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Abstract 

The criticality calculations for one-speed neutrons in a finite homogenous slab are 

done using the conventional Henyey-Greenstein (HG) phase function in transport 

theory. After defining the phase function in transport equation, the neutron angular flux 

is expanded in terms of the Chebyshev polynomials of second kind (UN method). Then, 

the critical half-thicknesses of the slab are calculated for various values of the scattering 

parameters. The numerical results obtained from the present method are given in the 

tables together with the ones obtained using an alternative phase function (Anlı-Güngör, 

AG) for comparison. 

Keywords: Henyey-Greenstein Function, Critical Slab, UN Method, Transport 

Equation. 
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yapılmıştır. Transport denkleminde faz fonksiyonu tanımlandıktan sonra, açısal nötron 

akısı ikinci tip Chebyshev polinomları cinsinden seriye açılmıştır (UN metodu). Daha 

sonra, saçılma parametrelerinin farklı değerleri için dilimin yarı-kalınlıkları 

hesaplanmıştır. Mevcut metotla elde edilen nümerik sonuçlar, alternatif faz fonksiyonu 

(Anlı-Güngör, AG) kullanılarak elde edilen sonuçlar ile karşılaştırma yapmak için 

tablolarda verilmiştir. 

Anahtar Kelimeler: Henyey-Greenstein Fonksiyonu, Kritik Dilim, UN Metodu, 

Transport Denklemi. 

 

1. Introduction 

The particle or Boltzmann transport equation explains the interactions and the 

conservation of the number of neutrons in a system. It is important to know the types of 

interactions and then the number of neutrons in a fission reactor to continue the fission 

chain reaction and to control that reactor. Therefore, the investigation of the criticality 

of a reactor is one of the main problems of neutron transport theory. 

There are many methods for the solution of the transport equation in literature. 

Among them, the discrete ordinates and the polynomials expansion based techniques 

are most common and powerful ones [1-4]. However in some cases, an approximation 

related with the scattering function or the neutron angular flux can take the problem 

away from the realism. Therefore, exact scattering models are preferred to use in 

scattering function in order to approach the real system better [1,2]. 

One of the first attempts developed for the scattering function even for particles or 

waves belongs to Henyey and Greenstein (HG) [5]. This HG phase function was used in 

radiative transfer equation in their studies and then this function was used in other 

studies by the researchers [6-8]. 

In this paper, the conventional HG phase function is used for the scattering 

function in transport equation. Then, the resultant transport equation is solved for the 

criticality problem in slab geometry. The neutron angular flux is expanded in terms of 

the Chebyshev polynomials of second kind (UN method) which was successfully 

applied to the problems of transport theory before [9,10]. After deriving the moment 

equations, the criticality equation is obtained for one-speed neutrons in a finite 
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homogeneous slab of thickness 2a extending from –a to a. Finally, the critical half-

thicknesses of the slab are calculated for certain scattering parameters and various 

collision parameters. The calculated results for the critical half-thicknesses obtained 

from the present method with an increasing order of the UN approximation with the ones 

obtained from the alternative phase function (AG) are listed in the tables for comparison 

[11,12]. 

2. UN Method for the Transport Equation with Henyey-Greenstein Phase 

Function 

 The neutron transport equation for one-speed neutrons in a source free medium 

can be written in conservative form, 

 

( , ) ( , ) ( , ) ( ) dT Sr r r    


     
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Ω Ω Ω Ω Ω Ω Ω ,  (1) 

 

where  is the unit vector of neutron velocity before (and  after) a scattering 

collision, c is the cross-section parameter; number of secondary neutrons per collision 

and T is the total macroscopic cross-section. (r,) is the neutron angular flux at 

position r in direction  and )(  S  is the scattering function [1]. 

In this work, the neutron angular flux is expanded in terms of the Chebyshev 

polynomials of second kind and the HG phase function is used as a scattering function 

in one-speed transport equation to calculate the critical half-thickness of the 

homogeneous slab for various values of the scattering parameters. 

The HG phase function can be written as [5], 
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where S is any non-negative coefficient, t is the parameter representing all kind of 

scattering (forward, backward and anisotropic, etc.) in the range of 11  t , and 

 0  is the cosine of the scattering angel [5], 
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0   .    (3) 

 

As an indicator of the UN method, neutron angular flux is expanded in terms of 

the Chebyshev polynomials of second kind [9,10], 
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The steady state transport form of Eq. (1) for one-dimensional case can be 

written when Eq. (2) is inserted on the right hand side of Eq. (1), 
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subject to free space boundary and symmetry conditions: 
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By means of the addition theorem of the Legendre polynomials (Pn()), the 

integrand on the right hand side of Eq. (5) over d  can be obtained as [13], 
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Then, one-dimensional transport equation can be written using Eq. (7) in Eq. (5), 
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where /S Tc   , the number of secondary neutrons per collision. A dimensionless 

space variable such that Tx/  x is defined in order to simplify the derivation of the 

equations and  is the eigenvalues. 

