
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,  2013,  Vol.1,  No.2 
 

Copyright © BAJECE                          ISSN: 2147-284X                   September 2013    Vol:1   No:2                          http://www.bajece.com 

 

 

78 

Power System Stabilizer Based on Global Fuzzy 

Sliding Mode Control 
 

E. Nechadi and M.N. Harmas 
 

 

 

Abstract—Power systems stability is enhanced through a novel 

stabiliser developed around a fuzzy sliding mode approach. First, 

sliding mode control is applied to selected operating point based 

models of a power system separately then fuzzy logic is used to 

form a global model encompassing the separate subsystems, thus 

leading to a fuzzy sliding mode power system control. Stability is 

insured through Lyapunov synthesis. Severe operating conditions 

are used in a simulation study to test the validity of the proposed 

method, indicating better performance and satisfactory transient 

dynamic behaviour. 

 

Index Terms—Power system stabiliser; sliding mode control; 

sliding surface; fuzzy sliding mode; Lyapunov stability. 

I. INTRODUCTION  

HE need for more reliable power margins and less amount 

of electro-mechanical oscillations that limit  power flow 

in complex power systems, has imposed the addition  of 

stabilizers coined power system stabilizer PSS as early as the 

mid 40s, nowadays tagged conventional, classical stabilisers 

or  CPSS[1-3]. Highly non linear, time varying, power 

systems have been and remain a major challenge to control 

and power engineers alike.  

Effectively, power systems are complex nonlinear systems that 

often exhibit low frequency oscillations due to insufficient 

damping caused by adverse operating conditions which can 

lead the underlying machine to lose synchronism. Power 

system stabilizers are used to suppress these oscillations and 

improve the overall stability. Conventional stabilizers, 

consisting of cascade connected lead–lag compensators 

derived from a linear model representing the power system at 

a certain operating point, have long been used to damp  

oscillations regardless of the varying loading conditions or 

disturbances. However, this linear model based control 

strategies often fail to provide satisfactory results over a wide 

range of operating conditions. 

Many alternatives have been put forth since pioneering CPSS 

not only in stabilizer design but in power model elaboration as 

well. Further research work led to more appropriate adaptive 

approaches as in [4-6]. Robust control techniques have been 

also suggested in effort to circumvent parameters uncertainties 

effect as well as exogenous disturbances leading to sliding 

mode based PSS [7-10] and Hinf PSS [11].  
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Remarkable research effort has been done in the last decade 

putting forward intelligent fuzzy logic based PSS as well as 

optimality in adapting to changing operating conditions as in 

[12-17].Amid the many interesting schemes suggested, the 

combination of sliding mode technique and the fuzzy approach 

capitalising on the free model aspect of the latter and the 

robustness of the first seem to be promising. Based on work 

developed by Yu [18] we have elaborated a power system 

stabilizer using fuzzy logic to amalgamate several sliding 

mode controlled based linear power system models, obtained 

for selected operating points. 

This paper introduces briefly in the next section the sliding 

mode control approach used, followed by the third section in 

which Takagi-Sugeno fuzzy technique is tackled. In section IV 

the design of the global fuzzy sliding mode stabilizer is 

undertaken and stability issue addressed. The power system 

model is presented in the ensuing section followed by 

simulation and a presentation of results for different operating 

conditions.  

II. SLIDING MODE CONTROL 

Sliding mode control is a part of the theory of Variable 

Structure Control (VSC) which is a control technique relying 

on a practical high-speed switching between different 

configurations basically inspired by relay control theory. This 

variable structure control provides an efficient method for 

nonlinear plants control. 

Reluctant at first, control engineers have shown increased 

interest in variable structure control as advances in electronic 

circuitry and computer technology took place making feasible 

many practical implementations such as in robotics[19-20],or 

in power system control as in[11,21].  

Essentially, VSC utilizes a high-speed switching control law 

to drive the nonlinear plant’s state trajectory onto a selected 

designer chosen sliding surface in the state space and to 

maintain plant’s state trajectories on this surface for all 

subsequent time. The plant dynamics restricted to this surface 

represent the controlled system’s behaviour.  

Consider a SISO dynamical system described by: 

 

Bu(t),Ax(t)(t)x                                                                 (1) 

 

where ( )x t  is the state vector, ,
nxnRA  nxqRB  and 

( )u t is the sliding mode control input. 

