	2.62	6.27	5.1103	0.93395
		Male	0.08	0.43	0.2241	0.03422	2.39	6.17	5.0021	0.91013
	POSTMONSOON	Female	0.04	0.24	0.1225	0.05691	2.31	6.22	4.2036	0.97960
		Male	0.02	0.27	0.1591	0.05943	2.21	6.02	4.1063	0.96600
N=128 Min=	Minimum: Max=Maximum: S	D=Standard De	viation							

N=128 Min=Minimum; Max=Maximum; SD=Standard Deviation

ic ecosystem (Tables 7 and 10). Gogoi et al. (2020) stated that Season-wise, GaSI, and RGL were not significant statistically (p>0.05) of *P. atherinoides* in floodplain wetlands of Northeast India; this is not related to the present study. But the seasonal variation of GaSI, and RGL is supported by the study of Kurbah and Bhuyan (2018), Dinh *et al.* (2018), Gosavi *et al.*, (2020), and Mojumder *et al.* (2020).

CONCLUSION

The results of the current study make it clear that zooplankton is a vital source of natural food for *P. atherinoides*, although these fish also favored other foods with a plant origin. This finding raises questions about the conventional wisdom that the catfish species only display carnivorous feeding behaviors. On the other hand, it shows a distinct preference for carnivory over herbivory. The availability of such a diverse and partial preference for Phy-

Aquat Sci Eng 2024; 39(2): 95-105

Jana, Sit and Chanda. Seasonal Feeding Biology of Catfish, Pachypterus atherinoides (Bloch, 1794) with Special Reference to Lentic and Lotic Ecosystem

Table 4.Pearson's correlation among feeding
biological parameters in Riverine ecosystem
for both district.

	GIL	GiWT	LivWt	GaSI	RGL	HSI
GIL	1	.918**	.112	.227**	.436**	.317**
GiWT	.918**	1	.080	.316**	.433**	.351**
LivWt	.112	.080	1	050	111	.165*
GaSI	.227**	.316**	050	1	.330**	.562**
RGL	.436**	.433**	111	.330**	1	.437**
HSI	.317**	.351**	.165*	.562**	.437**	1
*: 0.05 lev	el of signific	ance (2-taile	ed). **: 0.01 le	evel of signif	icance (2-ta	ailed).

Table 5.Pearson's correlation among feeding
biological parameters in Pond ecosystem for
both district.

	GIL	GiWT	LivWt	GaSI	RGL	HSI
GIL	1	.909**	.037	.244**	.415**	.348**
GiWT	.909**	1	.105	.303**	.457**	.346**
LivWt	.037	.105	1	.115	.154*	.466**
GaSI	.244**	.303**	.115	1	.483**	.412**
RGL	.415**	.457**	.154*	.483**	1	.315**
HSI	.348**	.346**	.466**	.412**	.315**	1

*: 0.05 level of significance (2-tailed). **: 0.01 level of significance (2-tailed).

to-planktivorous resources suggests that the species' eating behaviors are dynamic. This alternate choice of feeding may result from transient adaptation or a phenomenon related to increased resource accessibility. Therefore, this finding represents that the species culture in any aquatic system like a pond, aquarium, or any aquatic body, does not depend on a definite ecosystem for their good growth and development, and it does not require pricey animal protein in its feed, its diverse diet suggests that it may be a suitable species for aquaculture. Additionally, the fact that these little fish species feed could be a crucial evolutionary factor. The study's findings would be valuable tools for developing management and protection strategies for conservation and

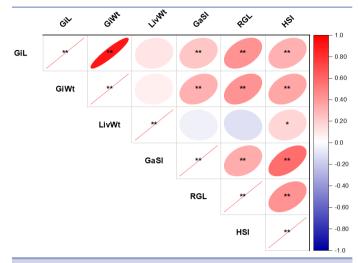


Figure 8. Pearson's correlation of feeding parameters in rivers of both district: *0.05 level of significance, ** 0.01 level of significance.

Figure 9. Pearson's correlation of feeding parameters in ponds of both district: *0.05 level of significance, ** 0.01 level of significance.

