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ABSTRACT It has been reported by World Health Organization (WHO) that the Covid-19 epidemic due to the
Sar-Cov-2 virus, which started in China and affected the whole world, caused the death of approximately six
million people over three years. Global disasters such as pandemics not only cause deaths but also bring
other global catastrophic problems. Therefore, governments need to perform very serious strategic operations
to prevent both infection and death. It is accepted that even if there are vaccines developed against the virus,
it will never be possible to predict very complex spread dynamics and reach a spread pattern due to new
variants and other parameters. In the present study, four countries: Türkiye, Germany, Italy, and the United
Kingdom have been selected since they exhibit similar characteristics in terms of the pandemic’s onset date,
wave patterns, measures taken against the outbreak, and the vaccines used. Additionally, they are all located
on the same continent. For these reasons, the three-year Covid-19 data of these countries were analyzed.
Detailed chaotic attractors analyses were performed for each country and Lyapunov exponents were obtained.
We showed that the three-year times series is chaotic for the chosen countries. In this sense, our results are
compatible with the results of the Covid-19 analysis results in the literature. However, unlike previous Covid-19
studies, we also found out that there are chaotic, periodic, or quasi-periodic sub-series within these chaotic
time series. The obtained results are of great importance in terms of revealing the details of the dynamics of
the pandemic.
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INTRODUCTION

Humanity has faced the Covid-19 epidemic, which is the biggest
global disaster after the Second World War and has surrounded
the whole world. The pandemic was declared by the World Health
Organization (WHO) on March 11, 2020, due to the coronavirus epi-
demic that started in China and affected the whole world (World
Health Organisation 2020). As of March 26, 2023, 761 million peo-
ple were infected with coronavirus and 6.8 million people died
(World Health Organisation 2023). With the beginning of mass
deaths, all governments and WHO are trying to control and pre-
vent the spread of Covid-19. As it is known until the Covid-19
vaccine was found, all countries of the world tried to prevent the
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spread of this virus with a series of measures such as curfews and
travel restrictions. One of the important steps to controlling the
spread of Covid-19 was the mathematical modeling of the pan-
demic and its analysis. With the acquisition of vaccines, efforts
were made to prevent the Covid-19 epidemic. As of April 2023, 69.9
percent of the world’s population had at least one COVID-19 vac-
cine. However, despite vaccines, new virus types have emerged
and caused new spreading waves. Fortunately, the end of the
pandemic process, which lasted approximately three years, was
announced by WHO in May 2023.

Modeling a pandemic is important for two reasons. The first
of these is to find or understand the mathematical model of the
spreading dynamics of the pandemic. The other is to make model-
based predictions and develop strategies to take preventive mea-
sures against the pandemic. Various models have been supposed
to carry out the spread dynamics of infectious diseases. One of
the popular methods is the compartment method proposed by
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Kermack and McKendrick (Kermack and McKendrick 1927). In
this method, the entire population is divided into different com-
partments: i) people who are prone to the disease; ii) people who
are already infected and can spread the infection; iii) people who
have already recovered and have developed the immune system.

This model is called as SIR model in the literature. After the
Covid pandemic started, many mathematical and simulation mod-
els are proposed for the study of COVID-19 based on SIR model
(Schaffer 1985; Olsen et al. 1988; Hethcote et al. 1989; Earn et al. 2000;
Kumar et al. 2019; Machado et al. 2020; Gumel et al. 2004; Livadiotis
2020; Youssef et al. 2020; Ahmetolan et al. 2020). However, it is
known that these models are not sufficient to predict the course of
the pandemic. The validity of most predictive models relies on nu-
merous parameters, involving biological and social characteristics
often unknown or highly uncertain.

