

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://www.politeknik.gazi.edu.tr/index.php/PLT/index

Comparison of particle swarm and differential

evolution optimization algorithms considering

various benchmark functions

Parçacık sürüsü ve diferansiyel evrim

optimizasyonu algoritmalarının farklı ölçü

fonksiyonları kullanılarak karşılaştırılması

Yazar(lar) (Author(s)): Hasan OZCAN

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Ozcan H., “Comparison of particle

swarm and differential evolution optimization algorithms considering various benchmark functions”,

Politeknik Dergisi, 20(4): 899-905, (2017).

Erişim linki (To link to this article): http://dergipark.gov.tr/politeknik/archive

DOI: 10.2339/politeknik.369076

http://www.politeknik.gazi.edu.tr/index.php/PLT/index
http://dergipark.gov.tr/politeknik/archive

Politeknik Dergisi, 2017; 20 (4) : 899-905 Journal of Polytechnic, 2017; 20 (4) : 899-905

899

Comparison Of Particle Swarm And Differential

Evolution Optimization Algorithms Considering

Various Benchmark Functions
Araştırma Makalesi / Research Article

Hasan OZCAN

Karabuk Universitesi, Muhendislik Fakultesi, Makine Muhendisligi Bolumu, Demir Celik Kampusu78050 Karabuk, Turkiye

 (Geliş/Received : 02.10.2016 ; Kabul/Accepted : 11.10.2016)

 ABSTRACT

This study aims to compare Particle Swarm Optimization (PSO) and Differential Evolution (DE) methods for various input

parameters. Both optimization methods show high performance in optimization of any physical system including simple and

complex constraints and objectives. Average and standard values of both methods were evaluated by utilizing 8 benchmark

functions and a graphical representation and comparison of corresponding methods was presented for 50x50 and 100x100

population sizes and dimensionalities. It is concluded that DE and PSO show the best fitness value for Sum of Different Powers

benchmark function for both number of populations. Approach to the optimum is found to be faster through the PSO method. Both

methods are flexible to be used for simple and complex engineering problems with high performances with ease of programming.

Keywords : Particle swarm, differential evolution, optimization, benchmark function.

Parçacık Sürüsü ve Diferansiyel Evrim Optimizasyonu

Algoritmalarının Farklı Ölçü Fonksiyonları

Kullanılarak Karşılaştırılması

ÖZ

Bu çalışma parçacık sürüsü optimizasyonu ve diferansiyel evrim algoritmalarını farklı giriş parametreleri kullanarak karşılaştırmayı

amaçlamaktadır. Bu iki optimizasyon algoritması basit ve kompleks kısıtlar ve sınırlayıcıları da içine alan herhangi bir fiziksel

sistemin optimizasyonunda yuksek performans gostermektedirler. Sekiz adet ölçü fonksiyonu kullanılarak iki algoritma için averaj

ve standart değerler hesaplanmış ve 50x50 ve 100x100 boyutlarında ve uzaylarında ilgili algoritmaların karşılaştırılması

yapılmıştır. İki algoritma da (Farklı kuvvetlerin toplamı) ölçü fonsiyonunda en iyi değeri göstermektedir. Optimum değere parçacık

sürüsü optimizasyonu ile daha hızlı ulaşılsa da iki metot da basit ve komplex optmizasyon problemlerinin çözümünde etkin

performans ve kolay programlanabilirlik avantajları göstermektedir.

Anahtar kelimeler: Parçacık sürüsü, diferansiyel evrim, optimizasyon, ölçü fonskiyonu.

1. INTRODUCTION

Optimization’s aim is to determine the best solution to a

problem under a given set of constraints. Mathematically

an optimization problem involves a fitness function

describing the problem, under a set of constraints

representing the solution space for the problem. Because

of difficulties in evaluating the first derivatives to locate

the optima for many rough and discontinuous

optimization surfaces, several derivative free

optimization algorithms have emerged [1].

