6(1): 28-37 (2024)

DOI: 10.55213/kmujens.1427150

Research Article (Araștırma Makalesi)

Karyotype Symmetry/Asymmetry Index (S/AI) in Bovidae Taxa

Halil Erhan EROĞLU

Yozgat Bozok University, Faculty of Science and Art, Department of Biology, Yozgat, Turkey

Alındı/Received: 28/01/2024; Kabul/Accepted: 27/03/2024; Yayın/Published: 18/04/2024

* Corresponding author e-mail: herhan.eroglu@bozok.edu.tr

Abstract

The chromosomal data, particularly karyotype asymmetry, provide valuable information on karyotypic phylogeny and speciation. The karyotype asymmetry is a good expression of the general morphology of chromosomes. The S/AI is a formula used to calculate the karyotype asymmetry. The formula was applied to 79 species and five subspecies from 46 genera for female individuals and 72 species and five subspecies from 42 genera for male individuals in the Bovidae family. According to the S/AI values between 1.2903 and 3.0000, the dendrograms were drawn to demonstrate the interspecies relationships in the family. The karyotypes of females were symmetrical in 10 species and two subspecies from 6 genera and between symmetrical and asymmetrical in 69 species and three subspecies from 40 genera. Male karyotypes were symmetrical in 10 species and two subspecies from 6 genera and between symmetrical and asymmetrical in 62 species from 6 genera will contribute to phylogenetic studies in mammals. Already, they showed results similar to those of molecular taxonomy.

Key Words: Karyotypic variations, Chromosome, Interspecific relationships

Bovidae Taksonlarında Karyotip Simetri/Asimetri İndeksi (S/AI)

Öz

Kromozomal veriler, bunlardan özellikle karyotip asimetrisi, karyotipik filogeni ve türleşme hakkında değerli bilgiler sağlamaktadır. Karyotip asimetrisi, kromozomların genel morfolojisini iyi bir şekilde ifade eder. S/AI, karyotip asimetrisini hesaplamak için kullanılan bir formüldür. Formül, Bovidae familyasında dişi bireyler için 46 cinsten 79 tür ve 5 alttüre, erkek bireyler için 42 cinsten 72 tür ve 5 alttüre uygulanmıştır. Familyadaki türler arası ilişkileri gösteren dendrogramlar, 1.2903 ile 3.0000 arasında değişen S/AI değerlerine göre çizilmiştir. Dişilerin karyotipleri 6 cinsin 10 tür ve 2 alttüründe simetrik, 40 cinsin 69 tür ve 3 alttüründe ise simetrik ve asimetrik arasındadır. Erkeklerin karyotipleri 6 cinsin 10 tür ve 2 alttüründe simetrik, 36 cinsin 62 tür ve 3 alttüründe ise simetrik ve asimetrik arasındadır. Dendrogramlar, memelilerdeki filogenetik çalışmalara katkıda bulunacaktır. Dendrogramlar ve moleküler taksonomi sonuçları benzer sonuçlar göstermişlerdir.

Anahtar Kelimeler: Karyotipik varyasyonlar, Kromozom, Türler arası ilişkiler

Atıf / To cite: Eroğlu HE (2024). Karyotype symmetry/asymmetry index (S/AI) in Bovidae taxa. Karamanoğlu Mehmetbey University Journal of Engineering and Natural Sciences, 6(1): 28-37.

1. INTRODUCTION

Bovidae (Gray, 1821) is placed in Artiodactyla (Owen, 1848). The family comprises 146 wild and domestic species in 51 genera (Lynx Nature Books 2023). The Bovidae are the most widespread family of extant Artiodactyla (Wolfe 2015; Itis 2023). The bovids include the ruminant mammals commonly known as gaur, bison, yak, sheep, duiker, and gazelle. Wild bovids can be found throughout Africa, much of Europe, Asia, and North America, and they characteristically inhabit grasslands. The number of Bovidae taxa decreases, especially with the human impact (Wolfe 2015). Humans have always hunted

the bovids in America and Eurasia. According to the IUCN Red List of Threatened Species, 19 species are categorized as Endangered (EN), and six species are categorized as Critically Endangered (CR). *Hippotragus leucophaeus* (bluebuck), *Bos primigenius* (aurochs), *Gazella bilkis* (queen of Sheba's gazelle), and *Gazella saudiya* (Saudi gazelle) are categorized as Extinct (EX) (Iucnredlist 2023).

The family Bovidae is one of the most important members of the world's wildlife and natural life (ADW 2024).

Therefore, many taxonomic and cytotaxonomic studies have been reported related bovids till now. The chromosome numbers of Bovidae were generally between 2n = 50 and 2n = 60. Many species have 56, 58, and 60 chromosomes (See Table 1 for References). On the other hand, there were also species with lower chromosome numbers, such as 2n = 30, which were *Gazella dorcas*, *Gazella marica* (formerly *Gazella subgutturosa*), and *Raphicerus campestris* (Wallace and Fairall 1967; Wurster 1972; Tez et al. 2005; Saatoğlu et al. 2019). These karyotypic variations resulted from the centric fusions. The biarmed translocation formed the Robertsonian chromosomes (Gallagher and Womack 1992; Oh et al. 2011).