To fully understand the dynamics of the spread of such a pan-
demic, it is necessary to analyze the data set consisting, for exam-
ple, of the number of people infected or lost their lives. Does the
time series correlate? Does the time series consist of unpredictable
data? Is there a pattern in the data set? The answers to these ques-
tions are important in understanding the dynamics of diffusion.
Many studies have been conducted to answer these questions. For
example, Mangiarotti et al showed that there are chaotic attrac-
tors in the Covid-19 data of China, Japan, South Korea, and Italy
(Mangiarotti et al. 2020). These findings indicate that the number
of people infected and those who lost their lives in the pandemic
is unpredictable.

It also points out that it is necessary to include the chaos the-
ory to understand the dynamics of the pandemic. It has been
previously reported that the Mexican flu and Ebola and dengue
epidemics contained chaotic patterns (Speakman and Sharpley
2012; Mangiarotti et al. 2016; Agusto and Khan 2018). Additionally,
it is also possible to see new studies in the literature supporting
that the Covid-19 pandemic has chaotic spreading dynamics (Jones
and Strigul 2021; Borah et al. 2022; Abbes et al. 2023; Russell et al.
2023; Mashuri et al. 2023; Wang et al. 2023; Debbouche et al. 2022;
Sapkota et al. 2021; Gonçalves 2022).

As it is known, many parameters affect virus spreading. The
most important of these are new virus variants arising from the
Sars-Cov-2 virus. This causes the data to be superimposed. There-
fore, it requires detailed analysis to determine the character of the
wave. For example, the data may include quasi-periodic or chaotic
signals. Quasi-periodic signals of this type are known as weak
signals in the literature. These weak signals can be detected with
the help of chaotic oscillators (Wang et al. 1999; Wang and He 2003;
Liu et al. 2007; Raj et al. 1999; Birx and Pipenberg 1992). However,
in this study, we will analyze data as a whole and sub-series to
detect quasi-periodic and chaotic regimes.

Since Covid-19 remains a potential, careful analysis of available
data remains important. Even if the pandemic were to be offi-
cially declared over when we look at the records of the WHO and
the Coronavirus Resource Center, it is evident that the COVID-19
outbreak still persists at a low level(World Health Organisation
2023; Coronavirus Resource Center 2024). It should not be for-
gotten that the world is always under the threat of a pandemic.
Understanding the dynamics of the spread is crucial to combating
any outbreak. Throughout history, uncontrollable pandemics have
inflicted greater damage on nations than wars, and in some cases,
entire states have collapsed due to epidemics. The fight against
infectious diseases is not merely an epidemic issue but a strate-
gic concern for countries. Therefore, analyzing Covid-19 data is
still important to carry out the dynamics of the pandemic. In the

present study, we will analyze Covid-19 data of Türkiye, Germany,
Italy, and United Kingdom in detail to discuss the spreading dy-
namic. We will analyze the phase spaces and calculate Lyapunov
exponents for these countries’ time series and different time inter-
vals. As a main contribution, in the present works, we will show
that three years Covid-19 data for the chosen countries are chaotic,
and, it is the first time, we will show that the chaotic, periodic
or quasi-periodic sub-series embedded as a sub regimes in these
chaotic pandemic time series.

The study is organized as follows: In Section II, we briefly
introduce the mathematical techniques and algorithms for the
analysis of a time series. In Section III, we presented three years
Covid-19 mortality data with sub-peak periods and mortality data
for Türkiye, Germany, Italy, and the United Kingdom. In Section IV,
we give numerical results in detail for four countries. We plotted
attractors in the phase spaces and computed Lyapunov exponents
of the time series of Covid-19. In this section, we show that Covid-
19 data have chaotic attractors and positive Lyapunov exponents
in some time intervals while they have quasi-periodic solutions in
some time intervals. Finally, in the last chapter, the discussion and
conclusion are given.

