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Abstract

This paper extends the statistical convergence of real or complex numbers to the real square matrices sequences . In this context, we
investigate the relation between the statistical convergence, statistical Cauchy condition, strong Cesáro summability of matrices sequences.
This leads us to an initial analysis of the Tauberian conditions for the statistical convergence of matrix sequences.
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1. Introduction

The density of a set K of positive integers is defined by

δ (K) := lim
n→∞

1
n

card{k ≤ n : k ∈ K}, (1.1)

whenever the limit exists. If (xk) is a sequence , which satisfies a property P for all k except a set of density zero, then, we say that (xk)
satisfies P for ”almost all k ” , and we abbreviate this by ”a.a.k.” Statistical convergence of sequences of real or complex numbers was
introduced 1951 by Steinhaus in [16] and Fast in [5].
A sequence (xk) of real or complex numbers is said to be statistically convergent to the number a, and denoted by st− limxk = a, if for every
ε > 0,

δ ({k ∈ N : |xk−a| ≥ ε}) = 0, (1.2)

or equivalently there exists a subset K ⊂ N with δ (K) = 1 and n0 such that for any k ∈ K, k > n0 we have |xk− a| < ε a.a.k. see e.g.
[6, 10, 14]. It is known that any convergent sequence is statistically convergent, but not conversely. As an interpretation of this notion,
we can say that a sequence is statistically convergent if however small ε > 0 we take, the frequency of elements of the sequence that
differ from the statistical limit of more than ε > 0 can be made arbitrarily small provided we take a large enough sample. Similarly, a
sequence (xk) of real or complex numbers is said to be statistically Cauchy if for each ε > 0 there is a positive integer N = N(ε) such that
δ ({k ∈ N : |xk− xN | ≥ ε}) = 0. Basic properties of the statistical convergence and of some related summability methods were established in
[4, 15, 19, 20].
Over almost 70 years since its inception, the concept of statistical convergence has been studied in the context of numerous mathematical
disciplines including: the summability theory [6, 4, 7, 8], trigonometric series theory [23], measure theory [10], optimization [13], and
approximation theory [9], to give just a few prominent examples. The concept of convergence of sequences of numbers has been extended
by several authors to convergence of sequences of sets (see, [1]-[3], [11], [18]-[22]). Nuray and Rhoades [11] extended the notion of
convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [17] defined the Wijsman lacunary
statistical convergence of sequence of sets and considered its relation with Wijsman statistical convergence, which was defined by Nuray and
Rhoades. Ulusu and Nuray [18] introduced the concept of Wijsman strongly lacunary summability for set sequences and discused its relation
with Wijsman strongly Cesàro summability. Nuray et al.[12] studied the concepts of Wijsman Cesàro summability and Wijsman lacunary
convergence of double sequences of sets and investigated the relationship between them.
The paper is organised as follows:

(a) Section 2 introduces necessary concepts and facts related to the theory convergence of matrices sequences.
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(b) Section 3 provides definitions of major concepts related to statistical convergence and First Equivalence Theorem for the statistical
convergence of matrices sequences.

(c) In Section 4, we define the strong p-Cesàro summability of matrix sequences and we discuss its relationship with the statistical
convergence introduced in the previous section. This is followed by a Tauberian Theorem.

2. Preliminaries

Let M1,M2,M3, ... be a sequence of matrices belonging to Mn(C), the set of all n×n matrices with complex elements, and let m(k)
i j be the

i, jth element of Mk,k = 1,2,3, .... The sequence M1,M2,M3, ... is said to converge to the matrix M ∈Mn(C) if there exit numbers mi j(the

elements of M) such that m(k)
i j → mi j as k→ ∞ for each pair of subscripts i, j. A sequence that does not convergence is said to diverge. Thus

the convergence of sequences of matrices is defined as elementwise convergence. The definition includes the convergence of column and row
vectors as special cases as well. As an example, let

Mk =

 ( 1
5 )

k k
22k+1

0 ( 1
5 )

k

 . (2.1)

Then, the matrices sequence (Mk) is convergent to the matrix M =

(
0 0
0 0

)
.