Table 6.	Multivariate Tests among feedin	g biological para	meters in Jhargra	m district.		
Effect		Value	F	Hypothesis df	Error df	Sig.
Intercept	Pillai's Trace	.999	16493.140 ^b	13.000	174.000	.000
	Wilks' Lambda	.001	16493.140 ^b	13.000	174.000	.000
	Hotelling's Trace	1232.246	16493.140 ^b	13.000	174.000	.000
	Roy's Largest Root	1232.246	16493.140 ^b	13.000	174.000	.000
HABITAT	Pillai's Trace	.241	4.247 ^b	13.000	174.000	.000
	Wilks' Lambda	.759	4.247 ^b	13.000	174.000	.001
	Hotelling's Trace	.317	4.247 ^b	13.000	174.000	.000
	Roy's Largest Root	.317	4.247 ^b	13.000	174.000	.000
SEASON	Pillai's Trace	1.599	53.753	26.000	350.000	.000
	Wilks' Lambda	.033	59.787 ^ь	26.000	348.000	.001
	Hotelling's Trace	9.971	66.347	26.000	346.000	.000
	Roy's Largest Root	7.423	99.924°	13.000	175.000	.000

b. Exact statistic; c. The statistic is an upper bound on F that yields a lower bound on the significance level.

Aquat Sci Eng 2024; 39(2): 95-105 Jana, Sit and Chanda. Seasonal Feeding Biology of Catfish, *Pachypterus atherinoides* (Bloch, 1794) with Special Reference to Lentic and Lotic Ecosystem

Table 7.	Tests of Between-Subjects Effects	s of P. atherinodes in Jhargram d	istrict.			
Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.
	GaSI	1.594	1	1.594	.903	.343
	RGL	.027	1	.027	6.947	.001
HABITAT	HSI	3.974	1	3.974	1.232	.269
ΠΑΒΠΑΙ	GiL	3.910	1	3.910	5.097	.025
	GiWt	.013	1	.013	1.777	.184
	LvWt	.008	1	.008	1.189	.277
	GaSI	72.574	2	36.287	20.543	.001
	RGL	.253	2	.126	32.690	.001
SEASON	HSI	114.963	2	57.482	17.815	.001
SEASON	GiL	42.242	2	21.121	27.532	.001
	GiWt	.539	2	.269	36.355	.001
	LvWt	.577	2	.289	45.002	.001
N=256						

Post Hoc Tests seasonally of *P. atherinodes* in Jhargram district. Table 8.

Dependent			Mean	Stal Enner	Sim	95% Confid	ence Interval
Variable	(I) SEASON	(J) SEASON	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
GaSI	SUMMER	MONSOON	1.45692*	.234945	.001	.90183	2.01201
		WINTER	1.05858*	.234945	.001	.50350	1.61367
	MONSOON	SUMMER	-1.45692*	.234945	.001	-2.01201	90183
		WINTER	39833	.234945	.210	95342	.15675
	WINTER	SUMMER	-1.05858*	.234945	.001	-1.61367	50350
		MONSOON	.39833	.234945	.210	15675	.95342
RGL	SUMMER	MONSOON	.08580*	.010992	.001	.05983	.11177
		WINTER	.02284	.010992	.097	00313	.04881
	MONSOON	SUMMER	08580*	.010992	.001	11177	05983
		WINTER	06297*	.010992	.001	08894	03700
	WINTER	SUMMER	02284	.010992	.097	04881	.00313
		MONSOON	.06297*	.010992	.001	.03700	.08894
HSI	SUMMER	MONSOON	1.1834*	.31754	.001	.4332	1.9337
		WINTER	1.8739*	.31754	.001	1.1237	2.6242
	MONSOON	SUMMER	-1.1834*	.31754	.001	-1.9337	4332
		WINTER	.6905	.31754	.078	0598	1.4407
	WINTER	SUMMER	-1.8739*	.31754	.001	-2.6242	-1.1237
		MONSOON	6905	.31754	.078	-1.4407	.0598
GiL	SUMMER	MONSOON	1.0938*	.15483	.001	.7279	1.4596
		WINTER	.8516*	.15483	.001	.4857	1.2174
	MONSOON	SUMMER	-1.0938*	.15483	.001	-1.4596	7279
		WINTER	2422	.15483	.264	6080	.1236
	WINTER	SUMMER	8516*	.15483	.001	-1.2174	4857
		MONSOON	.2422	.15483	.264	1236	.6080
GiWt	SUMMER	MONSOON	.1297*	.01522	.001	.0937	.1656
		WINTER	.0611*	.01522	.001	.0251	.0970
	MONSOON	SUMMER	1297*	.01522	.001	1656	0937
		WINTER	0686*	.01522	.001	1045	0326
	WINTER	SUMMER	0611*	.01522	.001	0970	0251
		MONSOON	.0686*	.01522	.001	.0326	.1045
LvWt	SUMMER	MONSOON	0577*	.01416	.001	0911	0242
		WINTER	.0763*	.01416	.001	.0428	.1097
	MONSOON	SUMMER	.0577*	.01416	.001	.0242	.0911
		WINTER	.1339*	.01416	.001	.1005	.1674
	WINTER	SUMMER	0763*	.01416	.001	1097	0428
		MONSOON	1339*	.01416	.001	1674	1005

N=256; *. The mean difference is significant at 0.05 level.

