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A R T I C L E I N F O        A B S T R A C T 

Article history Convolutional neural networks, inspired by the workings of biological neural 
networks, have proven highly successful in tasks like image data recognition, 
classification, and feature extraction. Yet, designing and implementing these 
networks pose certain challenges. One such challenge involves optimizing 
hyperparameters tailored to the specific model, dataset, and hardware. This 
study delved into how various hyperparameters impact the classification 
performance of convolutional neural network models. The investigation 
focused on parameters like the number of epochs, neurons, batch size, 
activation functions, optimization algorithms, and learning rate. Using the 
Keras library, experiments were conducted using NASNetMobile and 
DenseNet201 models—highlighted for their superior performance on the 
dataset. As a result of the studies, the accuracy rate of the NASNetMobile 
model increased by 6.1% from 0.617 to 0.678, and the accuracy rate of the 
DenseNet201 model increased by 11.55% from 0.668 to 0.786. 
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M A K A L E B İ L G İ S İ Ö Z E T 

Makale Tarihleri 

Gönderim : 13 Ocak 2024 
Kabul : 16 Şubat 2024 

Biyolojik sinir ağlarının işleyişinden esinlenen evrişimli sinir ağlarının 
görüntü verisi tanıma, sınıflandırma ve özellik çıkarma gibi görevlerde 
oldukça başarılı olduğu kanıtlanmıştır. Yine de, bu ağların tasarlanması ve 
uygulanması bazı zorluklar ortaya çıkarmaktadır. Bu zorluklardan biri, belirli 
model, veri kümesi ve donanıma göre uyarlanmış hiperparametrelerin 
optimize edilmesidir. Bu çalışmada, çeşitli hiperparametrelerin evrişimli sinir 
ağı modellerinin sınıflandırma performansını nasıl etkilediği araştırılmıştır. 
Araştırma epok sayısı, nöronlar, yığın boyutu, aktivasyon fonksiyonları, 
optimizasyon algoritmaları ve öğrenme oranı gibi parametrelere 
odaklanmıştır. Keras kütüphanesi kullanılarak NASNetMobile ve 
DenseNet201 modelleri (veri kümesindeki üstün performansları nedeniyle 
vurgulanmıştır) kullanılarak deneyler yapılmıştır. Yapılan çalışmalar 
neticesinde NASNetMobile modelinde 0,617 olan doğruluk oranı 0,678’ye 
kadar yükselerek % 6,1 oranında, DenseNet201 modelinde ise 0,668 olan 
doğruluk oranı 0,786’ya yükselerek %11,55 oranında artış sağlanmıştır.  
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1. INTRODUCTION 
In what can be described as the information age, information is used not only by humans but also by computers 
through machine learning and artificial intelligence methods. Artificial neural networks are generally used in the 
learning process, which is one of the basic elements of artificial intelligence. Artificial neural networks (ANN), 
inspired by the working principles of the human brain, enable the development of systems that can solve complex 
problems, recognize patterns and make predictions [1]. 
Deep learning is one of the most widely used methods in pattern recognition, object detection, object tracking and 
classification. The basis of deep learning is multilayer artificial neural networks. In classical machine learning 
methods, attribute extraction and selection are performed by researchers, whereas in deep learning methods, 
features and their weights are determined by the model throughout the layers. Deep learning methods have gained 
popularity by relieving researchers from the burden of feature extraction and obtaining more useful features thanks 
to interconnected layers [2]. In deep learning models, it is usual to obtain different success performances depending 
on variables such as the problem itself, hardware, dataset, variety and size of the dataset. For this reason, there are 
specialized methods in different areas according to the problems in deep learning. Convolutional neural networks 
(CNN) are the most successful and most preferred deep method in image processing. CNN has a multilayer 
structure inspired by the functioning of the biological visual system. The ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) was won by the CNN model Alexnet algorithm in 2012, and its success has gradually 
increased in the following years. CNN has become the most preferred deep learning model in many fields thanks 
to its high performance in image recognition and classification problems. When the literature is examined, it is 
observed that CNN is used not only in image processing but also in other data types such as natural language 
processing and time series [3]. 
In addition to this rise and success of CNN, the creation of a neural network model suitable for the problem and 
the selection of the best hyperparameters for this model is a very complex issue. In this study, it is aimed to observe 
the effect of different values of hyperparameters in CNN models on the classification performance of the model. 