Holland and his colleagues demonstrated Genetic

Algorithms (GA) and shown how biological crossovers

and mutations of chromosomes can be realized in the

algorithm to improve the quality of the solutions over

successive iterations [2]. In 1990s Eberhart and Kennedy

proposed an alternative solution to the non-linear

optimization problems by considering behaviors of bird

flocks and called it as Particle Swarm Optimization

(PSO) [3]. Price and Storn took an attempt to replace

classical crossover and mutation operators in GA by

alternative operators and came up with a differential

operator to handle the problem. The algorithm they

proposed is called Differential Evolution (DE) [4]. Many

application of these algorithms for engineering systems

are performed. Some recent studies based on these

algorithms can be found elsewehere [5-7]. An aircooling

systems optimization is performed by [5], where it is

concluded that both PSO and DE algorithms shows

higher performance than that of Lagrangian methodology

(LM) for a simple optimization problem. Comparative

evaluation of both optimization methodologies are also

discussed in [6], and [7].

*Sorumlu Yazar (Corresponding Author)

e-posta : hasanozcan@karabuk.edu.tr

Hasan ÖZCAN / POLİTEKNİK DERGİSİ, Politeknik Dergisi, 2017; 20 (4) : 899-905

900

PSO and DE algorithms do not require gradient

information for the function to be optimized and

conceptually simple. These algorithms can be

implemented in all programming languages and require

minimum parameter tuning. In this work, MATLAB is

used as computer language for both parameters and a

detailed analysis of algorithms for various benchmark

functions are represented [8]. A brief information for the

corresponding algorithms and benchmark functions are

given in next section.

2. EXPLANATION OF ALGORITHMS

In this section, a brief explanation for DE and PSO is done

and benchmark functions which are going to be used for

testing these optimization methods are shown with their

features.

A. Differential evolution

Differential evolution is a method that optimizes a

problem by iteratively trying to improve a candidate

solution with regard to a given measure of quality. Such

methods are commonly known as metaheuristics as they

make few or no assumptions about the problem being

optimized and can search very large spaces of candidate

solutions. However, metaheuristics such as DE do not

guarantee an optimal solution is ever found [9].

DE optimizes a problem by maintaining a population of

candidate solutions and creating new candidate solutions

by combining existing ones according to its simple

formulae, and then keeping whichever candidate solution

has the best score or fitness on the optimization problem

at hand. In this way the optimization problem is treated

as a black box that merely provides a measure of quality

given a candidate solution and the gradient is therefore

not needed [10]. Stages of differential evolution are

briefly given below:

 Initialization

 Fitness evaluation

 Mutation

 Crossover

 Selection

Procedure of the DE algorithm is given as follows [1]:

Input: Randomly initialized position and velocity of the

particle xi(0)

Output: Position of the approximate global optima X*

Begin

 Initialize population

 Evaluate fitness

 For i=0 to max iteration do

Begin

Create difference-offspring;

Evaluate fitness

If an offspring is better than its parent

Then replace the parent by offspring in the next

generation;

End If;

 End for;

End

B. Particle swarm optimization

Particle swarm optimization is a stochastic population-

based metaheuristic inspired from swarm intelligence. It

mimics the social behavior of natural organisms such as

bird flocking and fish schooling to find a place with

enough food. Indeed, in some swarms, a coordinated

behavior using local movements emerges without any

central control. Originally, PSO has been successfully

designed for continuous optimization problems. A

template of the particle swarm optimization algorithm is

as follows [10,11]:

Random initialization of the whole swarm

Repeat

 Evaluate f(xi);

 For all particles I

 Update velocities (vi);

 Move to new position

 If f(xi)<f(pbesti) Then pbesti = xi;

 If f(xi)<f(gbest) Then pbest = xi;

 Update (xi,vi)

End For

Until stopping Criteria

C. Parameter settings

Input parameters for testing DE and PSO are given in

Table 1. Np is the population size, used for both algorithms

and the dimensionality of the problem n is taken to be

equal to the size of the population. F and Cr are mutation

constant and crossover rate for DE, respectively. C1 and

C2 represents learning factors for PSO and taken to be

equal. NFC is maximum number of function calls for both

algorithms. Number of runs per algorithm per function is

taken as 30 and applied to both algorithms.

