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Abstract. This paper introduces and studies the concept of prolongations of a hypersurface to a vector bundle.
We develop the theory of hypersurfaces using the metric tensor which is the complete lift of the metric tensor of the
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1. Introduction

Prolongations of hypersurfaces to tangent bundles were studied by Tani in [14]. Prolongations of geometric struc-
tures on manifold to tangent bundle, tangent bundle of order 2 and of order r were studied by several authors,
see [3, 8–11]. Prolongations of tensor fields and connections to vector bundles have been studied by several authors,
such as [1,4,5,12,16]. Also, in [6,7] the authors were studied prolongations of structures on manifold to vector bundle.
In the spirit of this work, we study generalization to vector bundle of [14].

This paper is organized as follows: In §2, we provide the notation and background material concerning the basic
concepts of tangent and vector bundles that will be used in the rest of this paper. In §3, we recall several results stated
in [4, 5, 12, 16]. Such results are indispensable in the subsequent sections. In §4, we define the vertical and complete
lifts of the vector fields defined along a surface. In particular, we consider two kinds of lifts of the normal vector field
of the surface as vector fields normal to the prolonged surface. In §5, we recall some formulas for surfaces, and then
we use them in §6 to obtain fundamental formulas containing so-called the second fundamental tensor for prolonged
surfaces. In the last section, we formulate the Gauss, Weingarten and structure equations, i.e., Gauss, Codazzi and
Ricci equations, for the prolonged surface in the form of lifts corresponding to the equations of the surface given in
the base space. In particular, we observe that our results on vector bundles coincide with the earlier results of [14] in
which the tangent bundle T M was taken as the vector bundle.
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2. BackgroundMaterial

Let M be a differentiable manifold and TpM be the tangent space at a point p in M. T M is the tangent bundle of
M with its projection πM : T M → M. We denote by =r

s(M) the space of C∞ tensor fields of type (r, s). We denote by
=(M) the tensor algebra on M. In other words, =(M) =

∑
r,s =

r
s(M).

Let M be an m−dimensional differentiable manifold of class C∞ and V be a coordinate neighborhood in M and
(xi) be certain local coordinates defined in V . We introduce a system of coordinates (xi, ẋi) in π−1

M (V) with cartesian
coordinates (ẋi) in each tangent space TpM, p ∈ V , with respect to the natural frame

(
∂
∂xi

)
of local coordinates (xi). We

then call (xi, ẋi) the coordinates induced in π−1
M (V) from (xi), or simply the induced coordinates in π−1

M (V) [14, 15].
Consider an (m − 1)−dimensional manifold S with its imbedding ı : S → M. The differential mapping dı from TS

into T M is called the tangential map of ı. Such tangential map is denoted by D. Note that D induces its tangential map
dD : TTS → TT M, which is denoted by D̃. Recall that TS is a 2(m − 1)−dimensional submanifold of T M and TTS
is a 4(m − 1)−dimensional submanifold of of TT M. By setting

T (S ,M) = π−1
M (ı(S )) and T (TS ,T M) = π−1

T M(D(TS )) ,

we obtain
ı : S → M and dı = D : TS → T (S ,M) ⊂ T M .

Note that ı has the local expressions
xi = xi(uα),

in terms of local coordinates (xi) where (uα) are local coordinates of S . Therefore, the local expressions of D are given
by 

xi = xi(uα),

ẋi = Di
αu̇α, Di

α =
∂xi

∂uα

with respect to the local coordinates (xi, ẋi) and (uα, u̇α) induced from (xi) and (uα), respectively. In the following we
sometimes identify S with its image ı(S ) and TS with its image D(TS ) [14].

