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Abstract 
 

In the present study, we examine two dimensional solution of the Schrödinger equation for the 
exponential cosine screened Coulomb potential in a magnetic field. We apply the asymptotic iteration 
method to obtain energy eigenvalues. Since this equation has no analytical solution, the energy 
eigenvalues have been numerically obtained for different screening parameter, the Larmor frequency 
and the strength coupling constant. Effect of the magnetic field on the energy eigenvalues is precisely 
presented. 
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1. Introduction 

 

The solution of the Schrödinger equation (SE) of a 
particle under magnetic field (MF) is one of the 
important issues in physics. If one obtain the wave 
function for investigated system, it can be obtained 
crucial information regarding the system. Thus, a large 
number of studies have been performed in order to solve 
the eigenvalue equation and to determine the correction 
on the energy eigenvalues (EEs) in a MF (Villalba & Pino 
2001; Aygun et al. 2012; Villalba & Pino 1998; Aygun et 
al. 2010; Taut 1995). These studies were made possible 
due to the technological advances in nanofabrication 
technology, which has enabled the creation of low-
dimensional structures such as quantum wires, quantum 
dots, and quantum wells in semiconductor physics 
(Demel et al. 1990; Zhu et al. 1997; Blanter et al. 1996; 
Johnson 1995; Killingbeck & Jolicard 2009). It will be 
very important and interesting to investigate the solution 
of the SE for different potentials in a MF in order to have 
more idea about the effect on the EEs of MF. In our study, 
we examine the exponential cosine screened Coulomb 
(ECSC) potential in constant MF. 

The ECSC potential plays an important role in various 
fields of physics. It is used in subjects such as describing 
the potential between an ionized impurity and electron 
of a metal (Bonch-Bruevich & Glasko 1959; Takimoto 
1959), a semiconductor (Bonch-Bruevich & Kogan 1960; 
Hall 1962), plasma physics (Shukla & Eliasson 2008), the 
electron-positron interaction for a positronium atom 
(Prokopev 1967). The ECSC potential is given by 
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                       (1) 

 

where A is the strength coupling constant and δ is the 
screening parameter. So far, the bound state energies of 
the ECSC potential have been calculated by the 
approximation methods such as J-Matrix approach 
(Nasser et al. 2011), the algebraic perturbation theory 

 
 

(Fack et al. 1986), the SUSY-perturbation formalism 
(Ikhdair & Sever 2007), the large expansion method  
(Dutt et al. 1986; Sever & Tezcan 1987), the shifted large 
expansion method (Ikhdair & Sever 1993), the 
perturbation method (Dutt et al. 1985), variation 
methods (Lam & Varshni 1972), the dynamical group 
approach (de Meyer et al. 1985), asymptotic iteration 
method (AIM) (Bayrak & Boztosun 2007) and the 
hypervirial-Padé scheme (Chatterjee 1987; Lai 1982). On 
the other hand, up to our knowledge the behavior of a 
particle under the ECSC potential in the present of a 
constant MF has not been studied yet. In this paper, for 
the first time, we aim to solve the radial SE for the ECSC 
potential in a constant MF. We present the EEs for any n 
and m quantum numbers over the different δ parameter, 
the Larmor frequency (wL) and the A constant within the 
framework of the numerical procedure of AIM (Ciftci et 
al. 2003) in a MF. 

In the next section, we briefly outline AIM. In section 
3, we apply AIM to solve the two dimensional SE in a 
constant uniform MF and find the EEs in arbitrary δ, wL 
and A values. Then, we show the effect of the MF on the 
EEs. Finally, in section 6, we remark on these results. 

 
2. The Asymptotic Iteration Method 

 

AIM is proposed to solve the second-order differential 
equations of the form (Ciftci et al. 2003; Bayrak & 
Boztosun 2006). 
 