1.1. Related Works 

Thanks to the successful developments in object detection, studies are carried out in many fields such as health, 
production and defense industry, security systems, electronics, design and architecture. Studies on CNNs and their 
parameters, which are the main elements of these studies, also make important contributions to the field. 
In a study by Smith [4] on learning rates in deep neural networks, a cyclical approach was proposed to determine 
learning rates. In the study, this approach, called iterative learning rates, was tested with CIFAR-10 and CIFAR- 
100 datasets in ResNet and DenseNet models, and with ImageNet dataset in Alexnet and GoogLeNet models. 
Smith argued that this approach would be a practical method for people who train neural networks by reducing the 
assumptions in determining ideal learning rates. Bircanoğlu and Arıca [5] compared the effects of commonly used 
Linear, Sigmoid, Tanh, Hard Sigmoid, Softsign, ReLU, Softplus, ELU, SeLU, Swish activation functions and 
Square activation function on classification performance. As a result of experimental studies with different 
datasets, it was stated that the best performing activation function varied according to the dataset, but generally 
good results were obtained with ReLU activation function in all datasets. In the study titled "Investigation of 
Hyper-Parameter Optimization Methods in Convolutional Neural Networks" published by Gülcü and Kuş [6], they 
examined genetic algorithm, particle swarm optimization, differential evolution and Bayesian optimization 
methods on CNN. In their study, as a result of their tests with different datasets, they stated that it is not possible 
to make a generalization to choose the best hyperparameter set and that hyperparameter optimization may vary 
according to the problem and dataset. In the study published by Seyyarer et al [7], the performance of optimization 
algorithms in classification success was compared using Caltech 101 and Caltech 256 datasets. In the study, the 
success rates of the optimization algorithms in classification with 64x64 image size, ReLU activation function and 
cross entropy error function were found as adadelta 86.88%, adagrad 71.25%, adam 92.31%, momentum 85.56%, 
rmsprop 40.26% and sgd 64.5%, It was also suggested to use gardient descent-based optimization algorithms 
(SGD, Momentum, Adam) to minimize the error in large datasets. Adem [8] investigated the effects of P+ FELU 
activation function which is a combination of FELU, ELU and ReLU activation functions. He made comparisons 
by working with MNIST, CIFAR-10 and CIFAR-100 datasets. It is stated that the P+ FELU activation function 
with flexible properties can effectively prevent the vanishing gradient. It is concluded that the proposed activation 
function outperforms ELU, SELU, MPELU, TReLU, ReLU and FELU activation functions. Liashchynskyi and 
Liashchynskyi [9] compared grid search, random search and genetic algorithm methods for hyperparameter 
optimization. As a result of the study, they stated that the grid search method takes too long and is costly, the 
random search method is faster, but this method cannot guarantee the best results, and the genetic algorithm method 
takes a long time to run, but this situation can be controlled with some variables. They concluded that the genetic 
algorithm method is preferable when there are more parameter options. 
In this study, CNN models from the Keras deep learning library are used. In the selected model, 53 different 
trainings were performed to observe the effects of batch size, number of training epochs, optimization algorithms, 
activation functions, learning rate and number of neurons hyperparameters on model performance. The study is 
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expected to contribute to researchers in the selection and optimization of hyperparameters to be used in CNN 
models. 

2. MATERIAL VE METHODS 
2.1. Datasets 

Two different datasets were used in this study. The datasets were obtained from the Kaggle platform, which has a 
lot of content in various fields. No pre-processing or editing was done on the datasets used. The first dataset is the 
dataset published on Kaggle under the name "Dogs & Cats Images" and contains images of dogs and cats taken 
from different angles [10]. The dataset consists of two classes, "cats" and "dogs", and a total of 10000 images. 
8000 of the images are allocated to the training dataset and 2000 of the images are allocated to the test dataset with 
equal distribution to the two classes. The second dataset is a dataset published on kaggle.com under the name 
"pizza classification data" [11]. It consists of images of pizza and non-pizza dishes taken from different angles. 
The images are of different sizes with a maximum edge length of 512 pixels. The dataset consists of two classes, 
"pizza" and "not_pizza". A total of 1966 images, 983 each, are equally distributed in the two classes. Of the images 
in the dataset, 1600 images are allocated to the training set and 366 images are allocated to the test dataset. 

