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Abstract

In this article, some mathematical properties of (ι ,x0)-generalized logistic-type function are pre-
sented. This four-parameter generalized function can be considered as a statistical phenomenon
enhancing more vigorous survival analysis models. Moreover, the behaviors of the relevant paramet-
ric functions obtained are examined with graphics using computer programming language Python
3.9.

1. Introduction

1.1. Motivation

Crudely put, the logistic and logistic-type functions play an important role in many scientific disciplines including probability
and statistics, demography, machine learning, ecology, mathematical psychology and biology [1]. Actually, the logistic
function has a long history dating back to the classical statistics and ”belief neural networks” [2], [3]. It has a leading role in
the logistic regression procedure, especially in terms of its statistical properties that we discuss here.While in early studies
this appeared as the solution to a specific differential equation, it was later used as one of many possible smooth, monotonic
”squash” functions that mapped real values to a limited range.
Over time, as a result of the increasing interest and need for learning concept and learning algorithms, the probabilistic
properties of the logistic function have begun to be studied in depth. This orientation has led to more advanced learning
methods. So, it has diversified and strengthened the connections between neural networks (NNs) and statistics.
Methods that preserve the logistic function offer a possibility in this context. So, as alternative methods to contingency table
and general regression model; a simple artificial neural network architecture, a more comprehensive generalized additive
model, or another flexible ”approximate” model in logistic form may be a reason for preference. An example for generalized
linear model is the generalization of logistic regression while probabilistic model for multi-class classification problem is a
multinomial model. In this models, it is a reasonable approach to use a normalized exponential function as a logistic function,
aka ”softmax” function, which is defined below, and used intensively in the NNs literature [4], [5], [6].
Now, let σ : RN 7−→ (0,1)N be a function defined by the formula

σ ( j,z1,z2, ...,zN) =
e

z j

N
∑
j=1

e
z j
,

for N ≥ 1. This function σ called as ”unit softmax function” employs the classical exponential function to each of the
inputs denoted by z1,z2, ...,zN and all these values are normalized by being divided by the sum of all the exponentials. The
normalization process provides that the sum of the components of the output vector is 1. In addition, the softmax function
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takes as inputs z1,z2, ...,zN , and normalizes them into a probability distribution consisting of N probabilities proportional
to the exponentials of the input numbers [7]. Moreover, this function takes values between 0 and 1. Here we give an
(ι ,x0)-generalized logistic-type function (also can be considered as a parametric generalization of softmax function) and also
examine some mathematical properties such as convexity, sub-additivity, and multiplicativity.
The present paper includes four sections. In the following section, the construction of suggested (ι ,x0)-generalized logistic-type
function, and its analytical features are presented. After launching a brief introduction related to survival analysis; probability
density function of related distribution, parametric exponential survival (PES) and parametric failure (hazard) rate (PFR)
functions are given in the third section. We conclude the paper creating ”ceteris paribus” graphics of these functions employing
the computer programming language Python 3.9. Finally, we also add Python 3.9 codes as in Fig. 9 and Fig 10 at the end of
the study to motivate readers to earn/develop her/his programming language ability.

2. Main Results

Let ι ,ρ > 0 be the parameters with ξ > 1; inspired by [8] and [9], we can consider an (ι ,x0)-generalized logistic-type function
as follows:

Ψρ,ι (x) =
1

1+ρξ−ι(x−x0)
=

ξ ι(x−x0)

ρ +ξ ι(x−x0)
, (2.1)

where x,x0 ∈ R.
The first and second derivatives of the (ι ,x0)-generalized logistic-type function Ψρ,ι are given as below:
let ι ,ρ > 0 be the parameters, and ξ > 1

Ψ
′
ρ,ι (x) =

(
1

1+ρξ−ι(x−x0)

)′
= ρι (lnξ )ξ

−ι(x−x0)
(

1+ρξ
−ι(x−x0)

)−2

=
ρι (lnξ )(

1+2ρξ−ι(x−x0)+ρ2ξ−2ι(x−x0)
)

ξ ι(x−x0)

=
ρι (lnξ )(

ξ ι(x−x0)+2ρ +ρ2ξ−ι(x−x0)
) = ρι (lnξ )

(
ξ

ι(x−x0)+2ρ +ρ
2
ξ
−ι(x−x0)

)−1

for all x,x0 ∈ R.