Sliding mode control design comprises two phases: first a 

switching surface imposing desired dynamics in the sliding 

mode is elaborated, followed by the design of the 

T 
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discontinuous control law that drives the system state 

trajectories towards the switching surface. The switching 

surface is generally defined as: 

  

)()( tCxxs                                                                            (2) 

C is the sliding vector, which can be determined using 

different available techniques, we will use pole placement in 

the sliding phase according to Ackerman’s approach [22]. 

Control law enabling satisfaction of the attraction phase 

condition (3) and the equivalent control to maintain state 

trajectories on the sliding surface is typically given by  (4) 

assuming (CB)  is non-singular.                

 

0(x)ss(x)                                        (3) 

  0; kxksign(s)CAx1(CB)u              (4)                    

.  indicates the euclidean norm, used here to reduce 

chattering when approaching the equilibrium point. 

Bbackground details for sliding mode theory and sliding 

surface design can be found in [22-24]. 

III. DESIGN OF FUZZY CONTROL 

In our control design procedure, a Takagi-Sugeno fuzzy model 

is used to represent a global model of the underlying non 

linear plant. The fuzzy model   described by fuzzy IF-THEN 

rules represents local linear input-output relations of the 

considered nonlinear system. The main feature of a Takagi-

Sugeno fuzzy model is to express the local dynamics of each 

fuzzy implication (rule) by a linear system model. 

The global fuzzy model of the system is achieved by fuzzy 

‘‘blending’’ the operating point based linear system models 

[18, 19].  

The i
th

 rule of the T-S fuzzy models is of the following form: 

 Rule i:  

IF 1( )z t is 1iF  AND… ( )pz t is ,ipF  THEN    

( ) ( ) ( ),i ix t A x t B u t  ( ) ( ) ( ),i iy t D x t E u t  i 1,2,3,...,m (5)                  

where, ipF is the fuzzy set and m is the number of model 

rules, )(tx , )(tu , )(ty are respectively  the state, the input and 

the output vectors, ,nxn
i RA   ,nxq

i RB   ,pxn
i RD   

nxp
i RE  and (t)z(t),...,z p1 are known premise variables that 

may be functions of the state variables, external disturbances 

and time. We will use )(tz to denote the vector containing all 

the individual elements (t)z(t),...,z p1 . Each linear consequent 

equation represent a called a subsystem. 

Let ( ( ))i z t  denote the normalized fuzzy membership 

function of the inferred fuzzy set iF  where 

p

i ij

j 1

F F


   and  
m

i

i 1

μ 1


 .                                                   (6) 

The global fuzzy state space model is given by: 

 

( ) ( ) ( ),x t Ax t Bu t   

( ) ( )y Dx t Eu t                                                                    (7) 

Where 

         
m

i i

i 1

A μ A ,


       
m

i i

i 1

B μ B


 ,                                           

        
m

i i

i 1

D μ D ,


      
m

E μ Ei i
i 1

 


                                       (8) 

Let us make the assumption that (A, B) of the global system is 

completely controllable based on the assumed controllability if 

each subsystem. 

IV. DESIGN OF FUZZY SLIDING MODE CONTROL 

In their paper X. Yu & al. [18] used a constant sliding surface 

to developed  their remarkable results that we  revisit here 

with our contribution being the use of different sliding 

surfaces corresponding to different operating points that our 

application requires, a power system, in order to uphold the 

desired poles placement. The main drawback in such a system 

resides in the necessity for a new sliding manifold for each 

new configuration in order to enable the same pole placement 

and thus identical dynamic performances.  

 

Theorem 1: Each subsystem of the fuzzy model (5) if we 

choose the following control iu law, 

 

 x)sign(skxAC)B(Cu iiii
1

ii
i                                     (9)  

then the system is asymptotically stable. 