CHAOTIC TIME SERIES ANALYSIS

Time series
It is known that a time series is a series of data points indexed in
time order. Time series can be obtained from data produced by a
physical system, but also from discrete or a differential equation.
While the discrete systems can be expressed as xn+1 = f(xn),
the continuous systems can be expressed in the differential form
as dx(t)

dt = F(x) with three or more degrees of freedom x(t) =
[x1(t), x2(t), ..., xm(t)]. The time series we are interested in here
is the Covid-19 mortality series of four different countries. This
series consists of three years of data. Our main aim is to reveal
whether these series are chaotic or not. As we will show below,
we will do this both for the entire series and by dividing the series
into subdivisions. We will use the same method of analysis for
both cases. To perform chaotic analysis, we will need knowledge
of the phase space and the Lyapunov exponent. These details will
be given briefly below.

According to the classical approach of chaos theory, for a time
series to be chaotic, it must be sensitive to the initial condition and
be unpredictable. Since the Covid epidemic contains dynamic vari-
ables that depend on time, it should also be taken into account that
it is sensitive to physical factors that change over time. However,
the best way to see chaotic behavior in the data set is to perform
phase space analysis and calculate the Lyapunov exponent. We
will calculate these quantities using Matlab. However, we would
like to briefly present the background of the calculation.

Attractor Reconstruction
Reconstruction of phase space is very important to see the dy-
namic behavior of the given time series. To figure out the trajectory
from a given time series is a big challenge. Fortunately, the delay
time-coordinate embbedding method laid by Takens (Takens 1981).
The delay-coordinate method can be given as follows. From a
measured time series x(k) = x(t0 + k∆t) with ∆t being the sam-
pling interval, the following vector quantity of m components is
constructed:

x(t) = {x(t), x(t + τ), ..., x(t + (m − 1)τ)} (1)

where t = t0 + k∆t, τ is the delay time which is an integer multiple
of ∆t and m is the embedding dimension. To plot a phase space
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of a given time series, it is necessary to determine the delay time
τ and embedding dimension m. Once these two parameters are
determined, the reconstructed vector x(t) can accurately represent
the trajectory of the unknown attractor. We will not go into calcu-
lation details here. It can be seen in the details of computing these
quantities in Ref.(Takens 1981).

Lyapunov Exponent
The Lyapunov exponent is the most important quantity used to
determine whether chaotic behavior exists in a dynamic system.
A positive Lyapunov exponent is the strongest sign that indicates
that there is chaos in the system. On the other hand, a negative
Lyapunov exponent represents fixed points while a zero Lyapunov
exponent denotes a limit cycle or a quasiperiodic orbit.

The Lyapunov exponent of a dynamical system or time se-
ries represents the rate of exponential divergence of an orbit
from perturbed initial conditions. For example, consider an m-
dimensional discrete map x(j) (j = 1, 2, ..., m). Let xn(j) be its state
at time n. By adding δx(j) to the xn(j), we set an new state as
x′n(j) = xn(j) + δx(j). The distance between two states changes
exponentially with time

∥δxn(j)∥ ∼ eλt∥xn−1(j)∥ (2)

Then the maximal Lyapunov exponent λmax can be obtained from
Eq.(2) as

λmax = lim
N→∞

1
N

N

∑
j=0

ln
∥δxn(j)∥
∥δxn−1(j)∥ (3)

where ∥δxn(j)∥ = (∑m
j δxn(j)2)1/2. By using this approximation

can be computed Lyapunov exponent for the dynamical systems.
However, it is quite difficult to use this method in a time series
analysis. Various methods have been developed to calculate the
Lyapunov exponent in time series (Rosenstein et al. 1993; Wolf et al.
1985) and other methods (Meranza-Castillón et al. 2019; Arellano-
Delgado et al. 2017). In this study, we will calculate Lyapunov
exponents using Matlab (Inc. 2023) which based on the algorithm
given in Ref.(Rosenstein et al. 1993). In this algorithm process,
firstly time delay time τ and embedding dimension m are com-
puted to construct the phase space for the time series data, and
then, the distance between two trajectories starts at different states.