Besides, taking the second derivative of (2.1) for x ∈ R we get

Ψ
′′

ρ,ι (x) = ρι
2 (ln2

ξ
)(

ξ
ι(x−x0)+2ρ +ρ

2
ξ
−ι(x−x0)

)−2(
ρ

2
ξ
−ι(x−x0)−ξ

ι(x−x0)
)

Since

Ψ
′′

ρ,ι (x)> 0⇐⇒
(

ρ
2
ξ
−ι(x−x0)−ξ

ι(x−x0)
)
> 0

⇔ ρ
2
ξ
−ι(x−x0) > ξ

ι(x−x0)

⇔ ρ
2 > ξ

2ι(x−x0)⇔ |ρ|>
∣∣∣ξ ι(x−x0)

∣∣∣⇔ ρ > ξ
ι(x−x0),

and for ρ > 0,ξ > 1

logξ ρ > ι (x− x0)⇔
logξ ρ

ι
+ x0 > x

is obtained.
Let x < x0 +

logξ ρ

ι
−1, then x−1 < x+1 < x0 +

logξ ρ

ι
.

Ψ
′
ρ,ι (x+1)> Ψ

′
ρ,ι (x−1) . Thus Ψ

′
ρ,ι (x) is positive and strictly increasing on

(
−∞, x0 +

logξ ρ

ι

)
. Now, let x > x0+

logξ ρ

ι
+1,

then x+1 > x−1 > x0 +
logξ ρ

ι
, and Ψ

′
ρ,ι (x+1)< Ψ

′
ρ,ι (x−1) . So Ψ

′
ρ,ι (x) is strictly decreasing on

(
x0 +

logξ ρ

ι
,+∞

)
.

Proposition 2.1. Let ι ,ρ > 0 be the parameters, ξ > 1, and Ψρ,ι (x) be described as in (2.1). Now, let us take the first
derivative:

Ψ
′
ρ,ι (x) = ρι (lnξ )ξ

−ι(x−x0)
1(

1+ρξ−ι(x−x0)
)2

= ι (lnξ )Ψρ,ι (x)
(
1−Ψρ,ι (x)

)
. (2.2)
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By then, let’s take the second derivative of the function Ψρ,ι :

Ψ
′′

ρ,ι (x) = ι (lnξ )
(

Ψρ,ι (x)−Ψ
2
ρ,ι (x)

)′
= ι (lnξ )Ψ

′
ρ,ι (x)

(
1−2Ψρ,ι (x)

)
= ι

2 (ln2
ξ
)

Ψρ,ι (x)
(
1−Ψρ,ι (x)

)(
1−2Ψρ,ι (x)

)
.

Thus the (ι ,x0)-generalized logistic-type function Ψρ,ι has the following properties:

lim
x→+∞

Ψρ,ι (x) = lim
x→+∞

ξ ι(x−x0)

ρ +ξ ι(x−x0)
= 1,

lim
x→−∞

Ψρ,ι (x) = lim
x→−∞

ξ ι(x−x0)

ρ +ξ ι(x−x0)
= 0,

lim
x→x0

Ψρ,ι (x) = lim
x→x0

ξ ι(x−x0)

ρ +ξ ι(x−x0)
=

1
1+ρ

;ρ > 0,

lim
x→x0

Ψ
′
ρ,ι (x) = lim

x→x0

ρι (lnξ )

ξ ι(x−x0)
(
1+ρξ−ι(x−x0)

)2 =
ρι (lnξ )

(1+ρ)2 ,

lim
x→−∞

Ψ
′
ρ,ι (x) = lim

x→−∞
ρι (lnξ )

1
ξ ι(x−x0)+ρ2ξ−ι(x−x0)+2ρ

= 0,

and

∫
Ψρ,ι (x)dx =

∫
ξ ι(x−x0)

ρ +ξ ι(x−x0)
dx =

1
ι(lnξ )

ln
(

ρ +ξ
ι(x−x0)

)
+C, C is a constant. (2.3)

Remark 2.2. Additionally, if ξ = e, then (ι ,x0)-generalized logistic-type function Ψρ,ι acts like an ι−generalization of
softplus function (see [1]). The derivative of (2.3) yields the ι−generalized logistic-type function.

Proposition 2.3. From (2.2), Ψρ,ι (x) is increasing and positive on
(
−∞, x0 +

logξ ρ

ι

)
. Furthermore, l := Ψρ,ι (x) is a solution

to the initial value problem {
l
′
= ι (lnξ ) l (1− l) , l (x0) =

1
ρ +1

; ρ > 0.