In solution procedure of the method, the orthogonality and the recurrence 

relations of the Chebyshev polynomials of second kind are needed and thus they are 

given as respectively [14], 
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Then, the neutron angular flux ),(  x  given in Eq. (4) is inserted into Eq. (8), and then 

the resulting equation is multiplied by Um() and integrated over the definition of the  

 (1,1). A general expression for the UN moments of the angular flux could not be 

obtained in this study, but instead individual expressions as an example for n = 0,1,2 

can be written as, 
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where 1(x) = 0. When a well-known solution of the form [1], 
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is used in Eq. (11), analytic expressions for all An()’s can be obtained as follows, 
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where A1(,t) = 0 and A0(,t) = 1. In order to simplify the solutions in the case of 

higher order approximations, Eq. (13) can also be written in a matrix form, 
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where M() is the (N + 1)  (N + 1) coefficient matrix and A(,t) = [A0, A1,…,AN]T. One 

can obtain non-trivial solutions for the discrete eigenvalues by equating the determinant 

of the coefficient matrix to zero, i.e. det[M()] = 0. 

In UN method, as in traditional Legendre polynomials approximation (PN 

method), the discrete and continuum eigenvalues can be obtained by setting AN+1(,t) = 

0 for various values of c and t. As an example for U1 approximation, the coupled 

equations (13a and b) are solved together and an analytic expression for the eigenvalues 

are derived by setting A2(,t) = 0 in these equations, 
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In a similar manner, the determinant of a 22 matrix is equated to zero and then 

one can obtain the same result as in Eq. (15). 

After the discrete eigenvalues k for k = 1,…,N + 1 are computed, the general 

solution of the flux moments for odd numbers of N, i.e. Eq. (12) can be written as, 
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where the coefficients k can be determined from the physical boundary conditions of 

the system, and the parity relation of An(,t) = (1)n An(,t) is used. Eq. (16) can be 

interpreted as the summation of eigenvectors corresponding to each eigenvalues and it 

can also be represented as a general solution of the problem. 

 

3. Boundary Conditions and the Criticality Problem 

Determination of the eigenvalues is accepted to be equal to the problem of 

critical size of the system under consideration in neutron transport theory. Therefore, it 

is important to compute the eigenvalues and then the corresponding eigenfunctions in 

the problems of neutron transport. 

Although the PN approximation is one of the most powerful and the common 

methods used in the solution of the problems of photon and particle transport, it is a 

rather poor representation of the angular flux near material boundaries in slab 

geometries. Mark and Marshak vacuum boundary conditions are frequently used for the 

criticality problems. However, the Marshak boundary condition which is based on the 

condition of zero incoming current at the vacuum boundary is somewhat more accurate 

than the Mark condition, at least for small N [3,15]. Therefore in this study, the Marshak 

boundary condition is preferred for the calculation of the critical half-thickness of the 

slab. It can be written for UN approximation of odd order, 
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First Eq. (16) is inserted into Eq. (4) and then the resulting equation of angular flux is 

written in Eq. (17) with the parity relation of the Chebyshev polynomials of second kind 

Uk() = (1)kUk(), one can obtain the criticality condition, 
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where In,k is given by, 
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Eq. (18) can also be written in a matrix notation, 
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where k is the column vector with elements of 1 2 ( 1) / 2, ,...,
T

N      and ( )k
mM a  is the 

coefficient matrix with (N + 1)/2  (N + 1)/2 elements. For a non-trivial solution of Eq. 

(18) or (21), the coefficients k should be nonzero or the determinant of the coefficient 

matrix must vanish, i.e. det ( ) 0k
mM a    . As an example, it is easy to find an analytic 

solution for the critical half-thickness of the slab by setting N = 1 in Eq. (18) or Eq. (21) 

together with the eigenvalues which is already derived for U1 approximation in Eq. (15), 
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4. Numerical Results 

 The UN method, i.e. the expansion of the neutron angular flux in terms of the 

Chebyshev polynomials of second kind, is applied to one-speed neutron transport 

equation for the critical slab problem using the Marshak boundary condition. The 

conventional HG phase function, a direct scattering function instead of an 

approximation, is used as the scattering function presented in transport equation and this 

direct selection and such searches are very important for the accurate solution of the 

transport equation now and later. Various orders of UN approximation are used for the 

numerical solutions of the critical half-thickness of the slab and the results obtained 

from the present method for different values of c and t are tabulated in Tables 1 and 2. 