Let us denote the tensor algebra associated to T (S ,M) by =(S ,M). The tangential map D induces an isomorphism
from =(S ) into =(S ,M). Similarly, dD induces an isomorphism from =(TS ) to =(T (S ,M)). A mapping X̄ assigning
to each p ∈ S a tangent vector at p of M, i.e.,

X̄p ∈ TpM ,

is called a vector field defined along S . Note that =1
0(S ,M) is the set of all vector fields along S . Similarly a mapping

T̄ assigning to each p ∈ S a tensor of type (r, s) at p

T̄p ∈ TpM ⊗ · · · ⊗ TpM ⊗ T ∗pM ⊗ · · · ⊗ T ∗pM,

is called a tensor field of type (r, s) along S . Here, T ∗p(M) is the dual space of TpM. If the space of tensor fields of type
(r, s) along S is denoted by =r

s(S ,M), it can be seen that =0
0(S ,M) = =0

0(S ). In the rest of this paper, the elements of
=(S ) will be denoted by f , X, ω and so on. On the other hand, the elements of =(S ,M) will be denoted by f̄ , X̄, ω̄ and
so on [14].

Let E be an (m+n)−dimensional vector bundle in which n ≥ m with the projection π : E → M. For a local coordinate
system (V, xi) on M, let (π−1(V), xi, ya) be the induced local coordinate system on E defined by xi(v) = xi(π(v)) and
v = ya(v)δa for all v ∈ π−1(V), where 1 ≤ i ≤ m, 1 ≤ a ≤ n. Here, δ1, ..., δn are adapted sections. For the special
case E = T M, we consider the induced local coordinate system (π−1

M (V), xi, ẋi) on T M where xi = xi(πM(v)) and
ẋi(v) = dxi(v) for all v ∈ π−1(V) [13].

Consider a surjective vector bundle morphism 0I : E → T M satisfying πM ◦
0 I = π. Let p be a point in M, then

there are components Ωi
a(p) such that

0I(z) = Ωi
a(p)za ∂

∂xi

∣∣∣∣∣
p

where z ∈ Ep = π−1(p). Moreover 0I has the following local expressions in terms of local coordinates
(
xi, ya

)
and(

xi, ẋi
)

[16]:
0I(xi, ya) = (xi,Ωi

aya) .
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Proposition 2.1. Let 0̂I : T (S ,M)→ TS be a vector bundle morphism. 0̂I has the local expression

0̂I(uα, ẋi) = (uα, Ω̂α
i ẋi) ,

with respect to the local coordinates
(
uα, ẋi

)
and (uα, u̇α). Therefore we obtain

Di
αΩ̂α

i = δi
i ,

where δi
i is the Kronecker delta.

Let (E, π,M) be a vector bundle over M and S ⊂ M be a submanifold of M. We set Ē = π−1(S ) ⊂ E and denote
by π̄ : Ē −→ S the restriction of π to Ē. We then obtain a new vector bundle (Ē, π̄, S ), called the restriction of
E to S . Each fiber Ēx, x ∈ S , is equal to the corresponding fiber Ex. The local coordinates of Ē are (uα, ya) and
dim Ē = (m − 1) + n [2].

Let (Ẽ, π̃, S ) subvector bundle of (E, π,M) such that Ẽ = TS with local coordinates (uα, vh)1≤α≤m−1
1≤h≤n−1

of Ẽ whenever

E = T M. Then dim Ẽ = (m − 1) + (n − 1).
Let

B : Ẽ → E

be the inclusion map. Then B has the following local expressions with respect to the local coordinates (uα, u̇α) and(
xi, ya

)
:

B(uα, u̇α) = (xi(uα), Ba
hvh).

In particular, B induces its tangential map dB : T Ẽ → T E which is denoted by B̃. By setting T (Ẽ, E) = π−1
E (B(Ẽ)) we

obtain

B : Ẽ → Ē ⊂ E
dB = B̃ : T Ẽ → T (Ẽ, E) = T Ē ⊂ T E.

Let õI : Ẽ → TS be a surjective vector bundle morphism such that õI = idTS in the special case when πS ◦
õI = π̃

and E = T M. Then there are components Ω̃α
h (p) such that

õI(u) = Ω̃α
h (p)uh ∂

∂uα

∣∣∣
p (for u ∈ Ẽp).

In terms of local coordinates (uα, vh) of Ẽ, õI has local expressions

õI(uα, vh) = (uα, Ω̃α
h vh).

In the following, we assume all manifolds, tensor fields, maps and linear connections to be differentiable and of
class C∞.