Theorem 2.4. The (ι ,x0)-generalized logistic-type function Ψρ,ι satisfies the following inequality:

Ψρ,ι (x+ y)< Ψρ,ι (x)+Ψρ,ι (y) ,

for x0 ≥ 0, ι ,ρ > 0, x,y ∈ (−∞,0), and also x,y ∈
(

x0 +
logξ ρ

ι
,+∞

)
. In other words, the function Ψρ,ι is sub-additive on

(−∞,0)∪
(

x0 +
logξ ρ

ι
,+∞

)
.

Proof. We need to prove the cases x,y ∈ (−∞,0) and x,y ∈
(

x0 +
logξ ρ

ι
,+∞

)
, respectively.

The case x = y = 0 is straightforward.
For any fixed y: we obtain

ϕρ,ι (x,y) : = Ψρ,ι (x+ y)−Ψρ,ι (x)−Ψρ,ι (y)

=
1

1+ρξ−ι(x+y−x0)
− 1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(y−x0)

=
ξ ι(x+y−x0)

ξ ι(x+y−x0)+ρ
− ξ ι(x−x0)

ξ ι(x−x0)+ρ
− ξ ι(y−x0)

ξ ι(y−x0)+ρ
,
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and

∂

∂x
ϕρ,ι (x,y) =

∂

∂x

(
1

1+ρξ−ι(x+y−x0)
− 1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(y−x0)

)

=
−
(

ρξ−ι(x+y−x0) (−ι)(lnξ )
)

(
1+ρξ−ι(x+y−x0)

)2 −

−
(

ρξ−ι(x−x0) (−ι)(lnξ )
)

(
1+ρξ−ι(x−x0)

)2


=

ιρ (lnξ )ξ−ι(x+y−x0)(
1+ρξ−ι(x+y−x0)

)2 −
ιρ (lnξ )ξ−ι(x−x0)(
1+ρξ−ι(x−x0)

)2 .

For Ψ
′
ρ,ι (x) is decreasing on (x0,+∞), hence Ψρ,ι (x) is decreasing on the same interval. Then for x,y ∈ (x0,+∞), we can

have

ϕρ,ι (x,y) < ϕρ,ι

(
x,x0 +

logξ ρ

ι

)
= lim

x→x0+
log

ξ
ρ

ι

ϕρ,ι

(
x,x0 +

logξ ρ

ι

)

= ϕρ,ι

(
x0 +

logξ ρ

ι
,x0 +

logξ ρ

ι

)
= Ψρ,ι

(
2x0 +

2logξ ρ

ι

)
−Ψρ,ι

(
x0 +

logξ ρ

ι

)
−Ψρ,ι

(
x0 +

logξ ρ

ι

)
=

1

1+ρξ
−ι

(
2x0+

2log
ξ

ρ

ι
−x0

) − 2

1+ρξ
−ι

(
x0+

log
ξ

ρ

ι
−x0

)

=
1

1+ρξ
−ι

(
x0+

2log
ξ

ρ

ι

) − 2
1+ρ

1
ρ

=
1

1+ρξ
−ι

(
x0+

2log
ξ

ρ

ι

) −1

= − ρξ
−ι

(
x0+

2log
ξ

ρ

ι

)

1+ρξ
−ι

(
x0+

2log
ξ

ρ

ι

) < 0.

Thus ϕρ,ι is increasing on
(
−∞,x0 +

logξ ρ

ι

)
.

We have

ϕρ,ι (x,y) < ϕρ,ι (x,0) = lim
x→0

ϕρ,ι (x,0)

= lim
x→0

(
Ψρ,ι (x+0)−Ψρ,ι (x)−Ψρ,ι (0)

)
= lim

x→0

{
1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(−x0)

}
= lim

x→0
− 1

1+ρξ ιx0
< 0.

Remark 2.5. In Theorem 2.4; if we take x0 = 0, ι > 0,ξ = e, and ρ = 1 then ϕρ,ι (x,y) becomes sub-additive on (−∞,+∞) .

For ι > 0, x0 ∈ (−∞,+∞), and y ∈ (0,+∞) the (ι ,x0)-generalized logistic-type function Ψρ,ι fulfills the followings:

(i)

1 <
Ψρ,ι (x+ y)

Ψρ,ι (x)
< ξ

ιy, ∀x ∈ (−∞,+∞) ,

(ii)

2ξ ιy

1+ξ ιy <
Ψρ,ι (x+ y)

Ψρ,ι (x)
< ξ

ιy,∀x ∈
(
−∞,x0 +

logξ ρ

ι

)
,
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(iii)

1 <
Ψρ,ι (x+ y)

Ψρ,ι (x)
<

2ξ ιy

1+ξ ιy ,∀x ∈
(

x0 +
logξ ρ

ι
,+∞

)
.