 

Proof: 

Let the Lyapunov function candidate be given as, 

 

(x)(x)ss
2

1
V(x) i

T
i                                                                (10) 

Therefore: 

(x)s(x)sV i
T

i
   

   )uBx(A(x)Cs i
iii

T
i   

   
T

i i ik s (x)sign(s ) x   

and thus: 0V   

 

Theorem 2: For the fuzzy system (7), if we choose the 

following control law for i
th

 subsystem iu : 

 

 x)sign(skxAC)B(Cu iiii
1

ii
i                                   (11) 

and if 

 

iiij BCBC  , )sign(s)sign(s ji   ji                               (12) 

Then the system is asymptotically stable. 

 

Proof: 

Choosing the Lyapunov function candidate to be 

(x)s(x)s
2

1
V(x) T ,                                                               (13) 

and the control law term (14) given here will be designated 

approach (1) 
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i
m

1i

iuμu 


 ,  
(1) approach                                                                                        

(14) 

Therefore, 

   

(x)s(x)sV T    

    )( BuAx(x)CsT   

    u)BμCxAμ(x)(Cs

m

1i

ii

m

1i

ii
T 



  

    )uμCBxAμ(x)(Cs i
m

1i

i

m

1i

ii
T 



  

    )uCBxCAμ(x)s i
i

m

1i

ii
T  



(  

    




m

1i

iii
T xssignkμ(x)s )(  

    




m

1i

iiii xssignskμ )(  

0V  . 

 

Theorem 3: For the global fuzzy system (7), if we choose the 

following control ku for another rule k ( ki  ) 

 

 x)sign(skxAC)B(Cu kkkk
1

kk
k                              (15) 

 

and if                                    

)))B(C(CB)B(C(CBλ

AC)B(CCBCA
kk

T1
kki

1
kkimin

kk
1

kkii0
kk 






 ,    

0))sign(s))B(C(CB)B(C(CBλ k
T1

kki
1

kkimin              

(16) 

Then the system is asymptotically stable. 

 

Proof: 

Choosing the Lyapunov function candidate: 

(x)s(x)s
2

1
V(x) T  

Therefore   

(x)s(x)sV T    

    )( BuAx(x)CsT   

    )uBμCxAμ(x)(Cs k
m

1i

ii

m

1i

ii
T 



  

    




m

1i

ii

m

1i

ii
T BμxAμ(x)C(s                   

                                        )( )x)sign(skxAC)B(C kkkk
1

kk  
 

    xAC)B(CCBCAμ(x)s kk
1

kki

m

1i

ii
T )(( 



     

                                                  )x)sign(sk)B(CCB kk
1

kki
  

    xsAC)B(CCBCAμ

m

1i

kk
1

kkiii


 (    

                 )xsk)B(CCB)B(CCB k
T1

kki
1

kki ))((min
    

0V  . 

 

Theorem 4: For the global fuzzy system (7), if we choose the 

global control u law which will be termed approach (2) 

          xksign(s)CAx(CB)u 1     (2) approach                   
(17) 

Where 

,AμA i

m

1i

i


   ,BμB i

m

1i

i


  

,i

m

1i

iCμC 


 )()( tCxxs                                                  (18) 

                                                                 

then the system is asymptotically stable. 

Hence, we can write 

 

ξ(x)C T                                                                           (19) 

 

Where  m21 ,...,θ,θθθ   is the vector of 

parameters,  Tm21 ,...,ξ,ξξξ  is the vector of fuzzy basis 

functions with    being bounded: .θMθ   

If we let: 

 

   xxsγθ                                                                      (20) 

Where 

xξ(x)s

θM
γ                                                                        (21) 

Where M and  are positive constants. 

Proof: 

Considering the Lyapunov function candidate: 

 




TT(x)s(x)s
2

1
V(x)

2

1
  

Therefore  

     


 1
 xsxsV T  

        θθ
γ

1
xxBuAxCxsT   )(     

    







 



 xksign(s)CAx(CB)BμxAμCμxs 1

m

1i

ii

m

1i

iii

m

1i

i

T

                                                                      


  1
 xxxs T

 

        )(22 xsxsxxsign(s)xks    

After some straight forward calculations, we obtain the 

following 
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     xsMxsign(s)xskV     

and thus: 0V  . 

V. POWER SYSTEM MODEL 

The power system model considered in this paper is a fourth 

order linearized model representing a synchronous machine 

connected to an infinite bus via a double circuit transmission 

line. The power system schematic diagram including turbine, 

transformer, automatic voltage regulator and PSS is shown in 

fig.1 [25]. 