3. Vertical and Complete Lifts

In this section, two kinds of isomorphism of =(M) into =(E) or =(S ) into =(Ẽ), which are called vertical and
complete lifts, will be given.

Let f , X, ω and F be a function, a vector field, a 1−form and a tensor field of type (1, 1) in M, respectively. We
denote respectively by f V , XV , ωV and FV , their vertical lifts and by f C , XC , ωC and FC , their complete lifts. For a
function f in M, we have by definition

f V = f ◦ π (3.1)

and

f C = ∂i f Ωi
aya, (∂i = ∂/∂xi) (3.2)
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with respect to the induced coordinates. Moreover these lifts have the properties [4, 5, 16]:

( f X)V = f V XV , ( f X)C = f C XV + f V XC ,

XV f V = 0, XV f C = XC f V = (X f )V , XC f C = (X f )C ,

ωV XV = 0, ωV XC = ωC XV = (ωX)V , ωC XC = (ωX)C ,

FV XC = (FX)V , FC XC = (FX)C ,

[X,Y]C =
[
XC ,YC

]
, [X,Y]V =

[
XC ,YV

]
=

[
XV ,YC

]
.

(3.3)

For a tensor field of the form T = P ⊗ Q where P and Q are arbitrary tensor fields, its vertical and complete lifts are
given respectively by

T V = (P ⊗ Q)V = PV ⊗ QV

TC = (P ⊗ Q)C = PC ⊗ QV + PV ⊗ QC
(3.4)

[4, 5]. For the later use we note here the following formulas [4, 5]:

TC
(
XC ,YC

)
= (T (X,Y))C ,

TC
(
XC ,YV

)
= T V

(
XC ,YC

)
= (T (X,Y))V ,

TC
(
XV ,YV

)
= T V

(
XV ,YC

)
= T V

(
XV ,YV

)
= 0

(3.5)

where X, Y are arbitrary vector fields in M and T ∈ =0
2(M).

Remark 3.1. Let
∗

X and
∗

Y are arbitrary elements of =̃1
0(E) such that

∗

X f̂ C =
∗

Y f̂ C for all f̂ ∈ =0
0(M), then

∗

X =
∗

Y . Let
∗
ω and

∗
η are arbitrary elements of =̃0

1(E) such that
∗
ω(X̂C) =

∗

Y(X̂C) for all X̂ ∈ =1
0(M), than

∗
ω =

∗
η. Consequently any

arbitrary elements of =̃(E) are completely determined by its action on the set of f̂ C and X̂C , f̂ and X̂ being arbitrary
elements of =0

0(M) and =1
0(M), respectively [4, 5].

4. Vertical and Complete Lifts of =r
s(S ,M) to E

In this section, we give two kinds of isomorphism of =(S ,M) into =(Ē), so-called vertical and complete lifts from
=(S ,M) to E.

We define now the lifts of elements of =r
s(S ,M) to E.

Definition 4.1. Let f̄ be a function defined on S . The vertical lift f̄ V̄ of f̄ to E is defined by

f̄ V̄ = f̄ ◦ π̃. (4.1)

Proposition 4.2. The restriction of f̂ V to Ẽ coincides with f̄ V̄ , where f̂ is an arbitrary element of =0
0(M).

In order to define the complete lift for an arbitrary point p of S , we consider a sufficiently small neighborhood U
of p in M. In U we can construct a function f̂ such that f̂ coincides with f̄ on the connected component (U ∩ S )0 in
U ∩ S containing p. We remark that a local extension f̂ satisfies ∂α f̂ = ∂α f̄ along (U ∩ S )0.

Then the complete lift of f̂ to π−1(U) is defined as

f̂ C = ∂i f̂ Ωi
aya

in the local coordinates in π−1(U). We see that the restriction of f̂ C to π−1((U ∩ S )0) is independent of the choice of f̂ .
In fact, if we denote by # the operation of taking restriction to π−1((U ∩ S )0), we have

# f̂ C = #(∂i f̂ Ωi
aya) = ∂i f̂ Ωi

aBa
hvh = ∂i f̂ Di

αΩ̂α
i Ωi

aBa
hvh

= ∂α f̂ Ω̃α
h vh = ∂α f̄ Ω̃α

h vh (4.2)

in π−1((U ∩ S )0).

