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 

Abstract— In the lossless data compression, the process of 

splitting a data sequence into appropriate subsequences has a 

substantial role in improving compression rate. This study 

theoretically investigates effects of data sequence partition on the 

overall compression rate of data sets. For this proposes, we show 

that it is always possible to find a partition of data sequence such 

that the entropy rate at each subsequence is lower than entropy 

rate of original sequences. This motivates our work to figure out 

the overall compression rate of the partitioned data sequences. 

Then, the effects of sequence partitioning on overall compression 

rate are discussed to explore an optimal partitioning strategy. 

Finally, an optimization problem for the optimal partitioning of a 

data sequences is stated for future works. 

 
Index Terms— Information theory, entropy rate, compression 

rate, Shannon limit. 

 

I. INTRODUCTION 

HANNON established a fundamental limit to lossless 

data compression in 1948. This limit was stated depending 

on entropy rate. He revealed that it was possible to compress 

information coming from a data source, in a lossless manner, 

with a compression rate close to the entropy rate of data 

source by using an coding method [1-2]. The entropy rate 

indeed depends on the statistical nature of the data sources. As 

the statistical order of a data source increases, the entropy rate 

of the source decreases. In this way, a better compression rate 

can be achievable by applying appropriate coding techniques. 

Today, the most popular coding methods applied in practice 

are Huffman Coding and Lempel-Ziv Coding [3-5]. 

  The process of data set partitioning is one of the primary 

tasks effecting performances of coding schemes. In practice, 

several coding strategies were practically developed for 

splitting and coding a data sequence to achieve a lower 

compression rates [6-10]. For instance, a refined partition 

providing minimum-entropy basis was used to improve 

compression rate [6]. In Huffman coding scheme, splitting an 

original symbol sequence into sub-sequences was shown to 

give a better compression rate on AR1, ECG and seismic 

signals at several SNR [7]. In [7], the proposed recursive 

splitting method splits a symbol sequence into subsequences, 

such that it makes the symbol probabilities different for each 

subsequence. Thus, individual Huffman coding of each 
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sequence reduces the total number of bits used for the 

codewords.  All those practical efforts demonstrate us that 

problem of sequence partitioning is a substantial task in a 

coding method to improve compression rate. In this study, we 

address the role of the sequence partitioning on the overall 

compression rate of the data sequences. In this point of view, 

we theoretically inquire the relation of overall compression 

rate with the sequence partitioning regardless of coding 

methodology. 

This paper investigates effects of sequence partitioning on the 

compression rate. Preliminarily, the study demonstrate that 

one can always found a data partition that makes entropy rate 

at each subsequence lower than original data sequence even if 

the information source model is zero-order model. A zero-

order information source model is the worst case for coding 

methods in term of compression performance, since there is 

not any statistical link between elements of sequence [1]. An 

assumption of the zero-order statistical model of data source 

also implies the case that the coder of sequence is ignorant of 

the nature of the data source. So, the results of this study are 

not depended of any coding methods. Our investigation focus 

on the compressibility of partitioned data sequences regardless 

of coding method. For this proposes, a brief analysis on the 

overall compression rate of partitioned data sequences is 

carried out and the factors, affecting overall compression rate, 

are discussed. A lower bound for the overall compression rate 

of a partitioned data sequence is derived in the light of 

Shannon’s compression limit. Moreover, an optimization 

problem, which is independent of coding methods and 

statistical feature of data, is put aside for future works. 

II. METHODOLOGY  

A. Basic Definitions 

Let an finite set of data be }....,{ 21 rxxxX   and a finite 

set of symbol (Alphabet) be }....,{ 21 msssA , where 1m . 

Data set X  is composed of elements of the symbol set A . 

The set A  is commonly called as source alphabet. A binary 

coding function is given as  1,0:(.) X . In such case, a 

binary coded sequence can be express as { )( 1x , )( 2x , 

)( 3x .. )( rx …}. Compression rate for a set X , coded by 

(.) , can be defined as 

 lTR / .         (1) 
Here, T  is the total number of elements in the binary 

coded sequence and l  is the number of elements in the data 

set X .  