COVID-19 MORTALITY TIME SERIES OF FOUR COUNTRIES

In this study, as we mentioned in the introduction we will analyze
the COVID-19 mortality data of Türkiye, Germany, Italy, and the
United Kingdom, respectively. The data of the countries between
2020 and 2022 will be used in the analysis. The data were taken
from public data of the World Health Organization and Our World
in Data sites (Our World in Data Organisation 2023; World Health
Organisation 2023).

Three years Covid-19 mortality data for four countries are given
in Fig.1. As can be seen from Fig.1 pandemic peaks occur at differ-
ent time intervals in the time series of four different countries. To
conduct a systematic analysis of the data of these four countries,
we divided the three-year time series into six sub-divisions for the
sake of simplicity. Each peak was represented with a different color,
and the start and end dates of the peaks were given in the panels.
In Fig.1 the area under the peaks gives the number of people who
died during that peak period. These numbers are also given in
Table 1. On the other hand, it should be noted that the highest
peaks were considered when determining the peak range for each
country. For example, if there was no major peak in one country

and there was a high peak in another country, it was evaluated as
if there was a peak in the same period. We paid attention to this
generality when separating these compartments. However, the
analysis of peaks is independent of the number of peaks.
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Figure 1 Mortality time series between 17.03.2020 − 31.05.2022
due to Covid-19: In (a) Türkiye, in (b) Germany, in (c) Italy, in (d)
United Kingdom.

The number of deaths for each peak period for four countries is
given in Table 1. It can be seen that the number of deaths varies
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■ Table 1 COVID-19 waves and mortality number of four countries.

1st 2nd 3rd 4th 5th 6th

Day Deaths Day Deaths Day Deaths Day Deaths Day Deaths Day Deaths

Türkiye 89 4792 73 1371 198 23127 128 21198 169 32147 149 16330

Germany 106 8887 103 649 309 82247 182 26935 132 21472 181 19708

Italy 176 35265 197 62307 112 29571 126 4556 238 35895 105 9429

United Kingdom 175 57858 265 96248 218 27398 166 23374 99 7786 78 5596

dramatically within the same peak intervals. The fact that these
numbers are very different from each other can be considered to
vary depending on many parameters such as the elderly popula-
tion, isolation strategies, and vaccination. In this study, we would
like to analyze the character of the time series, not the numbers
in different time intervals. Therefore, firstly, we performed the
phase space analyses for three years of data for each country, and
the character of the time series was determined by calculating
Lyapunov exponents. Subsequently, we separately analyzed all
epidemic peaks for each country. Similarly, we discussed the phase
space Lyapunov exponents for each pandemic peak. Analysis
results are given below.

CHAOS ANALYSIS OF THE COVID-19 MORTALITY DATA

Türkiye
The time series showing the number of deaths due to COVID-19
in Türkiye between 2020 and 2022 is given in Fig 1(a). We obtained
the embedding dimensions and delay time for this time series
using the method presented in Section Chaotic time series analysis.
With the help of this information, we constructed the phase space
of the time series in Fig 2 (a). Although not visible in great detail,
it can be seen that more than one orbit exists in the phase space.
These orbits may indicate the presence of a chaotic attractor. But
the attractor is not very clear, as in Lorenz, for example. Orbits may
indicate the existence of a periodic or quasi-periodic solution. To
see whether the orbit is chaotic or not, we calculated the Lyapunov
exponent of the series with the help of MATLAB (Inc. 2023) and
gave the result in Fig 2 (b).
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Figure 2 COVID-19 data set of Türkiye’s reported deaths time
series between 17.03.2020 − 31.05.2022. Embedding dimension
d = 3 and time delay τ = 20. In (a) phase space representation,
in (b) Lyapunov exponent.

As can be seen from Fig 2 (b) the Lyapunov exponent for
COVID-19 three-year mortality data is positive which indicates
data has chaotic behavior.