Proof. Since for all x ∈ (−∞,+∞),(
Ψ
′
ρ,ι (x)

Ψρ,ι (x)

)′
=

(
ι (lnξ )

(
1−Ψρ,ι (x)

))′
= ι (lnξ )

(
1−Ψρ,ι (x)

)′
= −

ρι2
(
ln2

ξ
)(

1+ρξ−ι(x−x0)
)2

ξ ι(x−x0)
< 0.

Then (
Ψ
′
ρ,ι (x)

Ψρ,ι (x)

)′
<−

ρι2
(
ln2

ξ
)(

1+ρξ−ι(x−x0)
)2 < 0,∀x ∈ (−∞,+∞) .

Hence, the function
Ψ
′
ρ,ι (x)

Ψρ,ι (x)
is decreasing on (−∞,+∞) .

Let

ℵ(x) :=
Ψρ,ι (x+ y)

Ψρ,ι (x)
,x ∈ (−∞,+∞) ,

and

ν (x) = loge ℵ(x) = lnℵ(x) .

So

ℵ
′
(x) =

Ψ
′
ρ,ι (x+ y)Ψρ,ι (x)−Ψ

′
ρ,ι (x)Ψρ,ι (x+ y)

Ψ2
ρ,ι (x)

=
Ψ
′
ρ,ι (x+ y)

Ψρ,ι (x)
−

Ψ
′
ρ,ι (x)Ψρ,ι (x+ y)

Ψ2
ρ,ι (x)

,

and also one has

ν
′
(x) =

Ψ
′
ρ,ι (x+ y)Ψρ,ι (x)−Ψ

′
ρ,ι (x)Ψρ,ι (x+ y)

Ψρ,ι (x)Ψρ,ι (x+ y)

=
Ψ
′
ρ,ι (x+ y)

Ψρ,ι (x+ y)
−

Ψ
′
ρ,ι (x)

Ψρ,ι (x)
< 0.

Therefore, ν (x) and ℵ(x) are both decreasing.
Accordingly,

lim
x→+∞

ℵ(x) = lim
x→+∞

Ψρ,ι (x+ y)
Ψρ,ι (x)

= lim
x→+∞

(
1+ρξ−ι(x−x0)

1+ρξ−ι(x+y−x0)

)
ξ ι(x−x0)

ξ ι(x−x0)

= lim
x→+∞

ξ ι(x−x0)+ρ

ξ ι(x−x0)+ρξ−ιy
= 1,

and

lim
x→−∞

ℵ(x) = lim
x→−∞

1+ρξ−ι(x−x0)

1+ρξ−ι(x+y−x0)
= ξ

ιy,

1 = lim
x→+∞

ℵ(x)< ℵ(x)< lim
x→−∞

ℵ(x) = ξ
ιy,x ∈ (−∞,+∞) ,
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and also

lim
x→x0+

log
ξ

ρ

ι

1+ρξ−ι(x−x0)

1+ρξ−ι(x+y−x0)
=

2ξ ιy

1+ξ ιy ,

1 = lim
x→+∞

ℵ(x)< ℵ(x)< lim
x→x0+

log
ξ

ρ

ι

ℵ(x) =
2ξ ιy

1+ξ ιy ,x ∈
(

x0 +
logξ ρ

ι
,+∞

)
.

Corollary 2.6. For ι > 0 and x0 ∈ (−∞,+∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι yields inequalities below:

1 <
Ψρ,ι

(
x+ 1

ι

)
Ψρ,ι (x)

< ξ ;x ∈ (−∞,+∞) ,

2ρξ

1+ρξ
<

Ψρ,ι

(
x+ 1

ι

)
Ψρ,ι (x)

< ξ ; x ∈ (−∞,x0) ,

and also

1 <
Ψρ,ι

(
x+ 1

ι

)
Ψρ,ι (x)

<
2ρξ

1+ρξ
.

Corollary 2.7. (see [10], [11], [12]) Let S be an open subinterval of (0,∞), and let g : S −→ (0,∞) be differentiable. g is

AH-convex (concave)⇐⇒ g
′
(x)

g2(x) is increasing (decreasing).

Theorem 2.8. For ι > 0 and x0 ∈ [0,∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι is AH-concave on (x0,+∞) .
Namely,

Ψρ,ι

(
x+ y

2

)
≥

2Ψρ,ι (x)Ψρ,ι (y)
Ψρ,ι (x)+Ψρ,ι (y)

,x ∈ (x0,+∞) .