Karyotype asymmetry is a good expression of the general morphology of chromosomes. One of the most cheap, popular and most preferred methods in comparative cytotaxonomy is that concerning karyotype asymmetry. Scientists have developed various methods to assess karyotype asymmetry within a set of chromosomes to date. (Paszko, 2006; Eroğlu et al. 2013; Eroğlu 2015). All these quantitative methods depend on parameters such as total chromosome length and arm lengths. Unlike these, S/A_I is a useful parameter that calculates asymmetry according to chromosome type and centromere position (Eroğlu 2015). This study aims to determine interspecific relationships in the family Bovidae using the S/A_I parameter and to discuss the effects of karyotypic variations and centric fusions, which play an important role in speciation, on karyotype asymmetry in Bovidae.

2. MATERIAL AND METHOD

2.1. Karyotype Asymmetry Formula

Karyotype asymmetries were calculated with the formula given below.

$$S/A_I = (1 \times M) + (2 \times SM) + (3 \times A \text{ or } ST) + (4 \times T) / 2n$$

In formula, M, SM, A, ST, and T means the number of metacentric, submetacentric, acrocentric, subtelocentric, and telocentric chromosomes, respectively. S/A_I value varies between 1.0 and 4.0, and accordingly, karyotypes are full symmetric (1.0), symmetric ($1.0 < S/A_I \le 2.0$), between symmetric and asymmetric ($2.0 < S/A_I \le 3.0$),

asymmetric $(3.0 < S/A_I < 4.0)$ and, full asymmetric (4.0) (Eroğlu 2015).

2.2. The Chromosomal Data

An extensive literature review identified the chromosome numbers, karyotype formulae, karyotype asymmetries, and karyotype types of 79 species and 5 subspecies belonging to 46 genus. The scientific names were checked from the Integrated Taxonomic Information System (Itis 2023) and the IUCN Red List of Threatened Species (Iucnredlist 2023). The scientific names of some species can be reported differently in the literature. The water buffalo is an important example: *Bubalus bubalis* (Itis 2023) and *Bubalus arnee* (Iucnredlist 2023). Another example is mouflon and domestic sheep. The mouflon is the ancestor of domestic sheep, but sometimes the same scientific name is used for both (Itis 2023).

2.3. Drawing the Dendrograms

According to the chromosomal data, the dendrograms were drawn showing the interspecific relationships by Past 4.14 software. The first and second dendrograms consisted of karyotypes of 78 species and six subspecies for female individuals and 71 species and six subspecies for male individuals, respectively. There were not seven species in the male dendrogram for two reasons. (i) Only the female karyotype had been reported in *Philantomba maxwellii*, *Pelea capreolus*, and *Kobus ellipsiprymnus* (Hard 1969; Gallagher and Womack 1992; Robinson et al. 2014). (ii) In *Capra aegagrus, Ammotragus lervia, Budorcas taxicolor*, and *Boselaphus tragocamelus*, because the Y chromosome was too small, its chromosome type could not be determined (Chandra et al. 1967; Nadler et al. 1974; Pasitschniak-Arts et al. 1994).

3. RESULTS

Table 1 gives the diploid chromosome numbers, karyotype formulae, S/AI values, and karyotype types of the taxa. The diploid numbers and S/A_I values ranged from 30 to 60 and 1.2000 to 3.0000. While 14 species had the highest S/A_I value, the lowest value was only in *Gazella marica*.

 Table 1. The karyotype formulae, index values and karyotype types of the taxa.

Scientific name (common name)	2 <i>n</i>	Chromosomes	References	S/AI-F S/AI-M	Karyotype type
Litocranius walleri	60	58A	Wurster and	3.0000	<u> </u>
(Gerenuk)		X = A, Y = A	Benirschke1968	3.0000	
Oreotragus oreotragus	60	58A	O'Brien et al. 2006	3.0000	T2
(Klipspringer)		X = A, Y = A		3.0000	
Philantomba maxwellii	60	58A	Hard 1969	3.0000	T2
(Maxwell's duiker)		$X = A, Y = ?^*$			
Procapra gutturosa	60	58A	Soma et al. 1980	3.0000	T2
(Mongolian gazelle)		X = A, Y = A		3.0000	
Pantholops hodgsonii	60	58A	Liu et al. 2012	3.0000	T2
(Chiru)		X = A, Y = A		3.0000	
Hippotragus equinus	60	58A	Fordyce–Boyer	3.0000	T2
(Roan antelope)		X = A, Y = A	et al. 1995	3.0000	
Hippotragus niger	60	58A	Fordyce–Boyer	3.0000	T2