If a matrix sequence (Mk) converges and its limit is M, then this limit is unique and we write limk→∞ Mk = M.
Let (Mk) be a matrix sequence. The ith row of (Mk) is said to be convergent to M if and only if

lim
k→∞

a(k)i j = ai j (2.2)

for all j = 1,2, ...,n.
The jth column of (Mk) is said to be convergent to M if and only if

lim
k→∞

a(k)i j = ai j (2.3)

for all i = 1,2, ...,n.
If the matrix sequences (Mk) and (Nk) are convergent to M and N, then the matrix sequences (Mk +Nk) and (Mk ·Nk) are convergent to
M+N and M ·N respectively.
The definition of convergence can also be given using the matrix norm:
A sequence of matrices (Mk) converges a limit M if for a matrix norm, we have

lim
k→∞
‖Mk−M‖= 0. (2.4)

The definition of convergence does not depend on the chosen norm, since Mn(C) is a vector space of finite dimension. If a vector space is
finite dimension, then all norms are equivalent. Thus if a matrix sequence converges for one norm, it converges for all norms.
A norm ‖ · ‖ defined on Mn(C) is a matrix norm if for all matrices M,N ∈Mn(C),

‖MN‖ ≤ ‖M‖‖N‖. (2.5)

Let ‖ · ‖ be a vector norm on Kn. It induces a matrix norm defined by

‖A‖= sup
x∈Kn,x 6=0

‖Ax‖
‖x‖

, (2.6)

which is said to be subordinate to this vector norm. The norm of a matrix is a measure of how large its elements are. It is a way of determining
the size of a matrix that is not necessarily related to how many rows or columns the matrix has.
There are many matrix norms, but the following three are among the most commonly used.
The 1-norm

‖M‖1 = max
1≤ j≤n

(
n

∑
i=1
|mi j|

)
(2.7)

(the maximum absolute column sum).
The infinity-norm

‖M‖∞ = max
1≤i≤n

(
n

∑
j=1
|mi j|

)
(2.8)

(the maximum absolute row sum).
The Euclidean norm

‖M‖E =

√√√√ n

∑
i=1

n

∑
j=1

(mi j)2 (2.9)

(the square root of the sum of all the squares).
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3. Statistical Convergence

Let us start with the following definition. In all following definitions all the matrices will be n×n matrices, unless stated otherwise. Let
Mk = [m(k)

i j ], k ∈ N.

Definition 3.1. Let (Mk) be a matrix sequence, M be a matrix and ‖ · ‖ be a matrix norm.

(a) We say that the matrix sequence (Mk) is statistically convergent to the matrix M and write Mk
st−→M if for every ε > 0,

lim
n→∞

1
n

card{k ≤ n : ‖Mk−M‖ ≥ ε}= 0. (3.1)

(b) A sequence (Mk) is called statistically Cauchy sequence if for each ε > 0, there is a positive integer N = (Nε ) such that

lim
n→∞

1
n

card{k ≤ n : ‖Mk−MN‖ ≥ ε}= 0. (3.2)

(c) A sequence (Mk) is called statistically bounded if for arbitrary matrix M, there is a real number q > 0 such that

lim
n→∞

1
n

card{k ≤ n : ‖Mk−M‖ ≥ q}= 0. (3.3)

Example 3.2. Define (Mk) and M by

Mk =



(
1 0
0 1

)
, k is a square

(
0 0
0 0

)
, otherwise.

and

M =

(
0 0
0 0

)
.

Then,

1
n

card{k ≤ n : ‖Mk−M‖ ≥ ε} ≤
√

n
n

, (3.4)

so Mk
st−→M. The matrix sequence (Mk) is not convergent.

A ball B(M,r) is defined by B(M,r) = {P ∈ Cm×n : ‖M−P‖ ≤ r}.
The following result will be used in the proof of the main result of this section.

Lemma 3.3. Assume that {Bm} is a sequence of nonempty subsets such that Bm+1 ⊂ Bm for every m ∈ N, and such that diam(Bm)→ 0 as
m→ ∞. Then, there exists M0 with⋂
m∈N

Bm = {M0}. (3.5)

Proof. Denote B =
⋂

m∈N
Bm. For every m select an element Mm ∈ Bm. Note that {Mm} is Cauchy because diam(Bm)→ 0. By the

completeness there exist M0 such that Mm→M0. We need to show that M0 ∈ B. Assume to the contrary that M0 /∈ B. There exists then M0
with M0 /∈ Bm0 , which means that M0 belongs to an open set C\Bm0 and hence by convergence definition there exist r > 0 such that the ball
B(M0,r)∩Bm0 = /0. Observe that for any m≥ m0 we have Bm ⊂ Bm0 , which implies that B(M0,r)∩Bm = /0. On the other hand, Mm→M0
and hence Mm ∈ B(M0,r) for all m≥ m1 ≥ m0. Contradiction.
To show the uniqueness, let us assume that there exists another element M′0 ∈ B. Hence, M0,M′0 ∈ Bm for every m, which yields that
‖M0−M0′‖ ≤ diam(Bm)→ 0, implying immediately that M0 = M′0.

We are now ready to prove a matrix sequence version of the equivalence theorem.