0 20 40 60 80 100 120 140

x (t)

0

20

40

60

80

100

120

140

x
 (

t+
1
2
)

TUR wave 1

(a)

14 16 18 20 22 24 26 28

x (t)

14

16

18

20

22

24

26

28

x
 (

t+
4
)

TUR wave 2

(b)

50 100 150 200 250 300

x (t)

0

50

100

150

200

250

300

x
 (

t+
1
8
)

TUR wave 3

(c)

0 50 100 150 200 250 300 350 400

x (t)

0

50

100

150

200

250

300

350

400

x
 (

t+
8
)

TUR wave 4

(d)

100 120 140 160 180 200 220 240 260 280 300

x (t)

0

50

100

150

200

250

300

x
 (

t+
1
8
)

TUR wave 5

(e)

0 50 100 150 200 250 300 350

x (t)

0

50

100

150

200

250

300

350

x
 (

t+
1
4
)

TUR wave 6

(f)

Figure 3 Reconstructed phase space of Türkiye’s waves. In (a) 1st

wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e) 5th

wave, in (f) 6th wave.
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Figure 4 Largest Lyapunov exponent of Türkiye’s wawes. In (a)
1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e)
5th wave, in (f) 6th wave.

On the other hand, to analyze the local region in the time series,
we first computed the embedding dimensions and delay times for
the sub-time series corresponding to each peak, and we separately
plotted the phase space diagrams for these sub-time series in Fig 3.
As can be seen from this figure the single trajectory is seen in all sub-
panels in Fig 3. One can see that the presence of these single orbits
may indicate aperiodic orbits of the sub-time series. Lyapunov
exponents of these sub-time series were calculated and given in
Fig 4. As can be seen from Fig 4 all sub-time series of Türkiye
have different negative Lyapunov exponents. These interesting
results show that while the three-year time series of Covid-19 data
is chaotic, the behavior of the sub-time series in the same period
is not chaotic for Türkiye. This result is meaningful as it indicates
that a time series consisting of quasi-periodic signals sub-sets can
produce chaotic dynamics when evaluated as a whole.

Germany

Similarly and using the same systematics, we analyzed the three-
year data of the Germany time series shown in Fig 1(b). We de-
termined the delay time for this time series and plotted the phase
space as can be seen in Fig 5(a). Contrary to Türkiye’s data, we
can say that there are more orbits around attractors in Germany’s
data. We can see from Fig 5(b) that this attractor is chaotic. Indeed,

the Lyapunov exponent of this time series is positive. While the
Largest Lyapunov Exponent (LLE) value is 0.038 for Germany, this
value is around 0.028 for Türkiye. This difference indicates that
Germany’s Covid-19 time series is more chaotic than Türkiye’s
time series.
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Figure 5 COVID-19 data set of Germany’s reported deaths time
series between 09.03.2020 − 19.06.2022. Embedding dimension
d = 3 and time delay τ = 20. In (a) phase space representation,
in (b) Lyapunov exponent.

0 50 100 150 200 250 300 350

x (t)

0

50

100

150

200

250

300

350

x
 (

t+
1
2
)

DEU wave 1

(a)

0 2 4 6 8 10 12 14 16 18 20

x (t)

0

5

10

15

20

25

x
 (

t+
4
)

DEU wave 2

(b)

0 200 400 600 800 1000 1200 1400

x (t)

0

200

400

600

800

1000

1200

1400

x
 (

t+
1
8
)

DEU wave 3

(c)

0 100 200 300 400 500 600

x (t)

0

100

200

300

400

500

600

x
 (

t+
8
)

DEU wave 4

(d)

0 50 100 150 200 250 300 350 400

x (t)

0

50

100

150

200

250

300

350

400

x
 (

t+
1
8
)

DEU wave 5

(e)

0 50 100 150 200 250 300 350

x (t)

0

50

100

150

200

250

300

350

x
 (

t+
1
4
)

DEU wave 6

(f)

Figure 6 Reconstructed Phase Space of Germany’s Waves. In (a)
1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e)
5th wave, in (f) 6th wave.
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Figure 7 Largest Lyapunov exponent of Germany’s waves. In (a)
1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e)
5th wave, in (f) 6th wave.