Karyotype Asymmetry in Bovidae

(Sable antelope)		X = A, Y = A	et al. 1995	3.0000	
Capra ibex	60	58A	Lux et al. 2004	3.0000	T2
(Alpine ibex)		X = A, Y = A		3.0000	
Capra falconeri	60	58A	Lux et al. 2004	3.0000	T2
(Markhor)		X = A, Y = A 58A		3.0000	
Capra aegagrus	60	58A	Nadler et al. 1974	3.0000	T2
(Wild goat)	(0)	$X = A, Y minute^{**}$ 58A	1 1 1000	2 0000	T 2
Capra hircus	60		Iannuzzi et al. 1996	3.0000	T2
(Domestic goat)	(0)	$\frac{X = A, Y = M}{58A}$	Wurster and	2.9667	T2
Aepyceros melampus (Impala)	60		Benirschke 1967a	3.0000 2.9667	12
Naemorhedus goral	56	X = A, Y = M 54A	Soma et al. 1980	3.0000	T2
(Goral)	50		Sollia et al. 1980	3.0000	12
Naemorhedus baileyi	56	X = A, Y = A 54A	Liu et al. 1994	3.0000	T2
(Red Goral)	00			3.0000	
Naemorhedus caudatus	56	X = A, Y = A 54A	Oh et al. 2011	2.9643	T2
(Long-tailed goral)		X = SM, Y = A		2.9821	
Naemorhedus griseus	54	2SM + 50A	Liu et al. 1994	2.9630	T2
(Chinese goral)		X = A, Y = A		2.9630	
Tetracerus quadricornis	38	36A	Wurster and	3.0000	T2
(Four-horned antelope)		X = A, Y = M	Benirschke 1967a	2.9474	
Cephalophus niger	60	58A	Hard 1969	2.9667	T2
(Black duiker)		X = SM, Y = A		2.9833	
Cephalophus silvicultor	60	58A	Hard 1969	2.9667	T2
(Yellow-backed duiker)		X = SM, Y = A		2.9833	
Cephalophus zebra	58	2SM + 54A	Hard 1969	2.8966	T2
(Zebra duiker)	(0)	X = M, Y = A	C 11 1 / 1 1000	2.9310	T 2
Bison bison	60	58A	Gallagher et al. 1999	2.9667	T2
(American bison)	(0)	$\frac{X = SM, Y = A}{58A}$	Gallagher et al. 1999	2.9833	Τ2
Bison bonasus (European bison)	60		Gallagher et al. 1999	2.9667 2.9833	T2
Bos frontalis	58	$\frac{X = SM, Y = A}{2SM + 54A}$	Gallagher and	2.9833	T2
(Domestic gaur)	58	X = SM, Y = SM	Womack 1992	2.9310	12
Bos gaurus	58	$\frac{1}{2SM + 54A}$	Gallagher et al. 1999	2.9310	T2
(Wild gaur)	20	X = SM, Y = M	Sundgher et ul. 1999	2.9138	12
Bos taurus	60	58A	Lux et al. 2004	2.9667	T2
(Cattle)		X = SM, Y = SM		2.9667	
Bos javanicus	60	58A	Gallagher et al. 1999	2.9667	T2
(Banteng)		X = SM, Y = M	8	2.9500	
Bos grunniens	60	58A	Popescu 1969	2.9667	T2
(Domestic yak)		X = SM, Y = SM		2.9667	
Connochaetes taurinus	58	2SM + 54A	Gerneke 1967	2.9655	T2
(Common wildebeest)		X = A, Y = A		2.9655	
Connochaetes gnou	58	2SM + 54A	Wurster and	2.9655	T2
(Black wildebeest)		X = A, Y = A	Benirschke1968	2.9655	
Addax nasomaculatus	58	2SM + 54A	Claro et al. 1996	2.9655	T2
(Addax)		X = A, Y = A		2.9655	
Oryx dammah	58	2SM + 54A	Claro et al. 1994	2.9655	T2
(Scimitar-horned oryx	5 0	X = A, Y = A	G 11 : 1 1000	2.9655	T2
Oryx leucoryx	58	2SM + 54A	Cribiu et al. 1990	2.9655	T2
(Arabian oryx)	5.0	X = A, Y = A	II	2.9655	Τ2
<i>Oryx gazella</i> (Gemsbok)	56	4SM + 50A X = A $X = A$	Hsu and Benirschke 1968	2.9286 2.9286	T2
(Gemsbok) Nilgiritragus hylocrius	58	$\frac{X = A, Y = A}{2SM + 54A}$	Bernischke and	2.9286	T2
(Nilgiri tahr)	20	X = A, Y = SM	Kumamoto1980	2.9633	12
Rupicapra rupicapra	58	$\frac{X-A}{2SM+54A}$	Gallagher and	2.9483	T2
(Northern chamois)	50	X = A, Y = SM	Womack 1992	2.9033	12
Tragelaphus angasii	56	$\frac{X - A}{2SM + 52A}$	Wurster and	2.9483	T2
(Nyala)	50	X = A, Y = A	Benirschke1968	2.9643	12
Tragelaphus imberbis	38	$\frac{10M + 10SM + 16A}{10M + 10SM + 16A}$	Benirschke et al.	2.2105	T2
(Lesser kudu)	50	X = A, Y = A	1980	2.2105	12
Tragelaphus strepsiceros	32	$\frac{M}{8M}$ + 18SM + 4A	Hsu and	1.9375	T1