Proof. Let us take

Ψ
′
ρ,ι (x) =

ιρ (lnξ )ξ−ι(x−x0)(
1+ρξ−ι(x−x0)

)2 ,

and

Ψ
2
ρ,ι (x) =

(
1+ρξ

−ι(x−x0)
)−2

.

Then (
Ψ
′
ρ,ι (x)

Ψ2
ρ,ι (x)

)′
=

(
ιρ (lnξ )ξ

−ι(x−x0)
)′

= −ι
2 (ln2

ξ
)

ξ
−ι(x−x0) < 0.

One has the desired result by Corollary 2.7.

Theorem 2.9. For ι > 0 and x0 ∈ (−∞,+∞), the (ι ,x0)-generalized logistic-type function Ψρ,ι is logarithmically concave on
(−∞,+∞) . Namely, for all x,y ∈ (−∞,+∞) ; z, p > 1 and 1

z +
1
p = 1, the following inequality holds:

Ψρ,ι

(
x
z
+

y
p

)
≥
[
Ψρ,ι (x)

] 1
z
[
Ψρ,ι (y)

] 1
p . (2.4)
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Proof. Let

Dρ,ι (x) := lnΨρ,ι (x) = loge Ψρ,ι (x) = loge

(
1

1+ρξ−ι(x−x0)

)
,

ln
(

1
1+ρξ−ι(x−x0)

)
= ln1− ln

(
1+ρξ

−ι(x−x0)
)
,

thus

Dρ,ι (x) =− ln
(

1+ρξ
−ι(x−x0)

)
.

Now take the first derivative of Dρ,ι ,

D
′
ρ,ι (x) = ιρ (lnξ )

ξ−ι(x−x0)

1+ρξ−ι(x−x0)
,

and also the second derivative of Dρ,ι yields the following:

D
′′

ρ,ι (x) =−ι
2
ρ
(
ln2

ξ
) ξ−ι(x−x0)(

1+ρξ−ι(x−x0)
)2 < 0,

which indicates the inequality in (2.4).

Theorem 2.10. For ι > 0 and x0 ∈ (−∞,+∞), the (ι ,x0)-generalized logistic-type function Ψρ,ι verifies the following
inequalities:

Ψ
2
ρ,ι (x+ y)≥Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ [0,+∞) ,

and

Ψ
2
ρ,ι (x+ y)≤Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ (−∞,0] .

Furthermore, for x = y = 0, equality is satisfied.

Proof. For ι > 0, x,y ∈ [0,+∞) ; x+ y≥ x and x+ y≥ y are valid. Since Ψρ,ι (x) is increasing,

Ψρ,ι (x+ y)≥Ψρ,ι (x) , (2.5)

and

Ψρ,ι (x+ y)≥Ψρ,ι (y) . (2.6)

So, the product of (2.5) and (2.6) demonstrates the first inequality. Using the similar mindset, the second one may be
proved.

Theorem 2.11. For ι > 0 and x0 ∈ (−∞,+∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι satisfies the inequalities
below:

Ψ
2
ρ,ι (xy)≤Ψρ,ι (x)Ψρ,ι (y) ;x,y ∈ (0,1] ,

and

Ψ
2
ρ,ι (xy)≥Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ [1,+∞) .

Proof. For x,y ∈ (0,1] , xy≤ x and xy≤ y are true.
As Ψρ,ι (x) is increasing,

Ψρ,ι (x)≥Ψρ,ι (xy)> 0,

and

Ψρ,ι (y)≥Ψρ,ι (xy)> 0.
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are satisfied. Furthermore, product of these two inequalities yields:

Ψρ,ι (x)Ψρ,ι (y)≥Ψ
2
ρ,ι (xy) .

Namely,

Ψ
2
ρ,ι (xy)≤Ψρ,ι (x)Ψρ,ι (y)

is obtained.
Since for x,y ∈ [1,+∞), there exist xy≥ x,xy≥ y and Ψρ,ι (x) is increasing. Then

Ψρ,ι (x)≤Ψρ,ι (xy) ,

and

Ψρ,ι (y)≤Ψρ,ι (xy) .

Multiplication of the last two inequalities gives the following:

Ψρ,ι (x)Ψρ,ι (y)≤Ψ
2
ρ,ι (xy) .

Below, one has the desired inequality:

Ψ
2
ρ,ι (xy)≥Ψρ,ι (x)Ψρ,ι (y) .

Theorem 2.12. For ι > 0 and x0 ∈ (−∞,+∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι is supermultiplicative on
(1,+∞) .