To analyze the time series of each independent peak in Ger-
many’s Covid-19 data given in Fig. 3(b), we computed embedding
dimensions and delay times for each sub-data. We separately plot-
ted the phase space diagrams for these sub-time series in Fig. 6.
As can be seen from this figure more trajectories are seen in all
sub-panels in Fig 6. These multi-orbits may indicate chaotic orbits
of the sub-time series. Lyapunov exponents of these sub-time se-
ries were calculated and given in Fig. 7. As can be seen from Fig. 7
all sub-time series of Germany have different positive Lyapunov
exponents. These interesting results show that the three-year time
series and all sub-series of Covid-19 data of Germany are chaotic.

Italy

Similarly, we compute the delay time for the three-year data of
the Italy time series shown in Fig. 1(c). The chaotic attractor for
this data is given in Fig. 8(a). It can be seen that there is more than
one trajectory in this phase space. Additionally, we obtained the
Lyapunov exponent for this data and plotted it in Fig. 8(a). The
value of the Lyapunov exponent for Italy is 0.0037 which is close
to the value of Germany.

To see detailed phase space attractors of the sub-series for Italy’s
Covid-19 data given in Fig 3(c), we computed embedding dimen-
sions and delay times for each sub-data. We separately plotted the
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Figure 8 COVID-19 data set of Italy’s reported deaths time series
between 21.02.2020 − 2.10.2022. Embedding dimension d = 3
and time delay τ = 10. In (a) phase space representation, in (b)
Lyapunov exponent.
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Figure 9 Reconstructed phase space of Italy’s waves. In (a) 1st

wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e) 5th

wave, in (f) 6th wave.

phase space diagrams for these sub-time series in Fig 9. As can be
seen from this figure more trajectories are seen in all sub-panels
in Fig 9. Although there appear to be attractors in the phase space
diagrams, it is difficult to say that the character of the time series
can be fully understood from the orbits in the phase space. To see
the dynamics of the sub-time series, Lyapunov exponents of the
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Figure 10 Largest Lyapunov exponent of Italy’s waves.In (a) 1st

wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e) 5th

wave, in (f) 6th wave.

sub-time series were calculated separately and given in Fig 10. In-
terestingly, the second and third peaks have a negative Lyapunov
exponent, while the others have a positive exponent. These re-
sults indicate that the three-year chaotic Italy series consists of a
combination of chaotic and quasi-periodic sub-series.

United Kingdom
Finally, we compute the delay time for the three-year data of the
United Kingdom time series shown in Fig. 1(d). The attractor for
this data is given in Fig. 11(a). It can be seen that there is more than
one trajectory in this phase space. Additionally, we obtained the
Lyapunov exponent for this data and plotted it in Fig. 11(b). The
value of the Lyapunov exponent for the United Kingdom is 0.029
which is close to the value of Türkiye.

Obtaining embedding dimensions and delay times for all sub-
series for United Kingdon’s Covid-19 data given in Fig 1(d). We
separately plotted the phase space diagrams for these sub-time
series in Fig 12. As can be seen from Fig 12 while the orbits are
more distinct in the first two panels, however, the orbits are in-
tertwined in the others. To reveal the dynamics of the sub-time
series, Lyapunov exponents were calculated separately and given
in Fig 13.
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Figure 11 COVID-19 data set of United Kingdom’s reported
deaths time series between 08.03.2020 − 03.12.2022. Embedding
dimension d = 3 and time delay τ = 10. In (a) phase space
representation, in (b) Lyapunov exponent.
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Figure 12 Reconstructed Phase Space of United Kingdom’s
waves. In (a) 1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th

wave, in (e) 5th wave, in (f) 6th wave.