Karyotype Asymmetry in Bovidae

(Greater kudu)		X = A, Y = A	Benirschke 1971	1.9375	
Tragelaphus spekii	30	6M + 20SM + 2A	Wurster et al. 1968	1.9333	T1
(Sitatunga)		X = A, Y = A		1.9333	
Ammotragus lervia	58	2M + 54A	Nadler et al. 1974	2.9310	T2
(Aoudad)		$X = A, Y minute^{**}$			
Eudorcas rufifrons	58	2SM + 2ST + 52A	Vassart et al. 1995	2.9310	T2
(Red-fronted gazelle)		X = SM, Y = M		2.9138	
Eudorcas thomsonii	58	2SM + 2ST + 52A	Nelson-Rees	2.9310	T2
(Thomson's gazelle)		X = SM, Y = M	et al. 1967a	2.9138	
Antidorcas marsupialis	56	4SM + 50 A	Wurster and	2.9286	T2
(Springbok)		X = A, Y = M	Benirschke1967b	2.8929	
Pelea capreolus	56	4SM + 50A	Robinson et al. 2014	2.9286	T2
(Grey rhebok)		$X = A, Y = ?^*$			
Madoqua kirkii	48	4SM + 42 A	Kumamoto et al.	2.9167	T2
(Kirk's dik–dik)		X = A, Y = A	1994	2.9167	
Redunca fulvorufula	56	2M + 2SM + 50A	Rubes et al. 2007	2.8929	T2
(Mountain reedbuck)		X = A, Y = A		2.8929	
Nesotragus moschatus zuluensis	56	2M + 2SM + 50A	Kingswood et al.	2.8929	T2
(Suni)		X = A, Y = A	1998	2.8929	
Nesotragus moschatus moschatus	54	4M + 2SM + 46A	Kingswood et al.	2.8148	T2
(Suni)	50	X = A, Y = A	1998 Via serve e d et el	2.8148	ΤĴ
Nesotragus moschatus akeleyi	52	2M + 6SM + 42A	Kingswood et al.	2.8077	T2
(Suni)	51	X = A, Y = A	1998 Bunch et al. 2000	2.8077	тı
Pseudois nayaur	54	6SM + 46A	Bunch et al. 2000	2.8889	T2
(Bharal)	5(X = A, Y = A	D. 1 2012	2.8889	тэ
Ovis ammon	56	4M + 50A X = A $X = M$	Bagirov et al. 2012	2.8571 2.8214	T2
(Argali) Ovis orientalis	54	$\frac{X = A, Y = M}{6M + 46A}$	Bagirov et al. 2012	2.8214	T2
(Mouflon)	54		Dagirov et al. 2012	2.7778	12
Ovis aries	54	X = A, Y = M 6M + 46A	Bagirov et al. 2012	2.7407	T2
(Domestic sheep)	54	X = A, Y = M	Dagirov et al. 2012	2.7778	12
Ovis canadensis	54	$\frac{X - A}{6M + 46A}$	Bagirov et al. 2012	2.7778	T2
(Bighorn sheep)	54	X = A, Y = M	Dagilov et al. 2012	2.7407	12
Ovis dalli	54	$\frac{A}{6M} + 46A$	Bagirov et al. 2012	2.7778	T2
(Thinhorn sheep)	54	X = A, Y = M	Bughov et al. 2012	2.7407	12
Ovis nivicola	52	$\frac{M}{8M} + 42A$	Bagirov et al. 2012	2.6923	T2
(Snow sheep)	52	X = A, Y = M	Bughov et al. 2012	2.6538	12
Budorcas taxicolor	52	$\frac{11}{8SM + 42A}$	Pasitschniak-Arts	2.8462	T2
(Takin)	52	$X = A, Y minute^{**}$	et al. 1994	2.0.102	12
Syncerus caffer	52	8SM + 42A	Gallagher et al. 1999	2.8462	T2
(African buffalo)		X = A, Y = A		2.8462	
Bubalus bubalis	50	10SM + 38A	Gallagher et al. 1999	2.8000	T2
(Water buffalo)		X = A, Y = A	8	2.8000	
Bubalus depressicornis	48	12SM + 34A	Low and	2.7500	T2
(Lowland anoa)		X = A, Y = A	Benirschke 1973	2.7500	
Neotragus pygmaeus	36	6SM + 28A	Placentation 2007	2.7778	T2
(Royal antelope)		X = SM, Y = A		2.8056	
Kobus kob	50	2M + 8SM + 38A	Kingswood et al.	2.7600	T2
(Kob)		X = A, Y = A	2000	2.7600	
Kobus ellipsiprymnus	50	10SM + 38A	Gallagher and	2.7600	T2
(Waterbuck)		$X = SM, Y = ?^*$	Womack 1992		
Kobus leche	48	12SM + 34A	Wurster and	2.7500	T2
(Southern lechwe)		X = A, Y = A	Benirschke1968	2.7500	
Hemitragus jemlahicus	48	12SM + 34A	Nelson-Rees	2.7500	T2
(Himalayan tahr)		X = A, Y = SM	et al. 1967b	2.7292	
Capricornis crispus	50	4M + 6SM + 38A	Benirschke et al.	2.7200	T2
(Japanese serow)		X = A, Y = A	1972	2.7200	
Capricornis swinhoei	50	4M + 6SM + 38A	Soma et al. 1981	2.7200	T2
(Formosan serow)	15	X = A, Y = A	~ 1 · · · ·	2.7200	
Capricornis sumatraensis	48	2M + 10SM + 34A	Soma et al. 1982	2.7083	T2
(Sumatran serow)	40	X = A, Y = A	D ' 1 ' 1 '	2.7083	T 2
Ovibos moschatus	48	4M + 8SM + 34A	Pasitschniak–Arts	2.6667	T2