Definition 4.3. We can define a function which coincides with # f̂ C in each coordinates neighborhood. We denote it
by f̄ C̄ and call the complete lift of f̄ to E.
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Definition 4.4. Let X̄ be an element of =1
0(S ,M). The X̄p being a tangent vector at p ∈ S we shall define the vertical

lift X̄V̄ to E by
X̄V̄ f̂ C = (X̄ f̂ )V̄ (4.3)

along S , where f̂ is an arbitrary element of =0
0(M).

Definition 4.5. Let X̄ be an element of =1
0(S ,M). The X̄p being a tangent vector at p ∈ S , we shall define the complete

lift X̄C̄ to E by
X̄C̄ f̂ C = (X̄ f̂ )C̄ (4.4)

along S , where f̂ is an arbitrary element of =0
0(M).

Proposition 4.6. Definition 4.5 is equivalent to the one that X̄C̄ is defined to be restriction on π−1((U ∩ S )0) of X̂C ,
where X̂ is a local extension of X̄ in U.

Proof. To prove this, it is sufficient to prove

X̄C̄ f̂ C = (#X̂C) f̂ C for f̂ ∈ =0
0(M)

due to Remark 3.1. For an arbitrary vector field X̄, X̄ f̂ is a function which takes the value

(X̄ f̂ )p = X̄p f̂

at p. Therefore we have
X̄C̄ f̂ C = (X̄ f̂ )C̄ = #(X̂ f̂ )C = #(X̂C f̂ C) = (#X̂C) f̂ C .

�

Definition 4.7. Let ω̄ be an element of =0
1(S ,M). We define the vertical lift ω̄V̄ to E by

ω̄V̄ (X̄C̄) = ω̄(X̄)V̄

where X̄ is an arbitrary element of =1
0(S ,M).

Definition 4.8. Let ω̄ be an element of =0
1(S ,M). We define the complete lift ω̄V̄ to E by

ω̄C̄(X̄C̄) = ω̄(X̄)C̄

where X̄ is an arbitrary element of =1
0(S ,M).

Proposition 4.9. Definition 4.8 is equivalent to the one that ω̄C̄ is defined to be restriction on π−1((U ∩ S )0) of ω̂C ,
where ω̂ is a local extension of ω̄ in U.

Proof. Let X̄ be an arbitrary element of =1
0(S ,M). If we consider a 1−form ω̂ in a sufficiently small neighborhood U

of p such that ω̂(X̂) is a local extension of ω̄(X̄), i.e.,

ω̂(X̂)
∣∣∣
(U∩S )0 = ω̄(X̄)

where X̂ is a local extension of X̄. We call such ω̂ a local extension of ω̄ to U. Then we have the complete lift ω̄C̄

ω̄C̄(X̄C̄) = ω̄(X̄)C̄ = #(ω̂(X̂)C) = #(ω̂C(X̂C))

in π−1((U ∩ S )0), since ω̄(X̄)C̄ is defined by the restriction of the complete lift of a local extension. That is, ω̂C is a
local extension of ω̄C̄ in the above sense. �

We now extend these lifts to a linear mapping from =(S ,M) to =(Ē) under the condition:(
P̄ ⊗ Q̄

)V̄
= P̄V̄ ⊗ Q̄V̄ ,

(
P̄ ⊗ Q̄

)C̄
= P̄C̄ ⊗ Q̄V̄ + P̄V̄ ⊗ Q̄C̄

(4.5)

where P̄ and Q̄ are arbitrary elements of =(S ,M).
We shall now sum up some properties of lifts derived immediately from the definitions.
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Proposition 4.10. The lift of =0
0(S ,M) to E and the lift of =0

0(S ) to Ẽ are related by

f̄ V̄ = f̄ V , f̄ C̄ = f̄ C for f̄ ∈ =0
0(S ,M) = =0

0(S ). (4.6)