Table 1. Input Parameters

Algorith

m
Np=n F C1=C2 Cr NFC

DE 50,100 0.5 - 0.9 5000*n

PSO 50,100 - 2 - 5000*n

D. Benchmark functions

In the field of evolutionary computation, it is common to

compare different algorithms using a large test set,

especially when the test involves function optimization.

However, the effectiveness of an algorithm against

another algorithm cannot be measured by the number of

problems that it solves better. The ``no free

lunch'' theorem shows that, if we compare two searching

algorithms with all possible functions, the performance of

any two algorithms will be, on average, the same. Table 2

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Metaheuristic

 COMPARISON OF PARTICLE SWARM AND DIFFERENTIAL EVOLUTION OPTIMIZATION… Politeknik Dergisi, 2017; 20 (4) : 899-905

901

shows the benchmark functions for testing DE and PSO

with their solution ranges and various features [12].

3. EXPERIMENTAL RESULTS

The Analysis for both 50 and 100 populations are done

with MATLAB 7.5.0 programming language on an Intel

Core (I5) CPU 520 @2.40 GHz 1.17 GHz computer.

Table 2. Benchmark functions [12]

Function Definition Features

F(1)

1st De Jong

0)0,...,0()min(

12.512.5

)(

11

1

2

1








ff

x

xxf

i

n

i

i

Unimodal, scalable, convex, easy function

F(2)

Axis Parallel Hyper-

Ellipsoid
0)0,...,0()min(

12.512.5

)(

22

1

2

2








ff

x

ixxf

i

n

i

i

Unimodal, Scalable, convex, easy function

F(3)

Schwefel’s Problem

0)0,...,0()min(

6565

)(

33

2

1 1

3


















 

 

ff

x

xxf

i

n

i

n

j

j

Unimodal, Scalable

F(4)

Rosenbrock’s Valley

0)0,...,0()min(

22

])1()(100[)(

44

1

22

14










ff

x

xxxxf

i

n

i

iii

Banana function, non-convex, unimodal,

F(5)

Rastrigin’s Function

0)0,...,0()min(

12.512.5

))2cos(10()(

55

1

2

5








ff

x

xxxf

i

n

i

ii 

Highly multimodal, location of the minima

is regularly distributed

F(6)

Griewangk’s Function

0)0,...,0()min(

600600

1

cos
4000

)(

66

1 1

2

6















 

 

ff

x

i

xx
xf

i

n

i

n

i

ii

Many regularly distributed local minima

and hard to locate global minimum

F(7)

Sum of Different Power

0)0,...,0()min(

11

)(

77

1

)1(

7










ff

x

xxf

i

n

i

i

i

Unimodal, scalable

F(8)

Ackley’s Function

0)0,...,0()min(

3232

20

)2cos(

exp

2.0exp20)(

88

1

1

2

8

























































ff

x

e
n

x

n

x

xf

i

n

i

i

n

i

i



Hasan ÖZCAN / POLİTEKNİK DERGİSİ, Politeknik Dergisi, 2017; 20 (4) : 899-905

902

Both DE and PSO codes are integrated in the main

algorithm while function files for algorithms and

benchmark functions are coded separately. Figures 1-8

represent performance values of corresponding

algorithms for a population size and dimensionality of 50

for a 50,000 iteration over 30 runs. Every figure shows the

comparison of algorithms for corresponding benchmark

function. Figures 9-16 show performance values of DE

and PSO for the population size and dimensionality of

100. The elapsed time for 50 and 100 population size is

around 33 hours and 60 hours respectively. Since the 3rd

benchmark function (Schwefel’s Problem) is

programmed with a for loop, elapsed time for evaluation

of this function is almost 4 times more than other

functions’ time consumptions.

Figure 1. Best fitness value so far for both DE and PSO for

function 1 at Np=50.

Figure 2. Best fitness value so far for both DE and PSO for

function 2 at Np=50.

Figure 3. Best fitness value so far for both DE and PSO for

function 3 at Np=50.

Figure 4. Best fitness value so far for both DE and PSO

for function 4 at Np=50.

Figure 5. Best fitness value so far for both DE and PSO

for function 5 at Np=50.