Entropy rate of a data set formed by the m -symbol set A  
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was given as mH 2log , when the data set X  was produced 

by a zero-order source model. A zero-order source model is 

assumes that there is not any statistical link between elements 

of data set X [1]. Entropic volume of a data sequence is 

defined total entropy contained by a data sequence with length 

l  and expressed as lH . 

 

B. Entropy Rates of Partitioned Data Sets 

This section is devoted to theoretically show that any data 

sequence can be partitioned into subsequences such that 

entropy rate of each sequence is smaller than the entropy rate 

of original sequence. 

 

Theorem 1:  

Any finite data set, given by }....,{ 21 rxxxX   and obtained 

from a zero-order model source, is split into subsets 

1X ,
2X ,..,

gX , where ],2[ rg . Entropy rate of each subset 

is equal or lower than entropy rate at X . 

 

Proof:    

If X  is a finite set, the symbol set of X , denoted by A , has 

to be finite as well. Let the number of elements in a finite set 

A  denoted by m . The entropy rate of X  set is written as 

mH 2log . Since any 
iA  symbol set of the subset 

iX  is 

also contained in the set A , the number of elements in any 

subset 
iA  will be equal or lower than m . Hence, the entropy 

rate at a subset
iX , denoted by 

iH , will be equal and lower 

than H  as well. So, the property of HH i   is valid for any 

partitioning of a finite data set. 

 

Theorem 2:  

Let an infinite set of data be ...}....,{ 21 rxxxX 
 and 

suppose that it is generated by a zero-order source.  For a 

symbol set }....,{ 21 msssA , There is always one partition of 

X  such that the entropy rate of the each subset is lower than 

the entropy rate of 
X . 

 

Proof:    

One can always form a subset from the first 1m  elements of 

X . Lets denote this subset by 
1X . For a zero-order source 

model, entropy rate for the set 
X  can be given as 

mH 2log . For the subset 
1X ; since it has 1m  elements, 

number of elements in symbol set of 
1X  never becomes larger 

than 1m  . So, this specifies a upper bounds for entropy rate 

of 
1X  is written as 

       )1(log21  mH                        (2) 

Therefore, mHH 21 log , one can state that it is possible 

to find out a subset of 
X , whose entropy rate is lower than 

entropy rate of 
X . 

Let the next 1m  elements of 
X  form the subset 

2X  and 

the following  1m  elements of 
X  form the subset 

3X  and 

so on. Thus, 
X  is partitioned to 

1X ,
2X ,

3X ,… subsets, 

such that, the entropy rate of each subset 
iX   is lower than the 

entropy rate at 
X .  So, ......321  XXXX  and all 

HH i   , one can state that “at least one partition of  the data 

set 
X  can be always found such that the entropy rate at each 

subset is lower than entropy rate of  the set
X ”. 

 

Definition 1(Excessive partitioning):  

When the element number of each subsets is less than element 

number of symbol set A , such a partitioning of data set X  is 

referred to as excessive partitioning. Excessive partitioning 

always reduces the compression rate due to Theorem 2. 

 

Definition 2(Heuristic partitioning):  

When the number of elements of subsets is adjusted 

intelligently, these partitioning of data set X  is called as 

heuristic partitioning. Heuristic partitioning may reduce the 

compression rate of data sequence more than excessive 

partitioning if generated by non-zero order source models. 

 

Definition 3(Constant length partitioning):  

If the number of elements of each subset is equal, this 

partitioned is referred to constant length partitioning. 

 

Definition 4 (Variable length partitioning):  

If the number of elements of subsets is not equal, this 

partitioning is referred to as variable length partitioning. 

 

Definition 5 (Entropic partitioning):  

If a partition of a sequence decreases the overall compression 

rate of a sequence, this partitioning is called entropic partition. 

Entropic partition set covers excessive partitioning, heuristic 

partitioning, constant length partitioning, variable length 

partitioning if anyone reduces the compression rate of 

sequences. 

 

Theorem 1 and 2 clearly reveals that the partitioning of a data 

set can provide a reduction in entropy rate of a data streams 

regardless of statistical characteristic of the data sequences. 