Additionally, the results obtained from the conventional PN method and the ones 

obtained by Öztürk and Ege are given in the same tables for comparison [12,16]. The 

total macroscopic cross section is taken as to be its normalized value, T = 1 cm1 and 

all computations are carried out using Maple software. 

 In this study, first the HG phase function is used instead of the neutron scattering 

function after taking the transport equation in slab geometry. Then, the neutron angular 

flux is expanded in terms of the Chebyshev polynomials of second kind as successfully 

applied to the problems in transport theory in the last decade [9,10]. And UN moments 

of the angular flux are obtained. A well-known solution of the form of Eq. (12) is 

replaced to moment equations to obtain the discrete eigenvalues by setting AN+1() = 0 

for various values of c and t. Finally, the criticality equation (Eq. (12)) is obtained using 

the Marshak boundary condition. And so the critical half-thicknesses of the slab are 

computed for N = 1, 5 and 9 order approximations for various values of c and t and they 

are given in the tables. 

In Tables 1 and 2, the critical half-thicknesses of the slab are listed for the most 

common values of c = 1.20 and 2.00 with an increasing order of t from 1 to 1. t = 0 

case can be tested as corresponding to isotropic scattering [13]. 
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Table 1. Critical half-thicknesses for c = 1.20 as calculated by various orders of UN approximation 
 

t U1 (cm) U5 (cm) U9 (cm) P9 [11] (cm) Ref. [16] (cm) 
1 0.92676 1.73300 0.93212 0.82263 1.13597 
3/4 0.97796 0.94280 0.94459 0.94540 1.17679 
1/2 1.03956 1.08197 1.08505 1.08574 1.21505 
1/4 1.11584 1.18237 1.18514 1.18579 1.25241 

0 1.21406 1.28759 1.28974 1.29038 1.28974 
1/4 1.34808 1.41343 1.41468 1.41535 1.32763 
1/2 1.54897 1.57200 1.57172 1.57247 1.36662 
3/4 1.91122 1.73388 1.72714 1.72790 1.40719 
1 3.12985 1.17848 0.72137a 0.75727a 1.44965 

aAll eigenvalues of the spectrum are real. 
 

Table 2. Critical half-thicknesses for c = 2.00 as calculated by various orders of UN approximation 
 

t U1 (cm) U5 (cm) U9 (cm) P9 [11] (cm) Ref. [16] (cm) 
1 0.28103 0.52410 0.24435 0.25514 0.27071 
3/4 0.29423 0.21418 0.19727 0.19904 0.28734 
1/2 0.30979 0.26806 0.26085 0.26240 0.29832 
1/4 0.32856 0.29758 0.29236 0.29378 0.30651 

0 0.35191 0.31826 0.31294 0.31418 0.31294 
1/4 0.38224 0.33306 0.32598 0.32702 0.31793 
1/2 - - - - 0.32135 
3/4 0.49036 0.30600 0.27057 0.27290 0.32260 
1 0.62597 0.23570 0.14427 0.15146a 0.32021 

aAll eigenvalues of the spectrum are real. 
 
 

5. Conclusion 

 In this paper, the critical slab problem for one-speed neutrons is studied using 

UN method. The conventional HG phase function is used for the scattering kernel in 

transport equation and the numerical results for the critical half-thickness of the slab are 

obtained for various values of c and t using different orders of the UN approximation. 

While the positive values of t is referred to as the forward peaked scattering of the 

neutrons, the negative values of it is referred to as the backward peaked scattering of the 

neutrons. Both positive and negative values of the parameter t are used. Physically these 

are meaningful about the interaction of neutrons with the nuclei in the system [13]. 

 It is seen from the numerical results given in the tables that the critical half-

thickness of the slab increases with the increasing values of t and decreasing values of c. 

The behavior of the critical thickness is non-monotonic in the case of strongly forward 
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scattering when c = 1.20 and 2.00. This non-monotonic behavior of the critical 

thickness is observed especially in higher order approximations. That is, the critical 

thickness repeats its non-monotonic behavior in the case of forward peaked scattering as 

reported before [17,18]. 

At the end, one can summarize from the equations flowing in this study that the 

HG phase function can be applied to photon or particle transport problems with simply 

derivable equations. It can also be applied to other problems including a phase function 

in science and engineering. 
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