That is
f̂ V ◦ D = ( f̂ ◦ ı)V , f̂ C ◦ D = ( f̂ ◦ ı)C for f̂ ∈ =0

0(M). (4.7)

The lifts of vector fields tangent to S are tangent to Ẽ, i.e.,

(DX)V̄ = B̃(XV ), (DX)C̄ = B̃(XC) for X ∈ =1
0(S ). (4.8)

Proof. (4.6) and (4.7) are easily seen from (3.1), (3.2), (4.1) and (4.2). As for (4.8), by virtue of (4.3), (4.4), (4.6) and
(4.7), we have

B̃(XV ) f̂ C = dB(XV ) f̂ C = XV ( f̂ C ◦ B) = XV ( f̂ ◦ ı)C

= (X( f̂ ◦ ı))V = (dı(X) f̂ )V̄ = (DX)V̄ f̂ C

and

B̃(XC) f̂ C = dB(XC) f̂ C = XC( f̂ C ◦ B) = XC( f̂ ◦ ı)C

= (X( f̂ ◦ ı))C = (dı(X) f̂ )C̄ = (DX)C̄ f̂ C

for an arbitrary element f of =0
0(M). Consequently from Remark 3.1, we have (4.8). �

From definition of the lifts of elements of =r
s (S ,M), we have the formulas similar to (3.3) and (3.4). Summing up,

we have the following formulas.
Let f̄ and X̄ be arbitrary elements of =0

0(S ) and =1
0(S ,M) respectively, then we have

T̂C(X̄C̄ , ȲC̄) = T̂ (X̄, Ȳ)C ,

T̂C(X̄V̄ , ȲC̄) = T̂ V (X̄C̄ , ȲC̄) = T̂ (X̄, Ȳ)V , (4.9)

T̂C(X̄V̄ , Ȳ V̄ ) = T̂ V (X̄C̄ , Ȳ V̄ ) = T̂ V (X̄V̄ , Ȳ V̄ ) = 0

along S where T̂ ∈ =0
2(M).

5. Formulas for Surfaces

Let there be given a Riemannian metric Ĝ in M. If we denote by g the induced metric on S from Ĝ, then by definition
we have

g(X,Y) = Ĝ(DX,DY) for X,Y ∈ =1
0(S ).

We consider the Riemannian covariant differentiation ∇̂ determined by Ĝ in M. Then we have along S

∇̂DXDY = TXY + NXY for X,Y ∈ =1
0(S ), (5.1)

where TXY and NXY are tangential and normal parts of ∇̂DXDY , respectively. Then the correspondence T which assigns
TXY to a pair of two vector fields X and Y defines a covariant differentiation along S . Thus we introduce a connection
∇ on S by the condition

D∇XY = TXY (5.2)
where X and Y are arbitrary elements of =1

0(S ). We can easily verify that ∇ thus defined is a Riemannian connection
with respect to the induced metric g and we call ∇ the connection induced on S from ∇̂, or simply the induced
connection on S . NXY being normal to S , we can put

NXY = h(X,Y)N, (5.3)

Let N be the normal vector field and h being a certain tensor field of type (0, 2) on S . We call h the second fundamental
tensor field and we define the tensor field H of type (1, 1) by

g(HX,Y) = h(X,Y).

If we denote by R the curvature tensor field for the induced connection ∇, the equations of Weingarten, Gauss and
Codazzi for S in M are written respectively as

∇̂DXN = −D(HX) (5.4)
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g(R(X,Y)Z,W) = Ĝ(R̂(DX,DY)DZ,DW) + g((HX)h(Y,Z) − (HY)h(X,Z),W) (5.5)

Ĝ(R̂(DX,DY)N,DW) = g(∇XHY − ∇Y HX,W) (5.6)
where X,Y and Z are arbitrary elements of =1

0(S ).
S is said to be totally umbilical if there exists a scalar field m̆ such that

h(X,Y) = m̆g(X,Y)

for arbitrary elements X,Y of =1
0(S ). We call m̆ the mean curvature of S , and have

m̆ =
1

m − 1
TraceH.

If a totally umbilical hypersurface has the vanishing mean curvature, it is said to be totally geodesic.