Karyotype Asymmetry in Bovidae

(Muskox)		X = A, Y = M	et al. 1994	2.6250	
Nanger dama	38	18SM + 18A	Wurster and	2.5263	T2
(Dama gazelle)		X = A, Y = A	Benirschke1968	2.5263	
Nanger granti	30 (F)	10M + 18SM	Hsu and	1.6667	T1
(Grant's gazelle)	31 (M)	X = SM, Y1, Y2 = A	Benirschke 1975	1.7419	
Beatragus hunteri	44	8M + 8SM + 26A	Kumamoto et al.	2.4545	T2
(Hirola)		X = A, Y = A	1996	2.4545	
Boselaphus tragocamelus	46	4M + 26SM + 16A	Chandra et al. 1967	2.2609	T2
(Nilgai)		X***, Y***			
Oreamnos americanus	42	18M + 22A	Wurster and	2.1429	T2
(Mountain goat)		X = A, Y = M	Benirschke1968	2.0952	
Alcelaphus buselaphus	40	20M + 18A	Wurster and	2.0000	T1
(Hartebeest)		X = A, Y = A	Benirschke 1967a	2.0000	
Damaliscus pygargus pygargus	38	16M + 6SM + 14A	Kumamoto et al.	2.0000	T1
(Blesbok)		X = A, Y = A	1996	2.0000	
Damaliscus pygargus phillipsi	38	16M + 6SM + 14A	Kumamoto et al.	2.0000	T1
(Blesbok)		X = A, Y = A	1996	2.0000	
Damaliscus lunatus	36	12M + 12SM +10A	Kumamoto et al.	2.0000	T1
(Topi)		X = A, Y = A	1996	2.0000	
Gazella spekei	32 (F)	14M + 12SM + 4A	Hsu and	1.6875	T1
(Speke's gazelle)	33 (M)	X = SM, Y1, Y2 = A	Benirschke 1974	1.7576	
Gazella dorcas	30 (F)	18M + 10SM	Wurster 1972	1.4667	T1
(Dorcas gazelle)	31 (M)	X = A, Y1, Y2 = SM		1.4839	
Gazella marica	30 (F)	24M +4SM	Tez et al. 2005	1.2000	T1
(Arabian sand gazelle)	31 (M)	X = SM, Y1, Y2 = A		1.2903	
Raphicerus campestris	30	20M + 8SM	Wallace and	1.4000	T1
(Steenbok)		X = A, Y = M	Fairall 1967	1.3333	

Abbreviations: M-metacentric, SM- submetacentric, A-acrocentric, ST-subtelocentric, T-telocentric, F-female, M-male, T1-symmetric, T2-between symmetric and asymmetric. * There is no male in the karyotype study, ** Could not determine the type of chromosome, *** Not identified.

In Figure 1, while the karyotype type was between symmetric and asymmetric in the 40 genus, 69 species, and three subspecies, it was symmetric in the six genera, ten species, and two subspecies. The S/A_I values of females ranged from 1.2000 to 3.0000. In Figure 2, while the karyotype type was between symmetric and asymmetric in the 36 genus, 62 species, and three subspecies, it was symmetric in the six genera, ten species, and two subspecies. The S/A_I values of male ranged from 1.2903 to 3.0000. The genera *Tragelaphus* and *Nanger* had karyotype types both symmetric and between symmetric and asymmetric. All other genera showed only a single karyotype type.

4. DISCUSSION AND CONCLUSION

The ancestral bovid karyotype was 2n = 60 (Wurster and Benirschke1968). Central fusions or Robertsonian translocations had been reported to caused interspecific karyotype variations in the family Bovidae (Gallagher and Womack). Although the chromosome number in genera *Alcelaphus*, *Damaliscus*, *Gazella*, *Tragelaphus*, *Nanger*, and *Raphicerus* was 40 or less, in other genera were greater than 40 (Figures 1 and 2). Interestingly, all species with fewer than forty chromosome numbers had symmetrical karyotypes, excluding lesser kudu, dama gazelle, royal antelope, and four-horned antelope. In the *Nanger* genus, karyotypic variation between dama and Grant's gazelle was due to differences in X and autosomal chromosomes. While Grant's gazelle had a symmetric karyotype with submetacentric X and metacentric, submetacentric autosomes; Dama's gazelle had more asymmetric karyotype with acrocentric X and submetacentric, acrocentric autosomes (Wurster and Benirschke1968; Hsu and Benirschke 1975). In the *Tragelaphus* genus, karyotypic variations were due to differences in autosomal chromosomes. While greater kudu and sitatunga had symmetric karyotype with few acrocentric chromosomes; nyala and lesser kudu had more asymmetric karyotype with more acrocentric chromosomes (Wurster and Benirschke1968; Wurster et al. 1968; Hsu and Benirschke 1971; Benirschke et al. 1980).

The karyotypes of domestic goat (*Capra hircus*) and four-horned antelope were located at the asymmetric limit in Figure 1, but this was not the case in Figure 2. The main reason was a heteromorphism between metacentric Y and acrocentric X (Table 1). In other *Capra* species, all chromosomes were acrocentric (Lux et al. 2004). The metacentric chromosome of the domestic goat probably originated from centric fusion. It was reported that the bovids biarmed chromosomes resulted from Robertsonian translocation (Oh et al. 2011).