 COMPARISON OF PARTICLE SWARM AND DIFFERENTIAL EVOLUTION OPTIMIZATION… Politeknik Dergisi, 2017; 20 (4) : 899-905

903

Figure 6. Best fitness value so far for both DE and PSO for

function6 at Np=50.

Figure 7. Best fitness value so far for both DE and PSO for

function7 at Np=50.

Figure 8. Best fitness value so far for both DE and PSO for

function8 at Np=50.

After 2000 iterations we could not gain any results

for DE for function 6, however it has given a very close

value to zero as 10-15. For almost all functions PSO has

found an optimal value after just a few iterations and then

did not change. Figures 8-16 show performance values of

DE and PSO for the population size and dimensionality of

100 at 100,000 iteration. If more iteration would be

implemented to function 3 and 4, better results could be

obtained but also the time span is significantly increasing.

Comparison of average and standard values of both

algorithms are discussed considering tables 3 and 4.

Figure 9. Best fitness value so far for both DE and PSO for

function 1at Np=100

Figure 10. Best fitness value so far for both DE and PSO for

function 2 at Np=100

Figure 11. Best fitness value so far for both DE and PSO for

function 3 at Np=100

It is clearly seen from the last eight figures (Figs 9-

16) that as the the population, dimensionality and iteration

numbers are increased best fitness value for function 3

Hasan ÖZCAN / POLİTEKNİK DERGİSİ, Politeknik Dergisi, 2017; 20 (4) : 899-905

904

approaches to the desired value after 75,000 iterations. An

exact comparison between Np=50 and Np=100 is hard

because DE and PSO algorithms create random solutions.

If a new evaluation would be assigned to the same

software, graphs would not be the same and change as

these algorithms are based on approximate algorithms and

initiate randomly.

Figure 12. Best fitness value so far for both DE and PSO for

function 4 at Np=100.

Figure 13. Best fitness value so far for both DE and PSO for

function 5 at Np=100.

Figure 14. Best fitness value so far for both DE and PSO for

function 6 at Np=100.

PSO evaluation stops changing its value after a few

iterations just like in Np=50 and 50,000 iterations. Best

average and standard values are obtained from function 7

and 8. These benchmark functions are proper functions

for testing both algorithms.

Average and standard values of best fitness function for

all functions considered are given in table 1. Best fitness

values are obtained using functions 1,6,7 and 8 for DE and

7 for PSO. Benchmark function 7 has shown the best

performance among other functions for implementation

of both algorithms. When increasing the run number of

algorithms, Average and standard values are slightly

approaching to the desired value. However, as soon as we

increase the run number, the time span for the solution

increases.

Figure 15. Best fitness value so far for both DE and PSO for

function 8 at Np=100.

Comparing Np=50 to Np=100, average values for DE

increase at functions 2, 3, 5 and 7; and decrease at

functions 1, 4, 6 and 8. Nevertheless standard values

increase at functions 1,1,2,3,4,5,6 and 8 and decrease at

function 7. When considering the same changes in PSO,

average values of PSO increase for all benchmark

functions and standar deviation decrease for functions 5,6

and 8. Values of 0 for functions 4 and 7 are due to

unchanging evaluation of the PSO algorithm.

Table 3. Avg. and STD. Values OF DE and PSO for all

functıons at np=50

Function

s

Avg.

DE

Std. DE Avg.

PSO

Std.

PSO

f(1) 0.88 10.85 140.02 1.77

f(2) 1061.8

4

12595.1

4

69464.9

3

2450.5

4

f(3) 1825.3

1

9747.53 58474.3

2

1021.9

8

f(4) 114.35 801.11 8438.66 0.00

f(5) 158.88 605.06 4346.03 83.33

f(6) 4.62 53.17 345.95 8.58

f(7) 0.01 0.05 1.11 0.00

f(8) 0.36 2.12 18.19 0.03

 COMPARISON OF PARTICLE SWARM AND DIFFERENTIAL EVOLUTION OPTIMIZATION… Politeknik Dergisi, 2017; 20 (4) : 899-905

905

Table 4. Avg. and STD. Values OF DE and PSO for all

functıons at np=100

Functio

ns

Avg.

DE

Std. DE Avg.