Ψρ,ι (xy)> Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ (−∞,+∞)

holds.

Proof. For 0 < Ψρ,ι (u)< 1, then

Ψ
2
ρ,ι (u)< Ψρ,ι (u)

for u ∈ (−∞,+∞) . Since Ψρ,ι is increasing, and xy≥ x, xy > y on (1,+∞) ,

Ψρ,ι (xy)> Ψ
2
ρ,ι (xy)> Ψρ,ι (x)Ψρ,ι (y)

is true.

Presently, some sharp inequalities related to the (ι ,x0)-generalized logistic-type function Ψρ,ι (the (ι ,x0)-generalized softplus
activation function) are studied:

Theorem 2.13. For ι > 0 and x0 ∈ (−∞,+∞) , the following inequalities are satisfied:

ξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
+ρξ

ι(x−x0)
)
< ln(1+ρ)− 1

1+ρ
+

ξ ι(x−x0)

1+ρξ ι(x−x0)
,

ln(1+ρ)− 1
1+ρ

+
ξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
, x ∈ (x0,+∞) ,

ρξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
, x ∈ (−∞,+∞) . (2.7)

Proof. Let us define

∆(x) := ln
(

1+ρξ
ι(x−x0)

)
− ξ ι(x−x0)

1+ρξ ι(x−x0)
, x ∈ (−∞,+∞) ,

∆
′
(x) =

ι (lnξ )ξ ι(x−x0)

1+ρξ ι(x−x0)

(
ρ− 1

1+ρξ ι(x−x0)

)
> 0, x ∈ (−∞,+∞) .
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So, ∆(x) is increasing on (−∞,+∞) .
For x ∈ (−∞,x0) ,

0 = lim
x→−∞

∆(x)< ∆(x)< lim
x→x0

∆(x) = ln(1+ρ)− 1
1+ρ

,

which yields that the first inequality is valid.
For x ∈ (x0,+∞) ,

ln(1+ρ)− 1
1+ρ

= lim
x→x0

∆(x)< ∆(x)< lim
x→+∞

∆(x)<+∞,

which indicates that the second inequality is held.
Also, for x ∈ (−∞,+∞) ,

0 = lim
x→−∞

∆(x)< ∆(x)< lim
x→+∞

∆(x)<+∞,

which demonstrates that the third one is also satisfied.

Theorem 2.14. For ι ,ρ > 0, x0 ∈ (−∞,+∞) and x ∈ (−∞,+∞) , the inequality

ρξ
ι(x−x0)− ln

(
1+ρξ

ι(x−x0)
)
> 0 (2.8)

is provided.

Proof. Let

Ξ(x) := ρξ
ι(x−x0)− ln

(
1+ρξ

ι(x−x0)
)
, x ∈ (−∞,+∞) ,

and

Ξ
′
(x) = ρι (lnξ )ξ

ι(x−x0)

(
ρξ ι(x−x0)

1+ρξ ι(x−x0)

)
> 0,

that indicates that Ξ(x) is increasing on (−∞,+∞) . Hence, we get

lim
x→−∞

Ξ(x) = lim
x→−∞

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
= 0.

So

0 = lim
x→−∞

Ξ(x)< Ξ(x)< lim
x→−∞

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
,

which verifies the last inequality, is valid.

Theorem 2.15. For ι ,ρ > 0, ξ > 1; x,x0 ∈ (−∞,+∞) , let m(x)=
(

1+ρξ ι(x−x0)
) 1

ρξ
ι(x−x0) and k (x)=

(
1+ρξ ι(x−x0)

)1+ 1

ρξ
ι(x−x0)

be decreasing and increasing, respectively. Then the following inequalities hold:

(1+ρ) ln(1+ρ)ξ
ι(x−x0) < ln

(
1+ρξ

ι(x−x0)
)
< ρξ

ι(x−x0); x ∈ (−∞,x0) ,

ρξ
ι(x−x0) <

(
1+ρξ

ι(x−x0)
)

ln
(

1+ρξ
ι(x−x0)

)
< (1+ρ) ln(1+ρ)ξ

ι(x−x0);x ∈ (−∞,x0) ,

and

ρξ
ι(x−x0) <

(
1+ρξ

ι(x−x0)
)

ln
(

1+ρξ
ι(x−x0)

)
<
(

1+ρξ
ι(x−x0)

)
ρξ

ι(x−x0);x ∈ (−∞,+∞) .