Aquat Sci Eng 2024; 39(2): 95-105

Jana, Sit and Chanda. Seasonal Feeding Biology of Catfish, Pachypterus atherinoides (Bloch, 1794) with Special Reference to Lentic and Lotic Ecosystem

Table 9.	Multivariate tests of P. atherinoc	les in Paschim Me	edinipur district.			
Effect		Value	F	Hypothesis df	Error df	Sig.
	Pillai's Trace	.999	20952.388 ^b	13.000	174.000	.000
La transmit	Wilks' Lambda	.001	20952.388 ^b	13.000	174.000	.000
Intercept	Hotelling's Trace	1565.408	20952.388 ^b	13.000	174.000	.000
	Roy's Largest Root	1565.408	20952.388 ^b	13.000	174.000	.000
	Pillai's Trace	.272	4.994 ^b	13.000	174.000	.000
	Wilks' Lambda	.728	4.994 ^b	13.000	174.000	.001
HABITAT	Hotelling's Trace	.373	4.994 ^b	13.000	174.000	.000
	Roy's Largest Root	.373	4.994 ^b	13.000	174.000	.000
	Pillai's Trace	1.585	51.491	26.000	350.000	.000
	Wilks' Lambda	.039	54.783 [⊳]	26.000	348.000	.001
SEASON	Hotelling's Trace	8.751	58.230	26.000	346.000	.000
	Roy's Largest Root	6.096	82.063°	13.000	175.000	.000
	Roy's Largest Root	.314	4.221°	13.000	175.000	.000
b. Exact statisti	c; c. The statistic is an upper bound on F tha	t yields a lower bound	on the significance lev	vel.		

 Table 10.
 Tests of Between-Subjects Effects of P. atherinodes in Paschim Medinipur district.

Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.
HABITAT	GaSI	17.461	1	17.461	10.818	.347
	RGL	.021	1	.021	9.701	.001
	HSI	11.295	1	11.295	3.598	.059
	GiL	3.658	1	3.658	4.746	.031
	GiWt	.070	1	.070	8.858	.178
	LvWt	6.024	1	6.024	1.223	.270
SEASON	GaSI	112.068	2	56.034	34.716	.001
	RGL	.288	2	.144	66.387	.001
	HSI	196.681	2	98.340	31.325	.001
	GiL	39.883	2	19.941	25.877	.001
	GiWt	.387	2	.194	24.459	.001
	LvWt	13.907	2	6.953	1.411	.246

N=256

 Table 11.
 Post Hoc Test seasonally of *P. atherinodes* in Paschim Medinipur district.

			M D:((C 1		95% Confide	ence Interval
Dependent Variable	(I) SEASON	(J) SEASON	Mean Differ- ence (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
GaSI	SUMMER	MONSOON	1.86032*	.224588	.001	1.32970	2.39094
		WINTER	.75404*	.224588	.003	.22343	1.28466
	MONSOON	SUMMER	-1.86032*	.224588	.001	-2.39094	-1.32970
		WINTER	-1.10627*	.224588	.001	-1.63689	57566
	WINTER	SUMMER	75404*	.224588	.003	-1.28466	22343
		MONSOON	1.10627*	.224588	.001	.57566	1.63689
RGL	SUMMER	MONSOON	.09457*	.008233	.001	.07512	.11402
		WINTER	.04085*	.008233	.001	.02140	.06030
	MONSOON	SUMMER	09457*	.008233	.001	11402	07512
		WINTER	05372*	.008233	.001	07317	03427
	WINTER	SUMMER	04085*	.008233	.001	06030	02140
		MONSOON	.05372*	.008233	.001	.03427	.07317