6. The Induced metric and connection on Ẽ

Let Ĝ be the Riemannian metric given in M. Then the complete lift ĜC of Ĝ is the pseudo-Riemannian metric in E

( [5] Prop. 5.). We say that two vector field
∗

X and
∗

Y are orthogonal on Ẽ with respect to ĜC , if

ĜC(
∗

X,
∗

Y) = 0

on Ẽ and we say that
∗

N is a normal vector field to Ẽ, if

ĜC(
∗

N, B̃X̃) = 0 for X̃ ∈ =1
0(Ẽ).

If we denote a mapping which assigns to each p ∈ S to a normal vector Np to S by N, N is a vector field along S . We
can define its vertical lift NV̄ and complete lift NC̄ to E according to section 4. Then we find that for each point x ∈ Ẽ,
(NV̄ )x and (NC̄)x are normal vectors to Ẽ with respect to ĜC and they are self-orthogonal but mutually orthogonal, i.e.,

ĜC(NV̄ , B̃XC) = ĜC(NC̄ , B̃XC) = 0

ĜC(NC̄ ,NC̄) = ĜC(NV̄ ,NV̄ ) = 0 (6.1)

ĜC(NV̄ ,NC̄) = 1

for X ∈ =1
0(S ). These are direct consequences of (4.9). Moreover we can choose

{
NV̄ ,NC̄

}
as the basis of normal space

to Ẽ.
If we denote by g̃ the induced metric on Ẽ from ĜC then we have

g̃(XC ,YC) = ĜC(B̃XC , B̃YC) for X,Y ∈ =1
0(S ). (6.2)

The complete lift ∇̂C of ∇̂ to E is by definition an affine connection in E characterized by the property

∇̂C
X̂C ŶC = (∇̂X̂Ŷ)C for X̂, Ŷ ∈ =1

0(M), (6.3)

from which we also have
∇̂C

X̂C ŶC = (∇̂X̂Ŷ)V for X̂, Ŷ ∈ =1
0(M) (6.4)

[16].

Proposition 6.1 ( [5]). If ∇̂ is the Riemannian connection with respect to Ĝ, ∇̂C is the Riemannian connection of E
with respect to the pseudo-Riemannian metric ĜC .

Similarly the complete lift ∇C of the induced connection ∇ on S is the Riemannian connection with respect to gC .
Denoting by ∇̃ the connection induced on Ẽ from ∇̂C , along Ẽ we have

∇̂C
B̃XC B̃YC = B̃(∇̃XC YC) + NXC YC for X,Y ∈ =1

0(S ), (6.5)

where NXC YC is the normal part of ∇̂C
B̃XC B̃YC . Then we can put

NXC YC = h̃(XC ,YC)NV̄ + k̃(XC ,YC)NC̄ , (6.6)

where h̃ and k̃ are certain tensor fields of type (0, 2) which are called the second fundamental tensor fields with respect
to NV̄ and NC̄ , respectively.
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Proposition 6.2. The connection ∇̃ induced on Ẽ from ∇̂C is the complete lifts of the connection ∇ induced on S from
∇̂. That is to say, ∇̃ is the Riemannian connection of Ẽ with respect to gC satisfying the condition

∇̃XC YC = (∇XY)C for X,Y ∈ =1
0(S ).

Proof. First we shall show
∇̂C

B̃XC B̃YC = (∇̂DXDY)C̄ for X,Y ∈ =1
0(S ). (6.7)

Recalling the definitions of lifts of DX in section 4, we introduce vector fields X̂ and Ŷ coincide respectively with DX
and DY on (U ∩ S )◦. Then we have

∇̂C
B̃XC B̃YC = ∇̂C

(DX)C̄ (DY)C̄ = ]∇̂C
X̂C ŶC = ](∇̂X̂Ŷ)C = (∇̂DXDY)C̄ ,

since ∇̂X̂Ŷ is a vector field on U which coincides with ∇̂DXDY on (U ∩ S )◦. By the same reason we have the following
formulas which will be used in the next section.