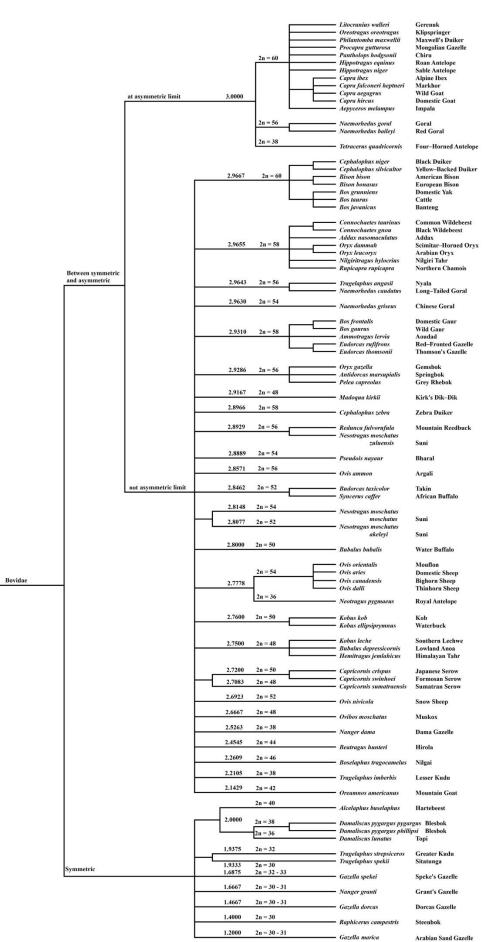


Figure 1. The female dendrogram demonstrating the interspecific relationships in family Bovidae

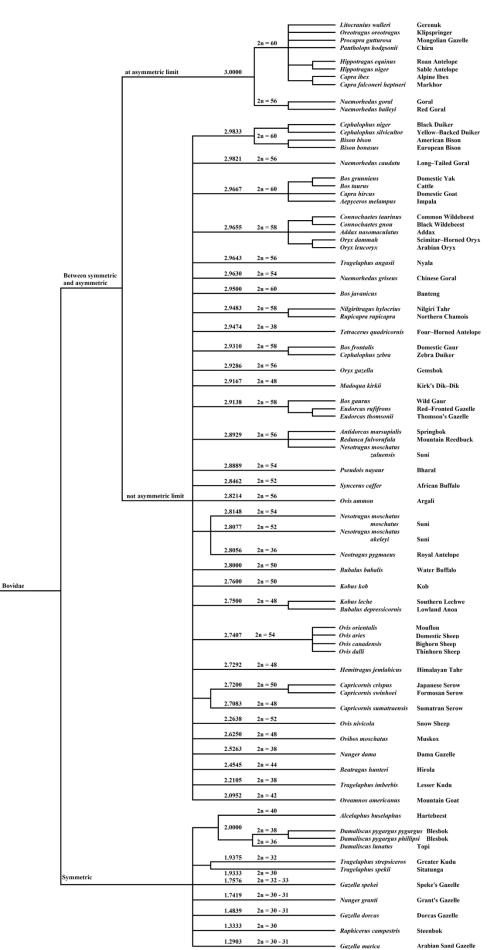


Figure 2. The male dendrogram demonstrating the interspecific relationships in family Bovidae

The karyotypes of the large genus *Bos*, *Bison*, and *Ovis* were between symmetric and asymmetric, but not at the asymmetric limit. The Bison genus had no karyotypic variation (Gallagher et al. 1999). In genus Bos, the variations were from the centric fusion between chromosome 2 and chromosome 28 of the ancestral karyotype (cattle). The centric fusion gave rise to the gaur karyotype consisting of one pair of submetacentric chromosomes (Gallagher and Womack 1992).

In genus *Ovis*, there was marked karyotypic variation. The karyotypic variation gradually occurred through centric fusions forming four classes. Class I was the ancestral karyotype and included one pair of metacentric chromosomes. Class II included two pairs of metacentric chromosomes; the argali was used in this class. Class III included three pairs of metacentric chromosomes and the mouflon, domestic sheep, bighorn sheep, and thinhorn sheep were in this class. Class IV included four pairs of metacentric chromosomes, and the snow sheep were included in this class (Bagirov et al. 2012). The karyotype asymmetry decreased with increasing metacentric chromosome pairs from Class I to IV.

In conclusion, the karyotypic variations that gradually arise through the centric fusions described above apply to the entire family. The variations in karyotype asymmetry result from the centric fusions that play an important role in the speciation of family Bovidae. The results present new data regarding the karyological characteristics of the family Bovidae that may be useful to understand interspecific relationships. The karyotype asymmetry and S/AI parameter may be used together with the other parameters in phylogenetic studies of mammals. Already the dendrograms showed similar results with molecular taxonomy results (Bibi 2013; Bibi and Tyler 2022). For example, Bibi (2013) determined 16 fossil calibration points of relevance to the phylogeny of Ruminantia and Bovidae and constructed a dated molecular phylogeny with a reanalysis of the full mitochondrial genome of over 100 taxa. There are many similarities between his phylogenetic tree and the dendrograms in terms of species placement, especially Bos, Ovis, Raphicerus, Nanger, and Gazella species.

CONFLICT OF INTEREST

There is no conflict of interest.

REFERENCES

ADW (2024). https://animaldiversity.org/accounts/Bovidae/

Bagirov VA, Klenovitskiy PM, Iolchiev BS, Zinovieva NA, Kalashnikov VV, Shilo OV, Soloshenko VA, Nasibov SN, Kononov VP, Kolesnikov AV (2012). Cytogenetic characteristic of *Ovis ammon ammon*, *O. nivicola borealis* and their hybrids. Agricultural Biology, 6:43-48.

Bernischke K, Kumamoto AT (1980). The chromosomes of the Nilgiri tahr *Hemitragus hylocrius*. International Zoo Yearbook, 20:274-275.

