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 ABSTRACT 

This study aims to compare Particle Swarm Optimization (PSO) and Differential Evolution (DE) methods for various input 

parameters. Both optimization methods show high performance in optimization of any physical system including simple and 

complex constraints and objectives. Average and standard values of both methods were evaluated by utilizing 8 benchmark 

functions and a graphical representation and comparison of corresponding methods was presented for 50x50 and 100x100 

population sizes and dimensionalities. It is concluded that DE and PSO show the best fitness value for Sum of Different Powers 

benchmark function for both number of populations. Approach to the optimum is found to be faster through the PSO method. Both 

methods are flexible to be used for simple and complex engineering problems with high performances with ease of programming. 

Keywords : Particle swarm, differential evolution, optimization, benchmark function. 

Parçacık Sürüsü ve Diferansiyel Evrim Optimizasyonu 

Algoritmalarının Farklı Ölçü Fonksiyonları 

Kullanılarak Karşılaştırılması 

ÖZ 

Bu çalışma parçacık sürüsü optimizasyonu ve diferansiyel evrim algoritmalarını farklı giriş parametreleri kullanarak karşılaştırmayı 

amaçlamaktadır. Bu iki optimizasyon algoritması basit ve kompleks kısıtlar ve sınırlayıcıları da içine alan herhangi bir fiziksel 

sistemin optimizasyonunda yuksek performans gostermektedirler. Sekiz adet ölçü fonksiyonu kullanılarak iki algoritma için averaj 

ve standart değerler hesaplanmış ve 50x50 ve 100x100 boyutlarında ve uzaylarında ilgili algoritmaların karşılaştırılması 

yapılmıştır. İki algoritma da (Farklı kuvvetlerin toplamı) ölçü fonsiyonunda en iyi değeri göstermektedir. Optimum değere parçacık 

sürüsü optimizasyonu ile daha hızlı ulaşılsa da iki metot da basit ve komplex optmizasyon problemlerinin çözümünde etkin 

performans ve kolay programlanabilirlik avantajları göstermektedir. 

Anahtar kelimeler: Parçacık sürüsü, diferansiyel evrim, optimizasyon, ölçü fonskiyonu.

1. INTRODUCTION 

Optimization’s aim is to determine the best solution to a 

problem under a given set of constraints. Mathematically 

an optimization problem involves a fitness function 

describing the problem, under a set of constraints 

representing the solution space for the problem. Because 

of difficulties in evaluating the first derivatives to locate 

the optima for many rough and discontinuous 

optimization surfaces, several derivative free 

optimization algorithms have emerged [1].  

Holland and his colleagues demonstrated Genetic 

Algorithms (GA) and shown how biological crossovers 

and mutations of chromosomes can be realized in the 

algorithm to improve the quality of the solutions over 

successive iterations [2]. In 1990s Eberhart and Kennedy 

proposed an alternative solution to the non-linear 

optimization problems by considering behaviors of bird 

flocks and called it as Particle Swarm Optimization 

(PSO) [3]. Price and Storn took an attempt to replace 

classical crossover and mutation operators in GA by 

alternative operators and came up with a differential 

operator to handle the problem. The algorithm they 

proposed is called Differential Evolution (DE) [4]. Many 

application of these algorithms for engineering systems 

are performed. Some recent studies based on these 

algorithms can be found elsewehere [5-7]. An aircooling 

systems optimization is performed by [5], where it is 

concluded that both PSO and DE algorithms shows 

higher performance than that of Lagrangian methodology 

(LM) for a simple optimization problem. Comparative 

evaluation of both optimization methodologies are also 

discussed in [6], and [7]. 
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PSO and DE algorithms do not require gradient 

information for the function to be optimized and 

conceptually simple. These algorithms can be 

implemented in all programming languages and require 

minimum parameter tuning. In this work, MATLAB is 

used as computer language for both parameters and a 

detailed analysis of algorithms for various benchmark 

functions are represented [8]. A brief information for the 

corresponding algorithms and benchmark functions are 

given in next section. 

 

2. EXPLANATION OF ALGORITHMS 

In this section, a brief explanation for DE and PSO is done 

and benchmark functions which are going to be used for 

testing these optimization methods are shown with their 

features. 