2.2. Deep Learning and Libraries 

Deep learning is a more advanced subtype of multilayer artificial neural networks. Deep learning models are 
composed of many layers, and each layer aims to extract features by taking the output of its predecessors. Since 
the first feed-forward multilayer deep learning model developed by Ivakhnenko and Lapa [12], there has been 
significant progress in deep learning models [13]. Since designing and training deep learning models is a difficult 
and costly task, open source deep learning libraries have been developed to help users in this sense. These libraries 
provide users with significant facilities to create learning algorithms [14]. In this study, TensorFlow is used as a 
sub-library and Keras library is used as a high-level library due to its ease of use and up-to-date nature. 

2.3. Convolutional Neural Networks and Models Used 

Inspired by the functioning of biological neural networks, CNN is one of the most successful and most preferred 
deep learning methods in image processing. Alexnet, an CNN model, won the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) in 2012 and its success gradually increased in the following years. CNN has 
become the most preferred deep learning model in many fields thanks to its high performance in image recognition 
and classification problems. Designers continue to improve these models and introduce new models every day. 
However, there are also libraries where popular models are brought together and made available for use. These 
libraries, which are easier to use than designing a new model, are widely used in CNN studies, especially in areas 
such as health, agriculture, production and industry. In this sense, the Keras library is a library that offers very up- 
to-date and popular CNN models. In this study, experimental studies were conducted on 27 CNN models in the 
Keras library. In these models, trainings were performed with two datasets and the models with the highest 
accuracy rates, DenseNet201 and NASNetMobile, are given in the subsections. 

2.3.1. DenseNet 

The basis of the DenseNet architecture is the dense blocks in the convolutional layers, which give the model its 
name. Unlike traditional CNN models that have a hierarchical structure, DenseNet is that each layer is fed with 
the outputs of all previous layers instead of only the outputs of the previous layer [15]. The layer structure of the 
DenseNet architecture is shown in Figure 1. 

 
Figure 1. DenseNet layer structure [16]. 

2.3.2. NASNetMobile 

NASNetMobile is an artificial neural network model designed by Google in 2017 through deep learning based on 
the Neural Architecture Search (NAS) method [17]. NASNet is composed of cells that can be improved by 
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reinforcement learning. In these cells, several convolution and pooling operations are performed and repeated 
many times according to the capacity of the network. The architecture of the NASNetMobile model is given in 
Figure 2. 

 
Figure 2. NASNetMobile layer structure [18]. 

2.4. Hyperparameters in Convolutional Neural Networks 

Hyperparameters are predetermined control parameters of the model used in training [19]. Some of the parameters 
used in CNN models are layer-specific and some are considered as common parameters of the model. These 
parameters and their grouping according to layers are shown in Table 1. 

Table 1. Hyperparameters that can be optimized [6] 
Convolution Pooling Fully-connected General 
• Filter size 
• Number of filters 
• Stride 
• Padding 
• Activation function 
• Number of layers 
• Initial number of layers 

• Filter size 
• Stride 
• Centering detection. 
• Number of layers 

• Number of neurons 
• Number of layers 
• Initial number of layers 

• Optimization method 
• Batch size 
• Learning rate 
• Initial learning rate 
• Dropout rate 
• Dropout active 
• Regularization method 
• Regularization rate 
• Weight initializer 
• Weight reducer 
• Weight multiplier 
• Weight normalization 
• Weight penalty value 
• Number of iterations 
• Momentum 
• Bias active (bias 
• Bias inception 
• Bias onset rate 
• Gauss ratio 

2.4.1. Number of Epoch 

When training a neural network model, the training dataset is usually passed through the network multiple times. 
The parameter that determines how many times the entire training dataset is run in the network's learning algorithm 
is called the number of training rounds (Epoch) [20]. The number of epochs can take a value between one and 
infinity. In the literature, epoch numbers are usually chosen from high values such as 100, 200, 500 [21]. However, 
a higher number of epochs does not necessarily mean that the network will be trained better or achieve better 
success values. However, the higher the number of epochs, the more time it will take to train the model [22]. 