∇̂C
B̃XC NC̄ = (∇̂DXN)C̄

for X ∈ =1
0(S ).

∇̂C
B̃XC NV̄ = (∇̂DXN)V̄

(6.8)

Now by virtue of (4.8), (4.9), (5.1), (5.3) and (6.7), we get

∇̂C
B̃XC B̃YC = B̃(∇XY)C + hC(XC ,YC)NV̄ + hV (XC ,YC)NC̄ . (6.9)

On the other hand by (6.5) and (6.6) we have

∇̂C
B̃XC B̃YC = B̃(∇̃XC YC) + h̃(XC ,Yc)NV̄ + k̃(XC ,Yc)NC̄ . (6.10)

Therefore we obtain
(∇XY)C = ∇̃XC YC .

�

Remark 6.3. It is known that if R̂ is the curvature tensor field of ∇̂, then R̂C is the curvature tensor field of ∇̂C ( [5]).
Similarly, the complete lift of the curvature tensor field of ∇C . Therefore from this Proposition, the curvature tensor R̃
of ∇̃ (= ∇C) is the complete lift of the curvature tensor field of ∇.

Moreover from (6.9) and (6.10) we have

Proposition 6.4. The complete and vertical lifts of the second fundamental tensor field of S are the second fundamental
tensor fields with respect to NV̄ and NC̄ , respectively.

Ẽ is said to be totally umbilic if and only if at each point of Ẽ, there exists differentiable functions λ and µ such

hV (X̃, Ỹ) = λg̃(X̃, Ỹ) hC(X̃, Ỹ) = µg̃(X̃, Ỹ)

for any X̃, Ỹ ∈ =1
0(Ẽ). Then we find

λ = 1
m+n−2 TraceHV = 0

µ = 1
m+n−2 TraceHC

(6.11)

in terms of local coordinates. If both λ and µ vanish, Ẽ is said to be totally geodesic. The main curvature vector field
M̃ of Ẽ is defined by

M̃ = λNV̄ + µNC̄ ,
which is independent of the basis chosen in the space normal to Ẽ. The mean curvature m̃ of Ẽ in E is defined to be
the magnitude of the mean curvature vector field, (i.e. m̃ = ĜC(M̃, M̃)).

Proposition 6.5. If Ẽ is totally umbilic, then S is totally geodesic. Ẽ is totally geodesic if and only if S is totally
geodesic in M.

Proof. If we assume that Ẽ is totally umbilic, then the second fundamental tensor of S always vanishes, because
TracehV is zero. Conversely, if S is totally geodesic, Ẽ is also totally geodesic from Proposition 6.4. �

Proposition 6.6. The mean curvature of Ẽ vanishes.
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Proof. If we denote the mean curvature by m̃, by the virtue of (6.1) we have

m̃ = ĜC(M̃, M̃) = 2λµ, (m + n − 2)λ = TraceHV , (m + n − 2)µ = TraceHC .

Now from (6.11), we have Proposition 6.6. �

7. The Structure Equation of Ẽ

In this section we shall investigate the equations of Gauss and Weingarten and the structure equations (i.e., the
equations of Gauss, Codazzi and Ricci) on Ẽ in E. These are written in the following form.

∇̂C
B̃XC NV̄ = −B̃HV XC

for X ∈ =1
0(S ),

∇̂C
B̃XC NC̄ = −B̃HC XC

(7.1)

g̃(R̃(XC ,YC)ZC ,WC) = ĜC(R̂C(B̃XC , B̃YC)B̃ZC , B̃WC)
+g̃((HC XC)hV (YC ,ZC) + (HV XC)hC(YC ,ZC) (7.2)
−(HCYC)hV (XC ,ZC) − (HVYC)hC(XC ,ZC),WC)

where R̃ is the Riemannian curvature tensor field of ∇C on Ẽ.