Benirschke K, Ruedi D, Muller H, Kumamoto AT, Wagner KL, Downes HS (1980). The unusual karyotype of the lesser kudu, *Tragelaphus imberbis*. Cytogenetics and Cell Genetics, 26:85-92.

Benirschke K, Soma H, Ito T (1972). The chromosomes of the Japanese serow, *Capricornis crispus* (Temminck). Proceedings of the Japan Academy, 48(8):608-612.

Bibi FA (2013). Multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evolutionary Biology, 13:166.

Bibi F, Tyler J (2022). Evolution of the bovid cranium: morphological diversification under allometric constraint. Communications Biology, 5:69.

Bunch TD, Wang S, Zhang Y, Liu A, Lin S (2000). Chromosome evolution of the blue sheep/bharal (*Pseudois nayaur*). Journal of Heredity, 91(2):168-170.

Chandra HS, Hungerford DA, Wagner J (1967). Chromosomes of five artiodactyl mammals. Chromosoma, 21(2):211-220.

Claro F, Hayes H, Cribiu EP (1994). The C-, G-, and R-banded karyotypes of the Scimitar-horned Oryx (*Oryx dammah*). Hereditas, 120:1-6.

Claro F, Hayes H, Cribiu EP (1996). The karyotype of the addax and its comparison with karyotypes of other species of Hippotraginae antelopes. Hereditas, 124:223-227.

Cribiu EP, Asmondé JF, Durand V, Greth A, Anagariyah S (1990). Robertsonian chromosome polymorphism in the Arabian oryx (*Oryx leucoryx*). Cytogenetics and Cell Genetics, 54(3-4):161-163.

Eroğlu HE (2015). Which chromosomes are subtelocentric or acrocentric? A new karyotype symmetry/asymmetry index. Caryologia, 68(3):239-245.

Eroğlu HE, Şimşek N, Koç M, Hamzaoğlu E (2013). Karyotype analysis of some *Minuartia* L. (Caryophyllaceae) taxa. Plant Systematics and Evolution, 299(1):67-73.

Fordyce-Boyer R, Sanger T, Loskutoff N, Kumamoto AT, Johnston L, Armstrong D (1995). Comparative cytogenetic study of the Roan and Sable antelope, *Hippotragus equinus* and *Hippotragus niger*. Applied Cytogenetics, 21:189-191.

Gallagher Jr DS, Davis SK, De Donato M, Burzlaff JD, Womack JE, Taylor JF, Kumamoto AT (1999). A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Chromosome Research, 7:481-492.

Gallagher Jr DS, Womack JE (1967). Chromosome conservation in the Bovidae. Journal of Heredity, 83:287-298.

Gerneke WH (1967). Cytogenetic investigation on normal and malformed animals, with special reference to intersexes. Onderstepoort Journal of Veterinary Research, 34(1):219-299.

Hard WL (1969). The chromosomes of duikers. Mammalian Chromosomes Newsletter, 10:216.

Hsu TC, Benirschke K (1968). Oryx gazella (Cape oryx, gemsbok). An Atlas of Mammalian Chromosomes. Springer.

Hsu TC, Benirschke K (1971). *Tragelaphus strepsiceros* (Greater kudu). An Atlas of Mammalian Chromosomes. Springer.

Hsu TC, Benirschke K (1974). Gazella spekei (Speke's gazelle). An Atlas of Mammalian Chromosomes. Springer.

Hsu TC, Benirschke K (1975). Gazella granti (Grant's gazelle). An Atlas of Mammalian Chromosomes. Springer.

Iannuzzi L, Di Meo GP, Perucatti A (1996). G- and R-banded prometaphase karyotypes in goat (*Capra hircus* L.). Caryologia, 49:267-277.

Itis (2023). https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=180704#null

Iucnredlist (2023). https://www.iucnredlist.org/search?taxonomies=100491&searchType=species

Kingswood SC, Jones ML (1998). Cryptic chromosomal variation in suni *Neotragus moschatus* (Artiodactyla, Bovidae). Animal Conservation, 1:95-100.

Kingswood SC, Kumamoto AT, Charter SJ, Houck ML, Benirschke K (2000). Chromosomes of the antelope genus Kobus (Artiodactyla, Bovidae): karyotypic divergence by centric fusion rearrangements. Cytogenetics and Cell Genetics, 91(1-4):128-133.

Kumamoto AT, Charter SJ, Houck ML, Frahm M (1996). Chromosomes of *Damaliscus* (Artiodactyla, Bovidae): simple and complex centric fusion rearrangements. Chromosome Research, 4:614-621.

Kumamoto AT, Kingswood SC, Hugo W (1994). Chromosomal divergence in allopatric populations of Kirk's dikdik, *Madoqua kirki* (Artiodactyla, Bovidae). Journal of Mammalogy, 75:357-364.

Liu RQ, Chen YZ, Shi LM, Zhang CZ (1994). Comparative studies on karyotypes between *N.cranbrooki* and *N.g.griseus*. Zoological Research, 15(4):49-54.

Liu K, Wu X, Wei ZY, Bai CL, Su GH, Li GP (2014). Comparative of the cytogenetic characteristics of *Pantholops hodgsonii* and other three species in Bovidae. Acta Theriologica Sinica, 34(1):71-79.

Low RJ, Benirschke K (1973). The chromosome complement and banding pattern of the lowland Anoa, Anoa depressicornis depressicornis. Chromosome Information Service, 15:23-25.