2.4.2. Number of Neurons 

In neural networks, the number of neurons is one of the parameters that have a significant impact on the complexity 
and learning ability of the network. Neurons are connected to the layers with the weights of the data determined 
in the network and the output value of each neuron is used as the input data of the next neuron [23]. As the number 
of neurons increases, the learning capacity of the network is expected to increase, but this is not always the case. 
Using too many neurons in the architecture of the network may lead to overfitting and weakening of the 
generalization ability [24]. In addition, a large number of neurons increases the size and computational load of the 
network. If the hardware capacity is low, this has a negative impact in terms of time. If the number of neurons is less 
than the required number, the model may not be able to represent the dataset [25]. 
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2.4.3. Batch Size 

When training a neural network model, it is not a preferred method to pass all the training data through the network 
at the same time. Instead, the dataset is passed through the network step by step in forward and backward 
propagation. The amount of data in these chunks or the number of samples taken from the dataset in each training 
round is called the batch size [26]. In the literature, it is seen that the batch size is usually composed of 32, 64 and 
128 samples [21]. 

2.4.4. Activation Functions 

In CNN models, activation functions are used to transmit the output values produced by neurons in one layer to 
the next layer. Activation functions are used to determine the threshold values of the output values in the layers 
and to decide whether they will be transmitted to the next layer, and therefore whether the artificial neural cell will 
be active [27]. Since CNN is generally used for nonlinear classifications, activation functions are also chosen from 
nonlinear functions. These functions usually produce output values in the range [-1,1] or [0,1]. The most commonly 
used activation functions and their mathematical formulas in the Keras library are given in Table-2. 

Table 2. Activation Functions [28] 
Activation Function Mathematical Formula 

ReLU max (0, 𝑥𝑥) 

Sigmoid 𝜎𝜎(𝑥𝑥) =  
1

1 + 𝑒𝑒−𝑥𝑥
 

Tanh tanh(𝑥𝑥) 

ELU � 𝑥𝑥       𝑥𝑥 ≥ 0
𝛼𝛼(𝑒𝑒𝑥𝑥 − 1)   𝑥𝑥 < 0  

Softplus ln (1 + 𝑒𝑒𝑥𝑥) 

Although researchers generally use the popular activation functions available in the Keras library, there are also 
studies using activation functions that are newly introduced or created by combining different functions. 
Kılıçarslan et al. used new activation functions such as RSigELU and Superior Exponential (SupEx) and obtained 
better results compared to popular functions [29-30].  

2.4.5. Optimization Methods 

In artificial neural networks, optimization methods are used to find the best difference between the output value 
given by the network and the actual value. In the literature, these optimization methods are also called gradient 
descent [7]. In CNN applications, the goal is often not to minimize the error rate but to make the best generalization. 
It is known that the choice of optimization algorithm used in the CNN model will be effective in making this 
generalization. However, no algorithm guarantees the best solution, but some methods are used to help choose the 
best optimization algorithm for the model [31]. The most commonly used algorithms as optimization methods in 
deep learning are SGD, Adagrad, RMSProp, Adadelta, Adam and Adamax [32]. 

2.4.6. Learning Rate 

Learning rate is a coefficient used in convergence calculations in optimization algorithms. Learning rate is one of 
the most important parameters in the training of neural networks [4]. It is known that setting this ratio too large 
will fail to achieve the convergence goal and even cause divergence, while setting it too small will provide a better 
convergence with small steps [33]. However, as the learning rate becomes smaller, the training time will increase 
as the optimization algorithm will proceed in smaller steps. It is very difficult to precisely adjust the learning rate 
in optimization algorithms [26]. 

3. RESULTS 
The Google Colab platform was used to design the CNN models used in the study and to implement the training 
tasks. The testing of the transfer learning models and the applications with the second dataset were carried out with 
12.7 GB RAM, 15 GB GPU and 72.8 GB disk space hardware provided with the standard Colab membership. The 
applications with the first dataset were run with 85 GB RAM, 40 GB Tesla A100 GPU and 170 GB disk space 
provided with Colab Pro membership. 
In order to determine the model to be used in the study, performance tests were performed on 27 models in the 
Keras library with our datasets. In order to examine the effects of the parameters, the models were used without 
weights pre-trained with the ImageNet dataset. The parameter values used in these trainings are as follows; 
Number of training rounds (Epoch) = 10 
Package size = 32 
Activation function = ReLU, 
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Optimization algorithm = Adam 
Learning rate = 0.001 

Table 3. Performance results of CNN models in Keras 
First Dataset Results Second Dataset Results 

 No Model Accuracy Epochs Time 
(sec.) 