Theorem 3.4 (First Equivalence Theorem). Let (Mk) be a matrix sequence. The following statements are equivalent:

(i) (Mk) is statistically convergent;
(ii) (Mk) is statistically Cauchy;

(iii) There is a convergent matrix sequence (Pk) such that Mk = Pk a.a. k.
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Proof. To prove that (i) implies (ii) we need to show that for every ε > 0 there exists Nε ∈ N such that

lim
n→∞

1
n

card{k ≤ n : ‖Mk−MN‖> ε}= 0. (3.6)

By (i) there exists M0 ∈ Cn×n such that Mk
st−→M0. Let us fix arbitrarily ε > 0 and note that ‖Mk−M0‖ ≤

ε

2
a.a.k. If N ∈ N is chosen

such that

‖MN −M0‖ ≤
ε

2
. (3.7)

Then we get,

‖Mk−MN‖ ≤ ‖Mk−M0‖+‖MN −M0‖ ≤
ε

2
+

ε

2
a.a.k. (3.8)

which means that (Mk) is statistically Cauchy.

Let us assume now (ii), that is that (Mk) is statistically Cauchy. Then, there exists a ball B1 with radius equal to 1 and center at some MN1

such that B1 contains Mk a.a. k. Similarly, we can choose a ball B
′

2 with radius equal to 1
2 and center at some MN2 such that B

′

2 contains Mk

a.a. k. Define B2 = B1∩B
′

2 and observe that B2 is a nonempty subset of B1 with diam(B2)≤ 1
2 . Observe that B2 contains Mk a.a. k because

for every n ∈ N

{k ≤ n : Mk /∈ B1∩B
′

2}= {k ≤ n : Mk /∈ B1}∪{k ≤ n : Mk /∈ B
′

2},

and hence

δ ({k : Mk /∈ B1∩B
′

2})≤ δ ({k : Mk /∈ B1})+δ ({k : Mk /∈ B
′

2}) = 0.

By induction we can obtain a sequence {Bn} of nonempty sets such that Bn+1 ⊂ Bn and diam(Bn)→ 0 and each Bn contains Mk a.a. k. By

Lemma 3.3 there exist M0 such that
⋂

m∈N
Bm = {M0}. Because for every m, Mk ∈ Bm a.a. k, we can choose an increasing sequence {pm} of

natural numbers such that for every n > pm

1
n

card{k ≤ n : Mk /∈ Bm} ≤
1
m
. (3.9)

Define the sequence {Rk} as a subsequence of {Mk}k>p1 such that if pm < k < pm+1 then, Mk /∈ Bm. Define now {Pk} by

Pk =

{
M0 if Mk is a term of (Rn)

Mk otherwise
(3.10)

and observe that either Pk = M0 or Pk = Mk ∈ Bmk , where pmk is the largest term of the sequence {pm} for which pm < k. Hence, either
|Pk−M0| = 0 or |Pk−M0| ≤ diam(Bmk )→ 0, which means that {Pk} is convergent to M0. It remains to be shown that Mk = Pk a.a. k.
Observe that if pm < n≤ pm+1 then,

{k ≤ n : Pk 6= Mk} ⊂ {k ≤ n : M /∈ Bm}, (3.11)

hence by (3.9)

1
n

card{k ≤ n : Pk 6= Mk} ≤
1
n

card{k ≤ n : Mk /∈ Bm} ≤
1
m
, (3.12)

and finally

lim
n→∞

1
n

card{k ≤ n : Pk 6= Mk}= 0, (3.13)

which means that Mk = Pk a.a. k, as claimed.
To prove that (iii) implies (i), let us assume that there exists a matrix sequence (Pk) which converges to a matrix M0 and that Mk = Pk a.a. k.
We will prove that Mk

st−→M0. Let us fix ε > 0 and take any n ∈ N. Observe that for each pair of subscripts i,j,

{k ≤ n : ‖Mk−M0‖ ≥ ε} ⊂ {k ≤ n : Mk 6= Pk}∪{k ≤ n : ‖Pk−M0‖ ≥ ε}. (3.14)

Since Pk→M0, it follows that there exists `= `(ε) ∈ N such that

card{k ≤ n : ‖Pk−M0‖ ≥ ε}= `,

and hence

lim
n→∞

1
n

card{k ≤ n : ‖Mk−M0‖ ≥ ε} ≤ lim
n→∞

1
n

card{k ≤ n : Mk 6= Pk}+ lim
n→∞

`

n
= 0,

because Mk = Pk a.a. k, proving that Mk
st−→M0, as claimed.
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4. Summability and Tauberian Properties

In this section we introduce a notion of the strong p-Cesàro-summability of matrix sequences and we discuss its relationship with the
statistical convergence introduced in the previous section. This will lead us to establishing a Tauberian type results.
First let us define formally bounded sequences matrices.