For instance, excessive partitioning always reduces entropy 

( HH i  ). However, heuristic partitioning strategies may 

reduce compression rate more than excessive partitioning. So, 

we need to figure out overall compression rate of a partitioned 

data sequence in order to make a direct assessment about 

impacts of sequence partitioning on the overall compression 

rate of digital data sequences. In the flowing section, overall 

compression rate of partitioned sequences are inspected. 

 

C. Overall Compression Rate in a Partitioned Data Sequence  

This section is devoted to analyze overall compression rate of 

partitioned finite data sequences. Firstly, lets figure out the 

overall compression rate of a finite data sequence D , in the 

case that it is split into k  number of subsequences, denote by  
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id , ],1[ ki . The number of elements in each subsequences 

id  is denoted by 
ia . Secondly, let assume the binary coding 

function family denoted by (.)j  used in coding of these 

subsequences. Assuming that the best binary coding function 

providing the lowest compression rate for a subsequence is 

chosen from the (.)j , the overall compression rate of D  in 

this partitioning can be expressed as, 

                           



k

i

ii RawR
1

*)( ,                 (3) 

where *

iR  is the compression rate, obtained in the coding of 

subsequent 
id  by mean of the best binary coding function. 

The term )( iaw  is the size weight of subsequence 
id  in the 

sequence D  and expressed as laaw ii /)(  . Here, l  is total 

number of elements in the sequence D . (See the appendix for 

the derivation of Equation (3)) The *

iR  is considered to 

include an additional bit rate i , which is reserved for the 

redundant coding. The redundant coding mainly resides in 

headers of data packs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Overall compression rate calculated for equal sized partitioning of data 

sequences (Random signal, Bird sound and Human voice). Compression rate 
of pseudo coding function for each subsequences is assumed to 

iii HHR  * .  

 

Example 1:  

Fig. 1 illustrates overall compression rates calculated for an 

constant length partitioning of various time series signals 

(
kaaa  ...21

 and laawawaw i /)(...)()( 121  ) in 

the case of a pseudo coding function, of which the 

compression rate is assumed as 
iii HHR  * . Here, 

parameter 1  is used to conform the condition of 

ii HR *  due to Shannon’s limit of lossless compression. We 

assume to be  1.1  for our pseudo coding scheme. The 

parameter 1.0  is stands for the redundant code rates 

allocated for header to send symbol set and other required 

codes. The entropy of each subsequent is calculated 

ii mH 2log  where 
im  is the number of symbol in the 

subsequence i . In the figure, a critical partitioning line, where 

compression rate began to decreasing sharply, is shown in 

overall compression rate plots of time series signals. Bird 

sound and human voice contains data set generated by a none-

order source model. Since there is statistical links between 

elements, the partitioning and compression rate can decrease 

for larger subsets compared to random signal set. The random 

signal is supposed to simulate a none-order source model. 

Since 
ii HR *  according to Shannon’s limit of lossless 

compression [1-2], a lower bound for the overall compression 

rate can be written as, 

                                  



k

i

ii HawR
1

)( .                 (4) 

In order to point out effects of sequence partitioning on the 

compression rate, it will be convenient to express the 

deviation in the compression rate after a partitioning, which is 

defined as RRR  . Here, R  represents the compression 

rate in the coding of original sequence without a partitioning 

and it also satisfies the condition of HR   due to Shannon’s 

limit. After a sequence partitioning, the deviation in the 

overall compression rate can be written as: (See the appendix 

for the derivation of Equation (5)). 

)()(
1





k

i

ii HHawR .    (5) 

 

If the condition of HH i   from Theorem 2 and 

]1,0()( iaw  is considered, after partitioning sequence, the 

deviation in compression rate is found as 0R . This 

noteworthy finding suggests that a partitioning, independently 

from coding functions and in the absence of a prior statistical 

knowledge, can reduce the compression rate. In the case that 

the redundant coding used in headers of data packs are taken 

into account, the condition of R  should be met to have a 

better compression after a partitioning. Here,  represents 

additional bit rate caused from redundant codes used in 

applications. In practice,   is mainly negligible compared to 

values of R .  