No Model Accuracy Epochs Time 
(sec.) 

1 NASNetMobile 0.6175 10 273.46 1 DenseNet201 0.6687 10 66.10 
2 ResNet101V2 0.6167 10 267.62 2 InceptionResNetV2 0.6675 10 85.16 
3 DenseNet169 0.6162 10 278.22 3 NASNetMobile 0.6667 10 70.95 
4 ResNet50 0.6150 10 257.73 4 DenseNet121 0.6562 10 70.56 
5 DenseNet201 0.6113 10 280.25 5 ResNet152V2 0.6438 10 95.95 
6 ResNet152V2 0.6100 10 279.85 6 ResNet101V2 0.6375 10 68.71 
7 DenseNet121 0.6087 10 282.77 7 DenseNet169 0.6313 10 68.42 
8 ResNet50V2 0.6012 10 258.21 8 ResNet50 0.6187 10 63.61 
9 InceptionResNetV2 0.5900 10 286.43 9 ResNet50V2 0.6125 10 62.77 
10 VGG16 0.5838 10 256.08 10 InceptionV3 0.5250 10 61.22 
11 VGG19 0.5038 10 264.16 11 EfficientNetB6 0.4750 10 72.89 
12 ResNet152 0.5038 10 285.43 12 EfficientNetB3 0.4750 10 70.71 
13 ResNet101 0.5038 10 274.85 13 VGG19 0.4750 10 54.21 
14 Xception 0.5038 10 258.15 14 VGG16 0.4750 10 63.87 
15 EfficientNetB7 0.5038 10 306.26 15 EfficientNetB0 0.4750 10 68.57 
16 EfficientNetB2 0.5038 10 268.53 16 EfficientNetB1 0.4750 10 67.11 
17 EfficientNetB1 0.5038 10 283.10 17 EfficientNetB2 0.4750 10 59.88 
18 EfficientNetB0 0.5038 10 261.37 18 ResNet152 0.4750 10 92.00 
19 MobileNet 0.4963 10 251.58 19 ResNet101 0.4750 10 79.33 
20 MobileNetV3Large 0.4963 10 270.40 20 EfficientNetB7 0.4750 10 75.78 
21 MobileNetV3Small 0.4963 10 251.78 21 EfficientNetB4 0.4750 10 77.36 
22 MobileNetV2 0.4963 10 261.31 22 MobileNetV3Small 0.4750 10 58.07 
23 EfficientNetB6 0.4963 10 278.30 23 MobileNetV3Large 0.4750 10 63.32 
24 EfficientNetB5 0.4963 10 292.48 24 MobileNet 0.4750 10 51.30 
25 EfficientNetB4 0.4963 10 293.12 25 MobileNetV2 0.4750 10 47.62 
26 EfficientNetB3 0.4963 10 271.77 26 EfficientNetB5 0.4750 10 74.51 
27 InceptionV3 0.4963 10 261.88 27 Xception 0.4750 10 64.10 

In the applications with the first dataset, the best classification performance was obtained with the 
"NASNetMobile" model. In the applications with the second dataset, the best classification performance was 
obtained with the "DenseNet201" model. We continued our study with the models with the best performance in 
the two datasets. 
In this study, experimental studies were conducted on the number of epochs, batch size, activation function, 
optimization methods, learning rate and number of neurons among the parameters given in Table 1. These studies 
were carried out separately for the models where the best classification performance was obtained for both datasets. 
Firstly, the number of epoch’s parameter was varied with 5, 10, 25 and 50 values and the results are given in Table 
3. 