-				6 .		95% Confide	ence Interval
Dependent Variable	(I) SEASON	(J) SEASON	Mean Differ- ence (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
HSI	SUMMER	MONSOON	2.3427*	.31321	.001	1.6027	3.0827
		WINTER	1.8739*	.31321	.001	1.1339	2.6139
	MONSOON	SUMMER	-2.3427*	.31321	.001	-3.0827	-1.6027
		WINTER	4687	.31321	.295	-1.2088	.2713
	WINTER	SUMMER	-1.8739*	.31321	.001	-2.6139	-1.1339
		MONSOON	.4687	.31321	.295	2713	1.2088
GiL	SUMMER	MONSOON	1.0719*	.15518	001	.7052	1.4385
		WINTER	.8063*	.15518	001	.4396	1.1729
	MONSOON	SUMMER	-1.0719*	.15518	001	-1.4385	7052
		WINTER	2656	.15518	.204	6323	.1010
	WINTER	SUMMER	8063*	.15518	001	-1.1729	4396
		MONSOON	.2656	.15518	.204	1010	.6323
	SUMMER	MONSOON	.0827*	.01573	001	.0455	.1198
		WINTER	.1042*	.01573	001	.0671	.1414
C:) \/	MONSOON	SUMMER	0827*	.01573	001	1198	0455
GiWt		WINTER	.0216	.01573	.358	0156	.0587
	WINTER	SUMMER	1042*	.01573	001	1414	0671
		MONSOON	0216	.01573	.358	0587	.0156
	SUMMER	MONSOON	5797	.39240	.304	-1.5068	.3474
		WINTER	0180	.39240	.999	9451	.9091
LvWt	MONSOON	SUMMER	.5797	.39240	.304	3474	1.5068
		WINTER	.5617	.39240	.327	3654	1.4888
	WINTER	SUMMER	.0180	.39240	.999	9091	.9451
		MONSOON	5617	.39240	.327	-1.4888	.3654

N=256; *. The mean difference is significant at 0.05 level.

captive propagation. The knowledge from the current study may be applied to better manage *P. atherinoides* in India and to future conservation strategies and adoption of these species as possible candidates for commercial aquaculture.

Acknowledgement: The authors are indebted to the Principal of Raja Narendra Lal Khan Women's College (A) and departmental faculty and staff members of PG Zoology for their constant inspiration and help in conducting sustainable research work for the benefit of science and society.

Ethics Committee Approval: Ethical clearance from IAEC, Approval no. 18/IAEC (05)/RNLKWC/2019, dated-27/07/2019.

Conflict of Interest: The authors declare that they have no conflicts of interest.

REFERENCES

- Alam, A., Gopinath, V., Jha, D. N., Joshi, K. D., Kumar, J., Das, S. C. S. & Das, B. K. (2020). Food and Feeding Biology of Commercially Important Freshwater Eel, *Mastacembelus armatus* (LACEPÈDE, 1800) from the Ganga River, India. *Oceanography & Fisheries*, 11(4), 0069-0073. http://dx.doi.org/10.19080/OFOAJ.2020.11.555819
- Al-Hussain, A.H. (1949). On the functional morphology of alimentary tract of some fishes in relation to differences in their feeding habits;

anatomy and histology. *Qualitative Journal of Microscopic Science*, 90, 109-139.

- Victor Raj, M., Sivakumar, R., & Mathialagan, R. (2014). Food and feeding habit and length-weight relationship of the Asian striped catfish *Mystus vittatus* (Bloch, 1794) (Siluriformes: Bagridae) in the Vadavar River, Lower Anicut, Tamil Nadu. *Indian Journal of Science*, 8(20), 55-64.
- Begum, M., Alam, M. J., Islam, M. A., & Pal, H. K. (2008). On the food and feeding habit of an estuarine catfish (Mystus gulio Hamilton) in the south-west coast of Bangladesh. University journal of zoology, Rajshahi University, 27, 91-94.
- Chanda, A. & Jana, A. (2021). A comparative review on freshwater fish fauna between West Bengal and Odisha, two middle-east Indian states. *Journal of Fisheries, 9*(3), 93302-93302.
- Chattopadhyay, S., Nandi, S., & Saikia, S. K. (2014). Mouth morphometry and architecture of freshwater cat fish *Mystus vittatus* Bloch (1974) (Siluriformes, Bagridae) in relation to its feeding habit. *Journal of Scientific Research*, 6(1), 169-174. http://dx.doi.org/10.3329/jsr. v6i1.16369
- Chaturvedi, J., & Saksena, D. N. (2013). Diet composition, feeding intensity, gastrosomatic index and hepatosomatic index of a catfish, *Mystus cavasius* from Chambal river (near, Rajghat) Morena, Madhya Pradesh. International Journal of Recent Scientific Research, 4, 1350-6.
- Dasgupta, M. (2004). Relative length of the gut of some freshwater fishes of West Bengal in relation to food and feeding habits. *Indian Journal of Fisheries*, 51, 381-384.