 

 
Fig.1 Synchronous machine infinite bus. 

 

A fourth order classic state space representation [9, 25] is 

given in (22). See appendix for nomenclature. 
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                             (22) 

 

Where the state variable are expressed 

as:            .
T

fdq tetetttx     

Note that the six constants 61 KK   are functions of real 

power P and reactive power Q [2, 25]. 

The parameters of the single machine infinite bus system are 

as follows:  

 

,0,.32.0,.6.1,.55.1,.4.0  Dupxupxupxupx
ddqe

upVKTsHsT
AAd

.1,50,05.0,5,6
0



..015.0,.75.0 00 upQupP   

VI. SIMULATION 

The soundness of the approach was tested and performance as 

well as robustness tests were conducted and compared to a 

classic CPSS [12] confirming, through computer simulations, 

good transient behaviour with the proposed approaches despite 

severe operating conditions illustrated by the following case 

studies.  

 
Fig.2 Fuzzy sets for input P. 

 

 
Fig.3 Fuzzy sets for input Q. 

 

Case 1: First the simulation results for light load condition are 

shown in fig.2 with PSS calculated on both approaches. 

Performances of the second approach are clearly superior 

while a greater control effort is solicited.  

 
Fig.4 Speed deviation. 
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Fig.5 First approach control effort. 

 

 
Fig.6 Second approach control effort. 

 

Case 2: Operating conditions change abruptly from light to 

heavy load condition, i.e. P is changed from 0.75 p.u. to 1 p.u. 

The simulation results in fig.4 show a better transient 

performance for the second approach. 

 

Case 3:  We now consider the case of the sudden occurrence 

of heavy reactive power causing a change in Q from the light 

value of 0.015p.u. to 0.3p.u. Again the simulation results 

shown in fig.5 seem to indicate a good transient behaviour 

whith superior performance due to the second approach. 

 

Case 4: Two major perturbations are assumed, i.e., heavy load 

1p.u. and a variation in the inertia constant of the synchronous 

machine from 10s to 12s. Appreciable performances are 

obtained for both approaches with a slight edge for the second 

control law as can be seen in fig.6. 

 

Case 5: Operating point P0 =0.9 p.u. , Q0 =0.3p.u. and   xe  = 

0.2 p.u. Again in this case our global fuzzy approaches 

indicates rapid elimination of oscillations with better 

performance in the second approach as shown in simulation 

results are fig.7. 

 

Case 6: Heavy reactive load and weak connection: P0 =0.9 

p.u., Q0 =0.4 p.u. and  xe  = 0.45 p.u.  

 

As can be seen from the simulation results shown in Fig.8 

both global fuzzy approaches indicates a rapid suppression of 

oscillations and a better response than the response obtained 

using conventional stabilizer. 

 
Fig.7 Speed deviation in heavy load condition case. 

 

 
Fig.8 Speed deviation in heavy reactive power case. 

 

Case 7: Import of reactive power and strong connection: P0 = 

0.9p.u., Q0 =-0.4p.u. and  xe  = 0.1p.u. 

 The simulation results are show in fig.9 clearly indicating a 

loss of synchronism with CPSS and an effective damping of 

oscillations with both suggested approaches. 
 

 
Fig.9 Speed deviation for two major perturbations case. 
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VII.CONCLUSION 

We introduced in this paper, based on the work of Yu & al., a 

global fuzzy sliding power system stabilizer that enhances 

damping and thus improves transient dynamics of a single 

synchronous machine power system. Different load conditions 

as well as severe perturbations were used to evaluate the 

proposed global sliding fuzzy power system stabilizer 

effectiveness in rapidly reducing oscillations that could lead to 

loss of synchronism if not treated. Simulation results exhibit 

superior performance over classical PSS and satisfactory 

transient behaviour for both approaches considered while 

showing a better performance for the second approach. Multi-

machines power system remains to be thoroughly investigated 

under the proposed technique. 

 
Fig.10 Speed deviation responses for P0 = 0.9p.u. Q0 = 0.3p.u. and xe = 

0.2p.u. 

 
Fig.11 Speed deviation in heavy reactive load and weak connection case. 

 
Fig.12 Speed deviation in import of reactive power and strong connection 

case. 
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