Lux E, Perez M, Volobouev VT (2004). G– and C–banded karyotype of the markhor *Capra falconeri heptneri*, and comparison of its banding patterns with the Alpine ibex *Capra ibex* and cattle *Bos taurus*. Acta Theriologica, 49:131-137.

Lynx Nature Books (2023). All the Mammals of the World. Lynx Edicions.

Nadler CF, Hoffmann RS, Woolf A (1974). G-band patterns, chromosomal homologies, and evolutionary relationships among wild sheep, goats, and aoudads (mammalia, artiodactyla). Experientia, 30:744-746.

Nelson-Rees WA, Kniazeff AJ, Darby NB, Malley RI (1967a). Chromosomes of a male gazelle. *Gazella thomsoni* and a female tapir. *Tapirus terrestris columbianus*. Mammalian Chromosomes Newsletter, 8:229-230.

Nelson-Rees WA, Kniazeff AJ, Malley RL, Darby Jr NB (1967b). On the karyotype of the tahr *Hemitragus jemlahicus* and the Y-chromosome of goats and sheep. Chromosoma, 23:154-161.

Oh SH, Yun YM, Lee JE, Kim IY, Shin JH, Kweon OK, Lee H, Yoon YS, Shin NS, Seong JK. (2011). G-, R- and C-band patterns of goral (*Nemorhaedus caudatus*) and comparison to goat (*Capra hircus*). Molecules and Cells, 31(4):351-354.

Pasitschniak-Arts M, Flood PF, Schmutz SM, Seidel B (1994). A comparison of G-band patterns of the muskox and takin and their evolutionary relationship to sheep. Journal of Heredity, 85:143-147.

Paszko B (2006). A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution, 258:39-48.

Placentation (2007). http://placentation.ucsd.edu/rant.htm

Popescu CP (1969). Idiograms of yak (*Bos grunniens*), cattle (*Bos taurus*) and their hybrids. Annales de Génétique et de Sélection Animale, 1:207-217.

O'Brien SJ, Menninger JC, Nash WG (2006). Atlas of Mammalian Chromosomes. Wiley & Sons.

Robinson T, Cernohorska H, Diedericks G, Cabelova K, Duran A, Matthee CA (2014). Phylogeny and vicariant speciation of the Grey Rhebok, *Pelea capreolus*. Heredity, 112:325-332.

Rubes J, Pagacova E, Kopecna O, Kubickova S, Cernohorska H, Vahala J, Di Berardino D (2007). Karyotype, centric fusion polymorphism and chromosomal aberrations in captive-born mountain reedbuck (*Redunca fulvorufula*). Cytogenetic and Genome Research, 116:263-268.

Saatoğlu FD, Denizci Öncü M, Emir H, Hatipoğlu T, Acan SC, Kankılıç T, Togan İ, Koban Bastanlar E (2019). Genetic diversity of gazelles (*Gazella marica* and *Gazella gazella*) in Southeast Turkey: a special emphasis on ongoing conservation studies of *Gazella marica* in Turkey. European Journal of Biology, 78(2):89-103.

Soma H, Kada A, Matayoshi K, Ito T, Miyashita M, Nagase K (1980). Some chromosomal aspects of *Naemorhedus* goral (goral) and *Procapra gutturosa* (Mongolian gazelle). Proceedings of the Japanese Academy, 56:273-277.

Soma H, Kada A, Matayoshi K, Suzuki Y, Meckvichal C, Mahannop A, Vatanaromya B (1982). The chromosomes of the Sumatran serow (*Capriconis sumatraensis*). Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 58:265-269.

Soma H, Kada A, Matayoshi K, Tsai MT, Kiyokawa T, Ito T, Wang KP, Chen Basil PC, Tseng SC (1981). Cytogenetic similarities between the formosan serow (Capricornis swinhoi) and the Japanese serow. Proceedings of the Japan Academy, Series B, 57(7):254-259.

Tez C, Özkul Y, Yıldız H, Dursun M, Gündüz İ (2005). The karyotype of the Goitred Gazelle, *Gazella subgutturosa*, from Turkey. Zoology in the Middle East, 36(1):105-107.

Wallace C, Fairall N (1967). The chromosomes of the steenbok. South African Journal of Medical Science, 32:55-57.

Vassart M, Séguéla A, Hayes H (1995). Chromosomal evolution in gazelles. Journal of Heredity, 86:216-227.

Wolfe BA (2015). Bovidae (except sheep and goats) and Antilocapridae. Fowler's Zoo and Wild Animal Medicine, 8:626-645.

Wurster DH (1972). Sex-chromosome translocations and karyotypes in bovid tribes. Cytogenetics, 11(3):197-207.

Wurster DH, Benirschke K (1968). Chromosome studies in the superfamily Bovoide. Chromosoma, 25:152-171.

Wurster DH, Benirschke K, Noelke H (1968). Unusually large sex chromosomes in the Sitatunga (*Tragelaphus spekei*) and the blackbuck (*Antilope cervicapra*). Chromosoma, 23:317-323.

Wurster DH, Benirschke K (1967a). Chromosome studies on some deer, the springbok, and the pronghorn with notes on placentation in deer. Cytologia, 32(2):273-285.

Wurster DH, Benirschke K (1967b). The chromosomes of twenty-three species of Cervoidea and Bovoidea. Mammalian Chromosome Newsletter, 8:226-229.