Proof. For x ∈ (−∞,+∞) , ι ,ρ > 0, and ξ > 1,
let

M (x) := ln(m(x))

= ln

((
1+ρξ

ι(x−x0)
) 1

ρξ
ι(x−x0)

)

=
ln
(

1+ρξ ι(x−x0)
)

ρξ ι(x−x0)
,
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and

K (x) := ln(k (x))

= ln

((
1+ρξ

ι(x−x0)
)1+ 1

ρξ
ι(x−x0)

)

=

(
1+

1
ρξ ι(x−x0)

)
ln
(

1+ρξ
ι(x−x0)

)
.

Now, taking the derivatives,

M
′
(x) =

ι (lnξ )

ρξ ι(x−x0)

(
ρξ ι(x−x0)

1+ρξ ι(x−x0)
− ln

(
1+ρξ

ι(x−x0)
))

< 0.

Thus using (2.7), we conclude that M (x) is decreasing and, accordingly, m(x) is also decreasing.
In like manner,

K
′
(x) =

ι (lnξ )

ρξ ι(x−x0)

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
> 0,

employing (2.8), it is obvious that K (x) is increasing and so is k (x) .
Besides, let us take

M (x0) =
ln(1+ρ)

ρ
; K (x0) =

(
1+

1
ρ

)
ln(1+ρ) ,

lim
x→−∞

M (x) = 1; lim
x→+∞

M (x) = 0,

lim
x→−∞

K (x) = 1; lim
x→+∞

K (x) = +∞.

For x ∈ (−∞,x0) , we obtain

ln(1+ρ)

ρ
= M (x0)< M (x)< lim

x→−∞
M (x) = 1,

so that the first inequality is satisfied.
Again for x ∈ (−∞,x0) , we have

1 = lim
x→−∞

K (x)< K (x)< K (x0) =

(
1+

1
ρ

)
ln(1+ρ) ,

which yields the second one.
Lastly, for x ∈ (−∞,+∞) , one has

0 = lim
x→+∞

M (x)< M (x)< lim
x→−∞

M (x) = 1,

which verifies the following

ln
(

1+ρξ
ι(x−x0)

)
< ρξ

ι(x−x0).

As well,

1 = lim
x→−∞

K (x)< K (x)< lim
x→+∞

K (x) = +∞,

which again implies

ρξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
. (2.9)

By the last two inequalities, the desired third inequality is proved.
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Theorem 2.16. For ι > 0 and x0 ∈ (−∞,+∞), set

z(x) =
ρξ ι(x−x0) ln

(
1+ρξ ι(x−x0)

)
ρξ ι(x−x0)− ln

(
1+ρξ ι(x−x0)

) , x ∈ (−∞,x0) .

It follows that, z(x) is increasing and satisfies the inequality below:

2 <z(x)<
ρ ln(1+ρ)

ρ− ln(1+ρ)
.

Proof. First of all,

lim
x→x0

z(x) =
ln(2)

ρ− ln(2)
,

and

lim
x→−∞

z(x) = lim
x→−∞

ln
(

1+ρξ ι(x−x0)
)
+ ρξ

ι(x−x0)

1+ρξ
ι(x−x0)

1− 1
1+ρξ

ι(x−x0)

= lim
x→−∞

1+
ln
(

1+ρξ ι(x−x0)
)(

1+ρξ ι(x−x0)
)

ρξ ι(x−x0)


= 2.

Furthermore, let

Λ(x) := ρξ
ι(x−x0) ln

(
1+ρξ

ι(x−x0)
)

and

ϒ(x) := ρξ
ι(x−x0)− ln

(
1+ρξ

ι(x−x0)
)

.

Hence

Λ(−∞) = lim
x→−∞

Λ(x)

= lim
x→−∞

(
ρξ

ι(x−x0) ln
(

1+ρξ
ι(x−x0)

))
= 0

and

ϒ(−∞) = lim
x→−∞

ϒ(x)

= lim
x→−∞

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
= 0.

So,

Λ
′
(x) = ιρ (lnξ )ξ

ι(x−x0)

(
ln
(

1+ρξ
ι(x−x0)

)
+

ρξ ι(x−x0)

1+ρξ ι(x−x0)

)
> 0,

and

ϒ
′
(x) = ιρ (lnξ )ξ

ι(x−x0)

(
1− 1

1+ρξ ι(x−x0)

)
> 0.

Additionally,

(
Λ
′
(x)

ϒ
′
(x)

)′
=

 ln
(

1+ρξ ι(x−x0)
)(

1+ρξ ι(x−x0)
)

ρξ ι(x−x0)


′

=
ι (lnξ )

ρξ ι(x−x0)

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
> 0.
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In this manner, Λ
′
(x)

ϒ
′
(x)

is increasing, which elucidates that Λ(x)
ϒ(x) =z(x) is increasing, too (by the corollary 1.2 of [13]).