Surprisingly, one can see that all sub-time series of the United
Kingdom have a negative Lyapunov exponent. While the entire
series is chaotic, the subseries behave as quasi-periodic. These
results are similar to Türkiye’s results.
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Figure 13 Largest Lyapunov exponent of United Kingdom’s
waves. In (a) 1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th

wave, in (e) 5th wave, in (f) 6th wave.

CONCLUSION

As we mentioned in the introduction, it is very difficult to pre-
dict and make predictions about the course of the pandemic due
to reasons such as its multi-parameter-dependent dynamics, the
emergence of new variants, and the impact of vaccine applications.
So far, it has been possible to obtain limited information about the
course of the pandemic through model-based or statistical analysis-
based studies. The most important possible reason for this may be
that the pandemic dynamics are chaotic. Therefore, in this study,
to see the presence of chaotic patterns in the Covid-19 data, we
analyzed the Covid-19 mortality data of Türkiye, Germany, Italy,
and the United Kingdom for three years by using the data of the
WHO.

We plotted phase space diagrams of three-year mortality data
of four countries and obtained Lyapunov exponents. We found
positive Lyapunov exponents for all countries, which indicates
phase space trajectories of the Covid-19 data are chaotic. These
significant numerical results support the studies that suggest that
the Covid-19 pandemic has chaotic dynamics. On the other hand,
we considered the subset of data corresponding to the spreading
peaks of mortality data in the time interval for three years.

Surprisingly, we found that some of the sub-time series of these
countries exhibit chaotic or quasi-periodic behavior. This interest-

ing result was reported for the first time in this study. This reveals
that there may be quasi-periodic -weak- regimes within a chaotic
time series. These findings are important for a more detailed un-
derstanding of epidemics with chaotic spread dynamics.

If we summarize the results, analysis has revealed that while
the Covid-19 epidemic in Türkiye was chaotic over three years,
however, no peak that emerged in this period was chaotic. For
example, the situation is quite different in Germany. While the
three-year data in Germany behaves chaotically, it can be seen
from the figure that all independent peaks in this time interval are
also chaotic.

The situation in United Kingdom is the same as in Türkiye. As
can be seen from the figure, all peaks are chaotic. However, in the
Italy, the second and third peaks are periodic or quasi-periodic,
while the others are chaotic. As is known, positive Lyapunov ex-
ponents indicate that the series behaves chaotic. In the analysis,
we saw that time series that behave chaotically take different pos-
itive values. These values can be thought to reflect the degree of
chaoticness of the system.

As a result, by analyzing Covid-related deaths from four coun-
tries, we showed that the series is chaotic as seen as seen Figs.2(b),
5(b), 8(b) and 11(b). In this sense, our results are compatible with
the results obtained in the previous studies (Jones and Strigul 2021;
Borah et al. 2022; Abbes et al. 2023; Russell et al. 2023; Sapkota et al.
2021; Gonçalves 2022). However, unlike previous Covid-19 studies,
we also found out that there are chaotic, periodic or quasi-periodic
sub-series within these chaotic time series. These new and novel re-
sults are reported for the first time in this study. Here we analyzed
data from four countries, however, one can estimate that the time
series of Covid-19 in the other countries have similar dynamics.

It can be assumed that a pandemic is a catastrophic event that
occurs within a complex system (Aydiner 2020). Therefore, by
its nature, the pandemic is expected to be chaotic. Indeed, it has
been confirmed in the present study and previous studies that
the Covid-19 pandemic is chaotic (Jones and Strigul 2021; Borah
et al. 2022; Abbes et al. 2023; Russell et al. 2023; Sapkota et al. 2021;
Gonçalves 2022). However, it is interesting to find periodic or
quasi-periodic regimes in chaotic time series. For example; all
sub-series of Türkiye and United Kingdom in Figs.4 and 13 are
quasi-periodic, not chaotic.

Similarly, two sub-series for Italy in 10(b) and (c) are also quasi-
periodic. Quasi-periodic regimes may indicate that the correlations
between daily mortality values goes to zero which means daily
mortalities are relatively independent each other.
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