- Desai, V. R. (1970). Studies on the fishery and biology of Tor tor (Hamilton, 1822) from river Narmada. *Journal of Inland Fishery Society in India, 2*(5), 101-112.
- Dinh, M. Q., Tran, T. L., & Nguyen, T. K. T. (2018). The relative gut length and gastro-somatic indices of the mudskipper Periophthalmodon septemradiatus (Hamilton, 1822) from the Hau River. VNU Journal of Science: Natural Sciences and Technology, 34(3), 75-83. https://doi. org/10.25073/2588-1140/vnunst.4775
- Gogoi, B., Das, D. N., & Saikia, S. K. (2020). Feeding Ecology of Pachypterus atherinoides (Actinopterygii; Siluriformes; Schilbeidae): A Small Freshwater Fish from Floodplain Wetlands of Northeast India. Croatian Journal of Fisheries: Ribarstvo, 78(3), 105-120. https:// doi.org/10.2478/cjf-2020-0011
- Gopalan, C., Rama Sastry, B.V. & Bala Subramanian, S.C. (2004). Nutritive value of Indian foods, *National Institute of Nutrition*, ICMR, Hyderabad, 45-67.
- Gosavi, S. M., Tapkir, S. D., Kumkar, P., & Kharat, S. S. (2020). The reproductive biology of *Pachypterus khavalchor* (Kulkarni, 1952) in the Panchaganga River of the Western Ghats, a biodiversity hotspot in India. *Asian Fisheries Science*, 33, 79-90. https://doi.org/10.33997/j. afs.2020.33.2.001
- Gupta, S., & Banerjee, S. (2014). Food and feeding habit of a freshwater catfish, Mystus tengara (Siluriformes: Bagridae). Journal of lchthyology, 54(9), 742-748. https://doi.org/10.1134/ S0032945214060071
- Gupta, S. (2015). An Overview on Feeding and Breeding Biology of Mystus tengara, A Freshwater Catfish of Indian Subcontinent. World, 7(3), 195-197. https://doi.org/10.5829/idosi. wjfms.2015.7.3.94217
- Hynes, H. B. N. (1950). The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. *The journal of animal ecology*, 19(1), F36-58. https://doi.org/10.2307/1570
- Jan, M., & Jan, N. (2017). Studies on the fecundity (F), gonadosomatic index (GSI) and hepatosomatic index (HSI) of Salmo trutta fario (Brown trout) at Kokernag trout fish farm, Anantnag, Jammu and Kashmir. International Journal of Fisheries and Aquatic Studies, 5(6), 170-173.
- Jana, A., Sit, G., & Chanda, A. (2021). Ichthyofaunal diversity of River Kapaleswari at Paschim Medinipur district of West Bengal, India. Flora and Fauna, 27(1), 113-124. https://doi.org/10.33451/florafauna. v27i1pp113-124
- Jana, A., Sit, G., Das, P., Chanda, A. & Sahu, S. K. (2022A). Seasonal Length-Weight Relationships and Condition Factors of Mystus tengara (Hamilton, 1822) in Two Habitats. Aquatic Sciences and Engineering, 37(4), 205-211. https://doi.org/10.26650/ ASE202221159748
- Jana, A., Sit, G., Chanda, A., Nayak, S. & Sahu, S. K. (2022B). Seasonal length-weight relationships and condition factors of *Pachypterus* atherinoides (Bloch, 1794) in two habitats. *Ecology, Environment and Conservation*; 28, S515-S521. http://doi.org/10.53550/EEC.2022. v28i06s.0083
- Koundal, S., Dhanze, R., Koundal, A., & Sharma, I. (2013). Relative gut length and gastro-somatic index of six hill stream fishes, Himachal Pradesh, India. Journal of Environment and Biosciences, 27(1), 11-18.
- Kurbah, B. M., & Bhuyan, R. N. (2018). Analysis of feeding behaviour and gastro-somatic index (GaSI) during different phases of breeding cycle of *Monopterus cuchia* (Hamilton, 1822) from Meghalaya, India. Journal of Applied and Natural Science, 10(4), 1187-1191. https://doi.org/10.31018/jans.v10i4.1907