Considering Equations (3) and (4), the following substantial 

remarks can be listed: 

 

i) Overall compression rate of a partitioned sequence strongly 

depends on the compression rate of each subsequence and 

their sizes. In fact, the overall compression rate in a partition is 

a size-weighted average of compression rates of all 

subsequences. In order to reach a lower overall compression, 

one should establish an optimal partition strategy such that the 

subsequences exhibiting a lower compression rates are the 

larger in size. 

 

ii) It is not a necessity to use one type coding scheme for the 

coding of all subsequences. The one providing a lowest rate of 

compression from the coding scheme family can be selected to 
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code a subsequence and others can be used for other sequence 

to have a better overall compression rates. So, multi-coding 

approach can be more effective to improve compression rates. 

 

 iii) In order to enhance overall compression rate, the sequence 

partitioning has to comply with the condition of R . 

III. A DISCUSSION ON OVERALL COMPRESSION RATE FOR 

OPTIMAL PARTITIONING OF DATA SEQUENCE 

Let assume that a finite length sequence X  with entropy rate 

H is split in subsequence 
ix with length of 

kaaa ,...,, 21
 and 

entropy rate 
iH . Total entropic volume of X can be defined 

as, 


k

i

iaH
1

 and overall entropic volume of partitioned X  

sequence can be expressed as 


k

i

ii Ha
1

. Due to partitioning, 

reduction rate in entropic volume can be written as, 




k

i

i

k

i

ii aHHa
11

/)( . In order to improve compression rate of 

a data sequence by entropic partitioning, the reduction rate in 

entropic volume should be decreased. 

 

To have better compression rate, the following partitioning 

rules for entropic partitioning, can be listed: 

 

i) For the data segments having higher entropy rates, form 

subsequences with a shorter length, 

 

ii) For the data segments having lower entropy rates, form 

subsequences with a larger length. 

iii) Due to Shannon’s limit of lossless compression (
ii HR   

and HR  ), coding method used to compress data is a 

important factor for the success of compression. That is why, 

entropic partitioning should be performed by considering 

coding methods. 

 

Example 2:  

A visual example for entropic partitioning strategy is 

illustrated in Fig. 2. In the figure, original sequence, 

represented by a large dash rectangle, has the length of  



5

1i

ia

 

and the overall entropy rate, 
1HH  . Subsequences are 

represented by the rectangular areas in different color tones. 

They have the sizes of 
ia  and their entropy rates denoted 

by
iH . In this visual partitioning example, by using Equation 

(5), the deviation in overall compression rate of original 

sequence can be expressed as  ))(( 212 HHawR  

))(( 313 HHaw  0))(( 515  HHaw . This result verifies that 

a reduction in overall compression rate can be possible by this 

partitioning. The gray zone with scan lines represents reduced 

entropic volume as a result of entropic partitioning of original 

sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2. An example of good partitioning reducing entropic volume of original 

sequence 

 

Entropic partitioning is not dependent of coding methods. A 

problem of a good entropic partitioning that aims to reduce 

overall compression rate can be defined as,  

 

1

max { ( ) ( )}
i

k

opt a i i

i

R w a H H


    .   (6) 

 

In the case of a predetermined set of coding schemes, the 

problem of an optimal partitioning is argued in detail, below:  

An optimal partitioning of data sequence can be defined as a 

partitioning that makes the overall compression rate globally 

minimum, and it can be simply expressed as 

 

*

,

1

min { ( ) }
i i

k

opt a R i i

i

R w a R


  .    (7) 

 

For the practical point of view, the problem of finding an 

optimal partitioning for a data sequence turns into the problem 

of finding 
ia , *

iR  parameters such that they yields a minimal 

overall compression rate. An objective function to be 

optimized can be fashionably written as, 

2

1

* ))((



k

i

ii RawE .      (8)  

 

Overall compression rates obtained for a constant length 

partitioning (without optimization) and a variable length 

partitioning (with optimization in accordance with the 

Equation (8)) is compared in Fig. 3. In this straightforward 

optimization method, an original data sequence first splits into 

equal sized subsequences, which is also the case of “without 

optimization“, then, each subsequences shrink or expand 

toward its neighbors in order to minimize the objective 

function E  given by Equation (8). The figure reveals that 

variable length partitioning by optimization further decreases 

compression rate of non-zero order source models.  
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Fig. 3. Overall compression rates calculated for the both case of an equal sized 

partitioning  (without optimization) and a variable size partitioning(with 
optimization)  of data sequences from human voice. Compression rate of the 

pseudo coding function is assumed as 
iii HHR  *  for 1.1  and 

1.0 . 