A. Differential evolution 

Differential evolution is a method that optimizes a 

problem by iteratively trying to improve a candidate 

solution with regard to a given measure of quality. Such 

methods are commonly known as metaheuristics as they 

make few or no assumptions about the problem being 

optimized and can search very large spaces of candidate 

solutions. However, metaheuristics such as DE do not 

guarantee an optimal solution is ever found [9]. 

DE optimizes a problem by maintaining a population of 

candidate solutions and creating new candidate solutions 

by combining existing ones according to its simple 

formulae, and then keeping whichever candidate solution 

has the best score or fitness on the optimization problem 

at hand. In this way the optimization problem is treated 

as a black box that merely provides a measure of quality 

given a candidate solution and the gradient is therefore 

not needed [10]. Stages of differential evolution are 

briefly given below: 

 Initialization 

 Fitness evaluation 

 Mutation 

 Crossover 

 Selection 

Procedure of the DE algorithm is given as follows [1]: 

Input: Randomly initialized position and velocity of the 

particle xi(0) 

Output: Position of the approximate global optima X* 

Begin 

 Initialize population 

 Evaluate fitness 

 For i=0 to max iteration do 

Begin 

Create difference-offspring; 

Evaluate fitness 

If an offspring is better than its parent 

Then replace the parent by offspring in the next 

generation; 

End If; 

      End for; 

End 

B. Particle swarm optimization 

Particle swarm optimization is a stochastic population-

based metaheuristic inspired from swarm intelligence. It 

mimics the social behavior of natural organisms such as 

bird flocking and fish schooling to find a place with 

enough food. Indeed, in some swarms, a coordinated 

behavior using local movements emerges without any 

central control. Originally, PSO has been successfully 

designed for continuous optimization problems. A 

template of the particle swarm optimization algorithm is 

as follows [10,11]: 

Random initialization of the whole swarm 

Repeat 

 Evaluate f(xi); 

 For all particles I 

  Update velocities (vi); 

  Move to new position 

 If  f(xi)<f(pbesti) Then pbesti = xi; 

 If  f(xi)<f(gbest) Then pbest = xi; 

 Update (xi,vi) 

End For 

Until stopping Criteria 

C. Parameter settings 

Input parameters for testing DE and PSO are given in 

Table 1. Np is the population size, used for both algorithms 

and the dimensionality of the problem n is taken to be 

equal to the size of the population. F and Cr are mutation 

constant and crossover rate for DE, respectively. C1 and 

C2 represents learning factors for PSO and taken to be 

equal. NFC is maximum number of function calls for both 

algorithms. Number of runs per algorithm per function is 

taken as 30 and applied to both algorithms. 

Table 1. Input Parameters 

Algorith

m 
Np=n F C1=C2 Cr NFC 

DE 50,100 0.5 - 0.9 5000*n 

PSO 50,100 - 2 - 5000*n 

D. Benchmark functions 

In the field of evolutionary computation, it is common to 

compare different algorithms using a large test set, 

especially when the test involves function optimization. 

However, the effectiveness of an algorithm against 

another algorithm cannot be measured by the number of 

problems that it solves better. The ``no free 

lunch'' theorem shows that, if we compare two searching 

algorithms with all possible functions, the performance of 

any two algorithms will be, on average, the same. Table 2 

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Metaheuristic
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shows the benchmark functions for testing DE and PSO 

with their solution ranges and various features [12]. 

 

 

3. EXPERIMENTAL RESULTS  

The Analysis for both 50 and 100 populations are done 

with MATLAB 7.5.0 programming language on an Intel 

Core (I5) CPU 520 @2.40 GHz 1.17 GHz computer.  