R̂C(B̃XC , B̃YC)NV̄ = B̃(∇C
XC HVYC − ∇C

YC HV XC),
R̂C(B̃XC , B̃YC)NC̄ = B̃(∇C

XC HCYC − ∇C
YC HC XC),

R̂C(NV̄ ,NC̄)B̃XC = 0.
(7.3)

Proof. By virtue of (3.3), (4.8), (5.4) and (6.8), (7.1) is reduced to

∇̂C
B̃XC NV̄ = (∇̂DXN)V̄ = −(DHX)V̄ = −B̃(HX)V = −B̃HV XC ,

and

∇̂C
B̃XC NC̄ = (∇̂DXN)C̄ = −(DHX)C̄ = −B̃(HX)C = −B̃HC XC .

Next as for (7.2), we first note that R̃ is the complete lift of R, then we find

R̃(XC ,YC)ZC = RC(XC ,YC)ZC for X,Y ∈ =1
0(S )

because of Remark 6.3.
We shall drive the formulas for the later use

RC(XC ,YC)ZC = (R(X,Y)Z)C ,

R̂C(B̃XC , B̃YC)B̃ZC = (R̂(DX,DY)DZ)C̄ ,

R̂C(B̃XC , B̃YC)NV̄ = (R̂(DX,DY)N)V̄ , (7.4)

R̂C(B̃XC , B̃YC)NC̄ = (R̂(DX,DY)N)C̄ ,

R̂C(NV̄ ,NC̄)B̃XC = (R̂(N,N)DX)V̄ = 0.

In fact, from (3.3) and (6.3) we have,

RC(XC ,YC)ZC = ∇C
XC∇

C
YC ZC − ∇C

YC∇
C
XC ZC − ∇C

[XC ,YC]ZC

= ∇C
XC (∇YZ)C − ∇C

YC (∇XZ)C − ∇C
[X,Y]C ZC

= (∇X∇YZ)C − (∇Y∇XZ)C − (∇[X,Y]Z)C

= (R(X,Y)Z)C .

By making use of (6.6) and (6.7), the others are also obtained.
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Now we have

g̃(R̃(XC ,YC)ZC ,WC) = g̃(R(XC ,YC)ZC ,WC) = g̃((R(X,Y)Z)C ,WC)

= ĜC((R̂(DX,DY)DZ)C̄ , (DW)C̄)
+g̃(((HX)h(Y,Z) − (HY)h(X,Z))C ,WC)

= ĜC(R̂C(B̃XC , B̃YC)B̃ZC , B̃WC)
+g̃((HC XC)hV (YC ,ZC) + (HV XC)hC(YC ,ZC)
−(HCYC)hV (XC ,ZC) − (HVYC)hC(XC ,ZC),WC)

from (5.4).
As for (7.3), by making use of the equations of Codazzi and Ricci (5.5), (5.6) and (7.4), we have

R̂C(B̃XC , B̃YC)NV̄ = (R̂(DX,DY)N)V̄

= (D(∇XHY − ∇Y HX))V̄

= B̃(∇XHY − ∇Y HX)V

= B̃(∇C
XC HVYC − ∇C

YC HV XC)

R̂C(B̃XC , B̃YC)NC̄ = (R̂(DX,DY)N)C̄

= (D(∇XHY − ∇Y HX))C̄

= B̃(∇XHY − ∇Y HX)C

= B̃(∇C
XC HCYC − ∇C

YC HC XC)

and
R̂C(NV̄ ,NC̄)B̃XC = 0.

�

Thus we have (7.1), (7.2) and (7.3), which are the equations of Weingarten, Gauss and Codazzi and Ricci on Ẽ in
E, respectively.
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[11] Özkan, M., Taylan, E., Çıtlak, A. A., On lifts of silver structure, Journal of Science and Arts, 2(39)(2017), 223–234. 1
[12] Poor, W.A., Differential Geometric Structures, McGraw-Hill, New York, 1981. 1
[13] Saunders, D.J., The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989. 2
[14] Tani, M., Prolongations of hypersurfaces to tangent bundles, Kodai Math. Semp. Rep., 21(1969), 85–96. 1, 2
[15] Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973. 2
[16] Yıldırım, M., Esin, E., Vertical and complete lifts to vector bundle, Algebras Groups Geom., 24(1)(2007), 75–84. 1, 2, 3, 6


	Prolongations of Hypersurfaces to Vector Bundles. By 