 

For a faster approximation to the optimal solution for entropic 

partitioning, a partitioning can be performed subject to a 

constant bit-length constraint, which is arithmetically defined 

as, 
*

ii RaC  ,        (9) 

where RC  is a constant that specify a target length for 

subsequences in term of bits. A new version of the objective 

function for an optimal partitioning with a constant bit-length 

of subsequences can be written as, 

])())([( 2*

1

2*

ii

k

i

ii RaCRawE 


.      (10) 

The solution of this optimization problem was not a preference 

of this work. We aim to show existence of an optimization 

problem for a good partitioning, which is applicable in all 

practical coding schemes in the absence of a prior knowledge 

about statistical nature of data sequence.  

IV. CONCLUSIONS 

The entropy rate at a data sequence can be simply decreased 

by splitting it. This enables compression of data sequence 

regardless of the coding scheme. The property of R  in a 

partitioning ensures us that the data sequence partitioning 

decreases the overall compression rate, however, the amount 

of reduction in the overall compression rate depends on two 

terms; compression rate of coding methods ( *

iR ) and the ratio 

of subsequences size to original sequence size 

( laaw ii /)(  ). In the paper, a theoretical discussion for a 

general optimal partition strategy, which is applicable to all 

coding techniques, was given and a corresponding 

optimization problem to improve overall compression rate is 

defined. We see that it will be possible to utilize a 

collaboration of various coding methods in a sequence 

partitioning problem to reach a better compression 

performance and referred it as to multi-coding optimal 

partitioning.  

The findings of this theoretical work contribute to 

comprehension of roles of partitioning in data compression. 

Bounds of overall compression rates for partitioned sequences 

is analytically derived (Equation (4)), which can, indeed, be 

considered as an extension of Shannon’s limit of lossless 

compression rate for the case of sequences splitting. 

Specifically, for the case of 1k , it yields Shannon’s limit 

for lossless compression. 

With a reverse consideration, one can also state that 

combining data packs with different entropy rates in order to 

obtain a larger data set can increase overall entropy due to the 

some waste of entropic volume. Entropy rate of combined data 

set is determined by the largest entropy rate of data packs. 

APPENDIX 

Derivation of Equation (3): 

A finite sequence with l  elements splits into k  number of 

subsequences. Each subsequence has the lengths of ia  and the 

compression rate of *

iR . *

iR  is the best compression of 

sequence defined as }min{* j

ii RR   for a binary coding 

function family (.)j . j

iR  is the compression rate in the 

coding of the subsequence i  by (.)j . The total bit numbers 

used in coding all subsequences by using the best (.)j s from 

the coding function family can be written as, 





k

i

ii RaT
1

* . 

Compression rate was defined as lTR / . So, the overall 

compression rate for a partitioned sequence by using the best 

coding functions can be written as, 





k

i

i
i R

l

a
R

1

* . 

When laaw ii /)(   is considered, one obtains the overall 

compression rate as: 





k

i

ii RawR
1

*)( . 

 

Derivation of Equation (5): 

In the coding of a sequence without partitioning, compression 

rate can be written as HR   due to Shannon’s limit. With 

using Equation (4) and HR  , the deviation in compression 

rate, which is RRR  ,  can be written as  





k

i

ii HawHR
1

)( . 

Here, laaw ii /)(   and 



k

i

ial
1

 for a k  number 

partitioning. In this case, 
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










k

i

i
i

k

i

ik

i

ii H
l

a
H

l

a

HawHR
1

1

1

)( , 





k

i

ii

k

i

i

i
k

i

i HHawH
l

a
H

l

a

111

)()( . 

 

Finally, the Equation (5) is obtained as, 

)()(
1





k

i

ii HHawR  . 
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