Table 2. Benchmark functions [12] 

Function Definition  Features 

F(1) 

1st De Jong 

0)0,...,0()min(

12.512.5

)(

11

1

2

1








ff

x

xxf

i

n

i

i

 

Unimodal, scalable, convex, easy function 

F(2) 

Axis Parallel Hyper-

Ellipsoid 
0)0,...,0()min(

12.512.5

)(

22

1

2

2








ff

x

ixxf

i

n

i

i

 

Unimodal, Scalable, convex, easy function 

F(3) 

Schwefel’s  Problem 

0)0,...,0()min(

6565

)(

33

2

1 1

3


















 

 

ff

x

xxf

i

n

i

n

j

j

 

Unimodal, Scalable 

F(4) 

Rosenbrock’s Valley 

0)0,...,0()min(

22

])1()(100[)(

44

1

22

14










ff

x

xxxxf

i

n

i

iii

 

Banana function, non-convex, unimodal,  

F(5) 

Rastrigin’s Function 

0)0,...,0()min(

12.512.5

))2cos(10()(

55

1

2

5








ff

x

xxxf

i

n

i

ii 

 

Highly multimodal, location of the minima 

is regularly distributed 

F(6) 

Griewangk’s Function 

0)0,...,0()min(

600600

1

cos
4000

)(

66

1 1

2

6















 

 

ff

x

i

xx
xf

i

n

i

n

i

ii

 

Many regularly distributed local minima 

and hard to locate global minimum 

F(7) 

Sum of Different Power 

0)0,...,0()min(

11

)(

77

1

)1(

7










ff

x

xxf

i

n

i

i

i

 

Unimodal, scalable 

F(8) 

Ackley’s Function 

0)0,...,0()min(

3232

20

)2cos(

exp

2.0exp20)(

88

1

1

2

8

























































ff

x

e
n

x

n

x

xf

i

n

i

i

n

i

i



 

 

 



Hasan ÖZCAN  /  POLİTEKNİK  DERGİSİ, Politeknik Dergisi, 2017; 20 (4) : 899-905 

902 

Both DE and PSO codes are integrated in the main 

algorithm while function files for algorithms and 

benchmark functions are coded separately. Figures 1-8 

represent performance values of corresponding 

algorithms for a population size and dimensionality of 50 

for a 50,000 iteration over 30 runs. Every figure shows the 

comparison of algorithms for corresponding benchmark 

function. Figures 9-16 show performance values of DE 

and PSO for the population size and dimensionality of 

100. The elapsed time for 50 and 100 population size is 

around 33 hours and 60 hours respectively.  Since the 3rd 

benchmark function (Schwefel’s Problem) is 

programmed with a for loop, elapsed time for evaluation 

of this function is almost 4 times more than other 

functions’ time consumptions. 

 
Figure 1. Best fitness value so far for both DE and PSO for 

function 1 at Np=50. 

 
Figure 2. Best fitness value so far for both DE and PSO for 

function 2 at Np=50. 

 

 
Figure 3. Best fitness value so far for both DE and PSO for 

function 3 at Np=50. 

 
Figure 4. Best fitness value so far for both DE and PSO 

for function 4 at Np=50. 

 

 
Figure 5. Best fitness value so far for both DE and PSO 

for function 5 at Np=50. 
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Figure 6. Best fitness value so far for both DE and PSO for 

function6 at Np=50. 

 
Figure 7. Best fitness value so far for both DE and PSO for 

function7 at Np=50. 

 
Figure 8. Best fitness value so far for both DE and PSO for 

function8 at Np=50. 

 

After 2000 iterations we could not gain any results 

for DE for function 6, however it has given a very close 

value to zero as 10-15. For almost all functions PSO has 

found an optimal value after just a few iterations and then 

did not change. Figures 8-16 show performance values of 

DE and PSO for the population size and dimensionality of 

100 at 100,000 iteration. If more iteration would be 

implemented to function 3 and 4, better results could be 

obtained but also the time span is significantly increasing. 

Comparison of average and standard values of both 

algorithms are discussed considering tables 3 and 4.  

 
Figure 9. Best fitness value so far for both DE and PSO for 

function 1at Np=100 

 

Figure 10. Best fitness value so far for both DE and PSO for 

function 2 at Np=100 

 
Figure 11. Best fitness value so far for both DE and PSO for 

function 3 at Np=100 

 

It is clearly seen from the last eight figures (Figs 9-

16) that as the the population, dimensionality and iteration 

numbers are increased best fitness value for function 3 
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approaches to the desired value after 75,000 iterations. An 

exact comparison between Np=50 and Np=100 is hard 

because DE and PSO algorithms create random solutions. 