Table 4. Training results by number of epochs 
 First Dataset   Second Dataset 

No Model Epochs Loss Accuracy Time (sec.)  No Model Epochs Loss Accuracy Time (sec.) 
1 NASNetMobile 5 0.6936 0.5615 359  5 DenseNet201 5 0.5441 0.6639 73 
2 NASNetMobile 10 0.6407 0.62 528  6 DenseNet201 10 0.5221 0.7459 174 
3 NASNetMobile 25 0.6337 0.627 1296  7 DenseNet201 25 0.5268 0.724 350 
4 NASNetMobile 50 0.6534 0.6005 2536  8 DenseNet201 50 0.5673 0.7022 776 

When Table is examined, it is seen that the highest accuracy rate was obtained at 25 epochs in the training of 
NASNetMobile model with the first dataset, and the highest accuracy rate was obtained with 10 epochs in the 
training of DenseNet201 model with the second dataset. In the number of neurons parameter, experiments were 
performed on 32, 64, 128, 256 and 512 values. 
As can be seen in Table 5, the number of neurons providing the highest accuracy rate for both models was 256. 
As the number of neurons increases, the learning capacity of the network is expected to increase, but using more 
neurons than necessary may lead to overfitting and weakening of the generalization ability. 
Batch size is one of the important parameters that should be adjusted according to the dataset. In this study, the 
batch size was changed to 8, 16, 32 and 64 and both datasets were trained with the specified models and the results 
are given in Tables 6 and 7. 
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Table 5. Training results by neuron number 
First Dataset 

 
Second Dataset 

No Model Epoch Neuron Loss Accuracy Time  No Model Epoch Neuron Loss Accuracy Time 
9 NASNetMobile 25 32 0.5255 0.6315 808 

 
14 DenseNet201 10 32 0.5255 0.6967 112 

10 NASNetMobile 25 64 0.5047 0.639 806 
 

15 DenseNet201 10 64 0.5047 0.6749 104 
11 NASNetMobile 25 128 0.4897 0.6355 805 

 
16 DenseNet201 10 128 0.4897 0.7486 104 

12 NASNetMobile 25 256 0.5244 0.6535 804 
 

17 DenseNet201 10 256 0.5244 0.776 103 
13 NASNetMobile 25 512 0.5126 0.6525 806 

 
18 DenseNet201 10 512 0.5124 0.7541 104 

Table 6. Batch size training results with the first dataset 

No Model Epochs Neuron Batch 
Size Loss Accuracy Time 

(sec) 
19 NASNetMobile 25 256 8 0.5986 0.6825 1287 
20 NASNetMobile 25 256 16 0.6342 0.625 1206 
21 NASNetMobile 25 256 32 0.6532 0.6015 1083 
22 NASNetMobile 25 256 64 0.6369 0.6355 1181 

Table 7. Batch size training results with the second dataset 
 

No Model Epochs Neuron Batch 
Size Loss Accuracy Time 

(sec) 
23 DenseNet201 10 256 8 0.5017 0.7787 194 
24 DenseNet201 10 256 16 0.5165 0.7568 178 
25 DenseNet201 10 256 32 0.5205 0.7541 180 
26 DenseNet201 10 256 64 0.5603 0.735 196 

The smaller the batch size, the more number of times the network is trained. It is observed that this leads to a 
certain increase in the performance of the model. However, Table 6 shows that as the batch size decreases, the 
training time increases due to the increase in the number of iterations. It should be considered that this may be a 
disadvantage in studies with larger datasets. In this study, the highest performance among the two models was 
achieved with a batch size of 8. 

 
Figure 3. Accuracy graph of 8 batch size training. Figure 4. Accuracy graph of 64 batch size training. 

As can be seen in Figure 3, the fact that the training accuracy rate is more consistent while the test accuracy rate 
shows a fluctuating graph can be attributed to the small batch size. This can be explained by the fact that when the 
batch size given for testing is small, the number of samples with high or low discriminability is more likely to be 
unevenly distributed. 
As for the activation functions, six different activation functions were used in the intermediate layers: ELU, ReLU, 
Sigmoid, Softmax, Softplus, Tanh. The results obtained according to the models in these studies are shown in 
Table 8. 
As seen in Table 8, the best classification performances were obtained with the ELU activation function in the 
DenseNet201 model, and with the Softplus and ReLU activation functions in the NASNetMobile model. 
According to the results, although good results are obtained with the ReLU activation function for both models, it 
should be tested with more models and datasets in order to make generalizations. Considering the properties of 
activation functions, different functions should be tested and the most appropriate one for the dataset and model 
should be decided. 
One of the parameters examined in the study is optimization algorithms. Seven different optimization algorithms, 
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Table 8. Results according to activation functions 
No Model Epochs Neuron Batch Size Activation 