PSO

Std.

PSO

f(1) 0.85 19.30 329.88 1.81

f(2) 1197.6

8

29694.6

3

596506.4

4

2187.51

f(3) 2611.0

5

15201.2

9

194284.2

2

17139.9

2

f(4) 67.14 886.58 30392.43 0.00

f(5) 190.4 717.06 10568.10 55.09

f(6) 2.60 60.98 849.24 4.17

f(7) 1.17 0.00 1.56 0.00

f(8) 0.08 0.99 19.14 0.01

4. CONCLUSIONS

In this study, a comparison between Differential

Evolution and Particle Swarm Optimization algorithms

has been studied for various benchmark functions.

Following results have been extracted from the analysis:

 Results approach to the desired value as iteration

number increases.

 When the number of population and dimensionality

increase, process time for the evaluation of both

algorithms increase as well, however a slight change

in results has been observed.

 Best fitness values obtained from PSO algorithm do

not change after a few iterations for most benchmark

functions.

 The best average and standard fitness values have

been obtained via “Sum of Different Power” test

function (Function #7).

It has been concluded that population based

metaheuristics are promising optimization methods for

large search spaced optimization problems and can be

initialized with few input parameters. These algorithms

can be implemented to various engineering problems

specifically for complex system optimization with various

parameters affecting whatsoever parameter under

consideration. Approach to the optimum is found to be

faster through the PSO method although both methods are

flexible to be used for simple and complex engineering

problems with high performances with ease of

programming.

REFERENCES

1) Das S., Abraham A. and Konar A., “Particle swarm

optimization and differential evolution algorithms:

technical analysis, applications and hybridization

perspectives”, Studies in Computational Intelligence,

116: 1-38, (2008).

2) Holland J.H., “Adaptation in natural and artificial

systems”, University of Michigan Press, Ann Arbor,

(1975).

3) Kennedy J.and Elbehart R, “Particle swarm optimization”

in proceedings of IEEE International Conference on

Neural Networks, 1942-1948, (1995).

4) Storn R.,and Price K., “Differential evolution – a simple

and efficient heuristic for global optimization over

continuous spaces”, Journal of Global Optimization,

11(4): 341-359, (1997).

5) Ozcan H., Ozdemir K. and Ciloglu H., “Optimum cost of

an air cooling system by using differential evolution and

particle swarm algorithms”,.Energy and

Buildings, 65:93-100, (2013).

6) Zhang F., Deb C., Lee S.E., Yang J. and Shah K.W., “Time

series forecasting for building energy consumption using

weighted Support Vector Regression with differential

evolution optimization technique”, Energy and

Buildings, 126: 94-103, (2016).

7) Dezelak K., Bracinik P., Höger M. and Otcenasova A.,

“Comparison between the particle swarm optimisation

and differential evolution approaches for the optimal

proportional–integral controllers design during

photovoltaic power plants modelling”, IET Renewable

Power Generation,10(4): 522-530, (2016).

8) MATLAB Version 7.5.0, The Mathworks Inc., 2007.

9) Price K., Storn R.M. and Lampinen J.A., “Differential

evolution: a practical approach to global optimization”.

Springer, London, (2005).

10) Talbi E.G., “Metaheuristics: from design to

implementation”, John Wiley & Sons, Newyork, (2009).

11) Kennedy J., Elbehart R., “Swarm intelligence”, Morgan

Kaufmann, San Francisco, (2001).

12) Internet Source: http://www.cs.cmu.edu/afs/cs/project

/jair/pub/ volume 24/ ortiz boyer 05a-html/node6.html,

accessed on May 2016.

http://www.springer.com/computer/theoretical+computer+science/foundations+of+computations/book/978-3-540-20950-8
http://www.springer.com/computer/theoretical+computer+science/foundations+of+computations/book/978-3-540-20950-8
http://www.cs.cmu.edu/afs/cs/project%20/jair/pub/%20volume%2024/%20ortiz%20boyer%2005a-html/node6.html
http://www.cs.cmu.edu/afs/cs/project%20/jair/pub/%20volume%2024/%20ortiz%20boyer%2005a-html/node6.html