Ultimately, for x ∈ (−∞,x0) ,

2 = lim
x→−∞

z(x)<z(x)< lim
x→x0

z(x) =
ρ ln(1+ρ)

ρ− ln(1+ρ)
. (2.10)

Proposition 2.17. Let

ξ :=
ρ ln(1+ρ)

ρ− ln(1+ρ)
,

the inequality (2.10) can be written as

ln
(

1+ρξ
ι(x−x0)

)
<

ξ ρξ ι(x−x0)

ξ +ρξ ι(x−x0)
,

and by inequality (2.9)

ρξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
<

ξ ρξ ι(x−x0)

ξ +ρξ ι(x−x0)

is observed.

3. A statistical interpretation of the (ι ,x0)-generalized logistic-type function in survival analysis

Survival Analysis is a subfield of statistics used to describe and measure data on the time until an event occurs. For example,
it analyzes the expected time until failure in mechanical systems and death in biological organisms [14]. ”Time-to-event
processes” are especially common in medical research because they provide more information than whether an event occurred
or not [15]. In addition, ”reliability theory” or ”reliability analysis” are other names used for this area in engineering sciences.
In this section, the (ι ,x0)-generalized logistic-type function

F (x,γ) := Ψρ,ι (x) =
ξ ι(x−x0)

ρ +ξ ι(x−x0)
, ι ,ρ > 0; x0 ∈ (−∞,+∞) ; ξ > 1,

is considered as a distribution function and the probability density function of the suggested distribution is

f (x,γ) = Ψ
′
ρ,ι (x) =

ιρ (lnξ )ξ ι(x−x0)(
ρ +ξ ι(x−x0)

)2 ,

where, γ = (ι ,x0) is the parameter set.

One of the common terms used in survival analysis is ”survival (reliability) function”. Primarily, we are deeply interested in
parametric exponential version of this function and its graphical results in the sense of behavior of the function with respect to
arbitrary chosen parameters: ξ , ι ,x0, and ρ. The distribution of survival times can be better predicted by a function such as the
exponential function, which, create parametric survival models.
Now, we define parametric exponential survival (PES) and parametric failure (hazard) rate (PFR) functions, respectively as
seen below:

Ψ(x,γ) = 1−F (x,γ) =
ρ

ρ +ξ ι(x−x0)
,

h(x,γ) =
f (x,γ)

Ψ(x,γ)
=

ι (lnξ )ξ ι(x−x0)

ρ +ξ ι(x−x0)
.
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Figure 1: Behaviour of PES with respect to distinct parameter values of ξ .

Figure 2: Behaviour of PES with respect to distinct parameter values of ι .

Figure 3: Behaviour of PES with respect to distinct parameter values of x0.
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Figure 4: Behaviour of PES with respect to distinct parameter values of ρ .

Figure 5: Behaviour of PFR with respect to arbitrary parameter values of ξ .
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Figure 6: Behaviour of PFR with respect to arbitrary parameter values of ι .

Figure 7: Behaviour of PFR with respect to arbitrary parameter values of x0.
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Figure 8: Behaviour of PFR with respect to arbitrary parameter values of ρ .

Figure 9: Algorithm 1.
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Figure 10: Algorithm 2.

Moreover, graphs of the PES functions are visualized in Fig. 1 - Fig. 4 using computer programming language Python 3.9, as
you see [16].

In the second place, we focus on the PFR function of the proposed distribution with arbitrary parameter values obtained as in
Fig. 5 - Fig. 8. This is the function that gives the steadily revised immediate probability of a critical event. With this feature,
it finds applications in many disciplines such as health sciences, and mathematical psychology [17]. Also, while the PES
function serves for surviving, the PFR function deals with the failing [18].

4. Conclusion

In this paper, some important inequalities like concavity, super multiplicativity, and sub-additivity of the (ι ,x0)-generalized
logistic-type function have been proved. ”Ceteris Paribus” plotting for parametric exponential survival (PES) and also
parametric failure (hazard) rate (PFR) functions with four variables have been performed. Thus, when the survival function
we parameterized is compared to a function that is not parametrized; we can say that the parametric one may provide more
detailed and sophisticated modeling in survival analysis. In short, we may obtain higher accuracy values in the validation data
of the models with the help of functions containing four parameters, that is, to make the models more robust.
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