Functions 
Accuracy Time 

(sec) 
27 DenseNet201 10 256 8 ELU 0.7842 139.74 
28 DenseNet201 10 256 8 ReLU 0.7705 142.23 
29 DenseNet201 10 256 8 Tanh 0.7623 129.66 
30 DenseNet201 10 256 8 Softplus 0.7322 131.92 
31 DenseNet201 10 256 8 Sigmoid 0.6940 137.09 
32 DenseNet201 10 256 8 Softmax 0.5000 140.85 
33 NASNetMobile 25 256 8 Softplus 0.6480 1018 
34 NASNetMobile 25 256 8 ReLU 0.6480 1127 
35 NASNetMobile 25 256 8 Sigmoid 0.6365 1024 
36 NASNetMobile 25 256 8 ELU 0.6070 1129 
37 NASNetMobile 25 256 8 Tanh 0.5000 1078 
38 NASNetMobile 25 256 8 Softmax 0.5000 1013 

namely Adadelta, Adagrad, Adam, Adamax, Nadam, SGD and RMSprop, were used for model training and their 
classification performances are presented in Table 9. 

Table 9. Result performance of optimization functions 
No Model Epochs Neuron Batch 

Size 
Activation 
Functions 

Optimization 
Algorithms 

Accuracy Time 
(sec) 

34 DenseNet201 10 256 8 ELU RMSprop 0.7732 127.90 
35 DenseNet201 10 256 8 ELU Adamax 0.7377 116.71 
36 DenseNet201 10 256 8 ELU Nadam 0.7322 128.04 
37 DenseNet201 10 256 8 ELU Adam 0.7319 116.34 
38 DenseNet201 10 256 8 ELU Adagrad 0.5956 115.91 
39 DenseNet201 10 256 8 ELU Adadelta 0.5000 115.12 
40 DenseNet201 10 256 8 ELU SGD 0.5000 116.27 
41 NASNetMobile 25 256 8  Softplus Adam 0.6525 1029.47 
42 NASNetMobile 25 256 16  Softplus Adagrad 0.6295 1026.14 
43 NASNetMobile 25 256 32  Softplus SGD 0.6280 1034.05 
44 NASNetMobile 25 256 48  Softplus Nadam 0.6235 1041.37 
45 NASNetMobile 25 256 64  Softplus Adamax 0.6210 1025.61 
46 NASNetMobile 25 256 80  Softplus RMSprop 0.6170 1034.03 
47 NASNetMobile 25 256 96  Softplus Adadelta 0.6025 1025.97 

As seen in Table 9, the highest accuracy values were obtained with the RMSprop algorithm in training with the 
DenseNet201 model and with the Adam algorithm in training with the NASNetMobile model. The accuracy graphs 
of the optimization algorithms according to the models are given in Figures 5 and 6. 

 
Figure 5. Accuracy graph of optimization 
optimization algorithms with DenseNet201. 

Figure 6. Accuracy graph of algorithms with 
NASNetMobile. 

In the graph shown in Figure 5, the optimization algorithms have more distant performances from each other. This 
difference is thought to be due to the dataset rather than the model. Since the dataset used in the DenseNet201 
model is smaller, a consistent result could not be obtained with some optimization algorithms in training. Figure 
6 shows that in the NASNetMobile model, RMSprop, Adadelta and Adagrad algorithms draw a more consistent 
graph while Adam, Adamax, Nadam and SGD algorithms have a more fluctuating training process. On the other 
hand, the highest accuracy rate in the NASNetMobile model was obtained with the Adam optimization algorithm. 
As can be seen in the results of the training tasks performed in our study, the optimization algorithms that achieve 
the best performance on different models and datasets vary. Therefore, no generalization can be made about any 



M ü h . B i l . v e  A r a ş . D e r g i s i , 2 0 2 4 ; 6 ( 1 )  4 2 - 5 2  
 

50  

optimization algorithm. It is recommended to try different algorithms to find the most suitable optimization method 
for the datasets and models. 
In CNN, the learning rate is the parameter that determines how large steps the network's weight updates will be 
made. In this study, training was performed with values between 0.01 and 0.0001 for the learning rate parameter. 
In order to better observe the effects of this parameter, the models were trained for 100 epochs unlike the previous 
trainings. The results obtained after these trainings are given in Table 10. 