- Lanthaimeilu, K., & Bhattacharjee, P. (2018). Relative gut length and gastro-somatic index of *Pethia conchonius* (Hamilton, 1822) and *Trichogaster fasciata* Bloch & Schneider 1801, Tripura. *Journal of Entomology and Zoology Studies*, 6(2), 2403-2407.
- Menon, A.G.K. (1999). Check list fresh water fishes of India. *Record in Zoological Survey of India*, Miscellaneous Publication, Occasional Paper No. 175.
- Mitu, N. R. (2017). Reproductive biology of the female Asian striped dwarf catfish Mystus tengara (Hamilton, 1822) (Siluriformes: Bagridae) in the Ganges River of Rajshahi, northwestern Bangladesh. *Turkish Journal of Fisheries and Aquatic Sciences*, 17(3), 589-598. https://doi. org/10.4194/1303-2712-v17_3_15
- Mojumder, N., Saha, D., Utsa, S. S., Maruf, K. K., & Paul, S. K. (2020). Biology of the endangered queen loach (*Botia dario*) collected from wild sources in Bangladesh. *Aquaculture, Aquarium, Conservation & Legislation*, 13(5), 2599-2609.
- Nagar, K. C., & Sharma, M. S. (2016). Food and feeding habit of two hill stream fishes ie *Rasbora daniconius* and *Noemachielus botia* in selected stream of Southern Rajasthan, India. *Research journal of Animal Veterinary and Fishery Science*, 4(6), 7-14.
- Rajaguru, A. (1992). Biology of two co-occurring tonguefishes, *Cynoglossus arel* and *C. lida* (Pleuronectiformes: Cynoglossidae), from Indian waters. *Fishery Bulletin, 90*(2), 328-367.
- Sahil, Mogalekar, H.S., Chandran, S., Nayak, .S.K., Kumar, S. & Singh, S.K. (2023). Length-weight relationship and condition factor of selected small Cyprinid fishes from river Burhi Gandak in North Bihar, India. *Journal of the Inland Fisheries Society of India*, 54(1), 27-32. https:// epubs.icar.org.in/index.php/JIFSI/article/view/132388
- Sharma, A. K., Malik, D. S., & Bargali, H. (2018). Food and Feeding Habits of Schizothorox Richardsonii (Gray, 1832) Inhibiting Bhagirathi River, Tehri Garhwal, India. International Journal of Recent Scientific Research, 9(4), 25562-2556. https://doi.org/10.24327/IJRSR
- Sit, G., Jana, A. & Chanda, A. (2020). Diversity of small indigenous freshwater ornamental fish under genus Puntius from Purba Medinipur, Paschim Medinipur and Jhargram districts of West Bengal, India. Advances in Zoology and Botany, 8(4), 334-341. https://doi.org/10.13189/azb.2020.080405
- Sit, G., Jana, A., Das, P., Chanda, A. & Sahu, S. K. (2022A). Induced breeding and embryonic development of indigenous ornamental fish *Puntius terio* (Hamilton, 1822). *Indian Hydrobiology*, 21(2), 43-51.
- Sit, G., Jana, A., Chanda, A. & Sahu, S. K. (2022B). Record of zipper loach Paracanthocobitis botia (Hamilton 1822), an ornamental fish from Paschim Medinipur, West Bengal, India. Journal of Fisheries, 10(3), 103401-103401. https://doi.org/10.17017/j.fish.355
- Sit, G., Jana, A., Chanda, A. & Sahu, S. K. (2023A). Dose Selection for Induced Breeding and Larval Development of Indigenous Ornamental Fish Puntius chola (Hamilton, 1822). Aquatic Sciences and Engineering, 38(1), 62-67. https://doi.org/10.26650/ ASE20221177106
- Sit, G., Jana, A., Chanda, A. & Sahu, S. K. (2023B). Record of zipper loach Paracanthocobitis mackenziei (Chaudhuri, 1910), an indigenous ornamental fish from West Bengal, India. Journal of Fisheries, 11(2), 112402-112402. https://doi.org/10.17017/j.fish.477
- Srivastava, S. C., Verma, P., Verma, A. K., & Singh, A. K. (2014). Assessment for possible metal contamination and human health risk of *Pangasianodon hypophthalmus* (Sauvage, 1878) farming, India. International Journal of Fisheries and Aquatic Studies, 1, 176-181.