If a new evaluation would be assigned to the same 

software, graphs would not be the same and change as 

these algorithms are based on approximate algorithms and 

initiate randomly. 

 
 
Figure 12. Best fitness value so far for both DE and PSO for 

function 4 at Np=100. 

 
Figure 13. Best fitness value so far for both DE and PSO for 

function 5 at Np=100. 

 
Figure 14. Best fitness value so far for both DE and PSO for 

function 6 at Np=100. 

PSO evaluation stops changing its value after a few 

iterations just like in Np=50 and 50,000 iterations. Best 

average and standard values are obtained from function 7 

and 8. These benchmark functions are proper functions 

for testing both algorithms.  

Average and standard values of best fitness function for 

all functions considered are given in table 1. Best fitness 

values are obtained using functions 1,6,7 and 8 for DE and 

7 for PSO. Benchmark function 7 has shown the best 

performance among other functions for implementation 

of both algorithms. When increasing the run number of 

algorithms, Average and standard values are slightly 

approaching to the desired value. However, as soon as we 

increase the run number, the time span for the solution 

increases. 

 

 
Figure 15. Best fitness value so far for both DE and PSO for 

function 8 at Np=100. 

 

Comparing Np=50 to Np=100, average values for DE 

increase at functions 2, 3, 5 and 7; and decrease at 

functions 1, 4, 6 and 8. Nevertheless standard values 

increase at functions 1,1,2,3,4,5,6 and 8 and decrease at 

function 7. When considering the same changes in PSO, 

average values of PSO increase for all benchmark 

functions and standar deviation decrease for functions 5,6 

and 8. Values of 0 for functions 4 and 7 are due to 

unchanging evaluation of the PSO algorithm. 

Table 3.  Avg. and STD. Values OF DE and PSO for all 

functıons at np=50 

Function

s 

Avg. 

DE 

Std. DE Avg. 

PSO 

Std. 

PSO 

f(1) 0.88 10.85 140.02 1.77 

f(2) 1061.8

4 

12595.1

4 

69464.9

3 

2450.5

4 

f(3) 1825.3

1 

9747.53 58474.3

2 

1021.9

8 

f(4) 114.35 801.11 8438.66 0.00 

f(5) 158.88 605.06 4346.03 83.33 

f(6) 4.62 53.17 345.95 8.58 

f(7) 0.01 0.05 1.11 0.00 

f(8) 0.36 2.12 18.19 0.03 
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Table 4.  Avg. and STD. Values OF DE and PSO for all 

functıons at np=100 

Functio

ns 

Avg. 

DE 

Std. DE Avg. 

PSO 

Std. 

PSO 

f(1) 0.85 19.30 329.88 1.81 

f(2) 1197.6

8 

29694.6

3 

596506.4

4 

2187.51 

f(3) 2611.0

5 

15201.2

9 

194284.2

2 

17139.9

2 

f(4) 67.14 886.58 30392.43 0.00 

f(5) 190.4 717.06 10568.10 55.09 

f(6) 2.60 60.98 849.24 4.17 

f(7) 1.17 0.00 1.56 0.00 

f(8) 0.08 0.99 19.14 0.01 

 

4. CONCLUSIONS 

In this study, a comparison between Differential 

Evolution and Particle Swarm Optimization algorithms 

has been studied for various benchmark functions. 

Following results have been extracted from the analysis: 

 Results approach to the desired value as iteration 

number increases. 

 When the number of population and dimensionality 

increase, process time for the evaluation of both 

algorithms increase as well, however a slight change 

in results has been observed. 

 Best fitness values obtained from PSO algorithm do 

not change after a few iterations for most benchmark 

functions.  

 The best average and standard fitness values have 

been obtained via “Sum of Different Power” test 

function (Function #7). 

It has been concluded that population based 

metaheuristics are promising optimization methods for 

large search spaced optimization problems and can be 

initialized with few input parameters. These algorithms 

can be implemented to various engineering problems 

specifically for complex system optimization with various 

parameters affecting whatsoever parameter under 

consideration. Approach to the optimum is found to be 

faster through the PSO method although both methods are 

flexible to be used for simple and complex engineering 

problems with high performances with ease of 

programming. 
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