Definition 4.1. We say that a matrix sequence (Mk) is bounded if supk ‖Mk‖< ∞.

Definition 4.2. Let p be a positive real number. We say that a matrix sequence (Mk) is strongly p-Cesàro-summable to matrix M if

lim
n→∞

1
n

n

∑
k=1
‖Mk−M‖p = 0. (4.1)

The following results, following patterns of [4], demonstrates a close connection between the statistical convergence of matrix sequences and
the strong p-Cesàro-summability. Note that for bounded matrix sequences both notions are equivalent.

Theorem 4.3. [Second Equivalence Theorem] Let p ∈ R,0 < p < ∞.

(i) If a matrix sequence is strongly p-Cesàro-summable to M, then it is statistically convergent to M.
(ii) If a bounded matrix sequence is statistically convergent to M, then it is strongly p-Cesàro-summable to M.

Proof. For any sequence of matrices (Mk) and ε > 0 we have that

n

∑
k=1
‖Mk−M‖p =

n

∑
k=1

‖Mk−M‖≥ε

‖Mk−M‖p +
n

∑
k=1

‖Mk−M‖<ε

‖Mk−M‖p

≥
n

∑
k=1

‖Mk−M‖≥ε

‖Mk−M‖p

≥ card{k ≤ n : ‖Mk−M‖ ≥ ε}ε p.

It follows that if (Mk) is strongly p-Cesàro summable to M then, (Mk) is statistically convergent to M, proving (i).
Now suppose that matrix sequence (Mk) is bounded and statistically convergent to M. Since (Mk) is bounded, there exists 0 < q < ∞ such
that ‖Mk−M‖< q. Let ε > 0 be given and select nε such that

1
n

card{k ≤ n : ‖Mk−M‖>
(

ε

2

) 1
p }< ε

2qp

for all n > nε and set Sn = {k ≤ n : ‖Mk−M‖> (
ε

2
)

1
p }. Now, for n > nε we have that

1
n

n

∑
k=1
‖Mk−M‖p =

1
n

∑
k∈Sn

‖Mk−M‖p + ∑
k/∈Sn
k≤n

‖Mk−M‖p


<

1
n

(
nε

2qp

)
qp +

1
n

n
ε

2
= ε.

Hence, the matrix sequence (Mk) is strongly p-Cesàro summable to M, as claimed in (ii).

Our next result establishes a Tauberian condition for the strong p-Cesàro-summablity or the statistical convergence of matrix sequence.
Similarly to other Tauberian theorems, Theorem 4.4 demonstrates that under some order type constraints imposed on the forward differences
∆Mk = Mk−Mk+1, the strong p-Cesàro-summablity and the statistical convergence are actually reduced to the convergence of matrix
sequences.

Theorem 4.4. [Tauberian Theorem] Let 0 < p < ∞. If a sequence (Mk) is strongly p-Cesàro summable to M (or statistically convergent to
M) and sup

k∈N
‖k∆Mk‖< ∞ then (Mk) is convergent to M.

Proof. In view of Theorem 4.3 it is enough to assume that (Mk) is statistically convergent to M. Using Theorem 3.4 Part (iii), choose a
matrix sequence (Pk) such that Pk→M and Mk = Pk a.a.k. Because Mk = Pk a.a.k, there exists k0 ∈ N such that the set {i≤ k : Mi = Pi} is
nonempty for any k ≥ k0. For each k ≥ k0 write k = mk + pk, where mk = max{i≤ k : Mi = Pi}. We will show that

lim
k→∞

pk

mk
= 0. (4.2)

Assume to the contrary that there exists γ > 0 such that
pk

mk
> γ > 0 for infinitely many k ≥ k0. Then for such k,

1
k

card{i≤ k : Mi 6= Pi}=
1

mk + pk
pk

>
pk

pk
γ
+ pk

=
γ

1+ γ
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contradicting the fact that Mk = Pk a.a.k. The contradiction proves (4.2). From (4.2) it follows that there exists k1 ≥ k0 such that pk ≤ mk

for any k ≥ k1. Since sup
k∈N
‖k∆Mk‖ < ∞, there is a finite constant q > 0 such that ‖∆Mk‖ ≤

q
k

for any k ∈ N. Therefore, for each pair of

subscripts, we obtain that

‖Pmk −Mk‖= ‖Mmk −Mmk+pk‖
= ‖Mmk −Mmk+1 +Mmk+1−Mmk+2 + ...+Mmk+pk−1−Mmk+pk‖

≤
mk+pk−1

∑
s=mk

‖∆Ms‖ ≤ pk
q

mk

Finally,

lim
k→∞
‖Pmk −Mk‖= 0. (4.3)

Since Pk→M, it follows from (4.3) that Mk→M, as claimed.
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