Table 10. Results of RMSprop and Adam algorithms according to learning rates 

No Model Dataset Epochs Optimization 
Algorithms 

Learning 
Rate 

Accuracy Time 
(sec) 

48 DenseNet201 pizza classification data 100 RMSprop 0.01 0.6585 1251 
49 DenseNet201 pizza classification data 100 RMSprop 0.001 0.7860 1269 
50 DenseNet201 pizza classification data 100 RMSprop 0.0001 0.7486 1249 
51 NASNetMobile Dogs & Cats Images 100 Adam 0.01 0.6 1028 
52 NASNetMobile Dogs & Cats Images 100 Adam 0.001 0.6286 1033 
53 NASNetMobile Dogs & Cats Images 100 Adam 0.0001 0.6786 1011 

As seen in Table 10, the RMSprop algorithm achieved the highest accuracy performance with a learning rate 
of 0.001 and the Adam algorithm achieved the highest accuracy performance with a learning rate of 0.0001. It is 
observed that the Adam algorithm gives better results at a lower learning rate than the RMSprop algorithm. This 
shows that the ideal learning rates may be different according to the optimization algorithm. 

  
Figure 7. Accuracy of 0.01 learning rate in the 

RMSprop algorithm. 
Figure 8. Accuracy of 0.0001 learning rate in the 

RMSprop algorithm. 

Looking at the accuracy/epoch graphs given in Figures 7 and 8, it can be seen that when the learning rate is high, 
the training progresses in a more fluctuating structure, while as the learning rate decreases, the fluctuation 
decreases and it becomes more consistent. In summary, in this study, the NASNetMobile model achieved the 
highest performance with 10 epochs, 256 number of neurons, 8 batch sizes, Softplus activation function, Adam 
optimization algorithm and 0.0001 learning rate, while the DenseNet201 model achieved the highest performance 
with 25 epochs, 256 number of neurons, 8 batch sizes, ELU activation function, RMSprop optimization algorithm 
and 0.001 learning rate.   

4. CONCLUSION 
In order to examine the effect of the hyperparameters used in CNN on the classification performance of the model, 
58 trainings were performed on NASNetMobile and DenseNet201 models with two different datasets. As a result 
of the trainings for the number of training rounds, it was seen that the ideal values of this parameter can be reached 
with different numbers according to the model and dataset. Considering the datasets used in the study, it can be 
said that larger datasets should be trained with higher epoch values. In the experiments on the number of neurons, 
it was observed that increasing the number of neurons in both models increased the learning capacity of the network 
and thus the classification performance. In the training studies on batch size, it was observed that the accuracy rate 
increased as the batch size decreased for both models. However, it should be noted that when the batch size is 
small, the number of iterations will be larger and the training time will be longer. As a result of the experiments 
with activation functions and optimization algorithms, no characterization could be made according to the models 
or dataset. Considering the properties of these parameters, different values should be tried and the most suitable 
one for the dataset and the model should be decided. Finally, it was observed that training was more unstable when 
the learning rates took large values, while training was more consistent with small learning rates. However, it 
should be kept in mind that small learning rates may cause the training to slow down, especially for large datasets. 
As a result of the parameter changes made on the CNN models in the study; in the NASNetMobile   model, the 
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accuracy rate increased from 61.75% to 68.25%, an increase of 6.5%. In the DenseNet201 model, the accuracy 
increased from 66.87% to 78.42%, an increase of 11.55%. Although these findings show that hyperparameters 
have an impact on the classification performance of CNN models, our study also has some limitations. The values 
of only some of the hyperparameters used in the CNN models were selected and analyzed in certain ranges. 
Experiments were conducted for only a part of the probability space consisting of all values that all hyperparameters 
can take. In addition to the hyperparameters, the dataset used in the model also has an impact on performance. 
Training the models with two datasets is another limitation of the study. In the continuation of the study, 
experiments can be conducted on CNN models with different value ranges of different hyperparameters and more 
datasets. In addition, the examination of the parameters in Vision Transformers architectures, which is a new and 
impressive approach in the field of image processing, can be added to the continuation of the study. 
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