                                                                                   

                             0 0'' ( ) ' ( )y x y s x y 
                           (2) 

               

where λ0(x)≠0. The variables, S0(x) and λ0(x), are 
sufficiently differentiable. The differential Eq. 2 has a 
general solution (Ciftci et al. 2003). It should be noted 
that one can also start the recurrence relations from k = 0 
with the initial conditions λ-1=1 and S-1=0 (Fernandez 
2004). 
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if k > 0, for sufficiently large k, we obtain the α(x) values from 
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where 
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For a given potential, the radial SE is converted to the form of Eq. 2. Then, S0(x) and λ0(x) are determined and Sk(x) 
and λk(x), parameters are calculated by the recurrence relations given by Eq. 5. The EEs are obtained from the roots of 
the quantization condition, given by the termination condition of the method in Eq. 4. The quantization condition of 
the method together Eq. 5 can also be written as follows: 
 

                                     
-1 -1( ) ( ) ( ) ( ) ( ) 0   1,  2,  3,...kk k k kx x s x x s x k     

                                              (6) 
 

The EEs are obtained from this equation if the problem is exactly solvable. If not, for a specific n principal quantum 
number, we choose a suitable x0 point, determined generally as the maximum value of the asymptotic wave function 
or the minimum value of the potential, and the approximate energy eigenvalues are obtained from the roots of this 
equation for sufficiently great values of k with iteration. The wave functions are determined by using the following 
wave function generator 
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where k≥n, n represents the radial quantum number and k shows the iteration number. For exactly solvable 
potentials, the radial quantum number n is equal to the iteration number k and the eigenfunctions are obtained 
directly from Eq. 7. For nontrivial potentials that have no exact solutions, k is always greater than n in these numerical 
solutions and the approximate EEs are obtained from the roots of Eq. 6 for sufficiently great values of k by iteration. 
 
3. The energy eigenvalues of the ECSC potential in the magnetic field 
 
In this part, we consider a charged particle acting in a constant MF. If we want to write the Hamiltonian for this 
particle, we can show as following form  

                                                                           

21
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c
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                                                                                       (8) 
 

where μ is reduced mass of the particle, p is the momentum of the particle, e is the electric charge, c is the velocity of 

light, the vector potential in the symmetric gauge is   
 

 
    (Taut 1995). If we derive whole Hamiltonian for this 

system in CGS system and in atomic units ħ==e=1, we obtain as 
 

                                                                  

21 1

2 2
ECSCH ( i ) V ( r )   B x  r 

                                                                             (9) 
Thus, the SE becomes 

 

                                               

21 1

2 2
ECSC tH ( i ) V ( r ) i E          B x  r 

                                                               (10) 
 

In the present study, while the Hamiltonian is taken in two dimensions, it is adequate to study in polar coordinates  
r, within the plane. For this purpose, we use the following wave function  
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If we put Eq. 11 into Eq. 10, we obtain two dimensional radial SE 
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                             (12) 

 

where E is the energy eigenvalue of the particle, m is the eigenvalue of angular momentum, and wL=B/2c is the 
Larmor frequency. In Eq. 12, the effective potential (Ueff) related to the MF strength is comprehended as follows: 
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where VECSC(r) is the pure ECSC potential and second term is a harmonic-oscillator type potential and other terms are 
the rotational potentials creating the rotational energy levels. For the case of low vibrational (n=0, 1) and rotational 
(m=1) levels, the (Ueff) has been plotted in figure 1. As seen from both figure 1 and Eq. 13, the potential energy 
function is raised in energy and the bound state EEs increase as well when the MF strength increases. Furthermore, 
the shape of the potential energy function will change for increasing strengths of the MF. It is clearly seen that the 
effective potential changes gradually from the pure ECSC potential, which is a no-MF case, to a harmonic-oscillator 
type behavior in short potential range as the strength of the applied MF is increased. 

 
Figure 1: The effective potential energy function and corresponding bound state energy levels (Enm ) for m=1  
                    with δ=0.01 and A=1. 
 
Now, we can show how to find the EEs for the ECSC potential in a MF by applying the numerical procedure of the AIM. 
With this goal, for the low δ parameter, we can expand the ECSC potential in the power series of the δ parameter up to 
the sixth term. So, V(r) becomes, 
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Substituting Eq. 14 into Eq. 12 and by rearranging it, we obtain 
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4. The energy eigenvalues of the ECSC potential for no magnetic field 
 

In this part, we consider the case without MF in order to compare the case with MF. With this goal, if we take wL = 0 in 
Eq. 15, we obtain the two dimensional radial SE as follows: 
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If we use the following ansatz, 
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we can easily obtain 
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In order to solve Eq. 18, we choose the following physical wave function 
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                                                                             (19)  
 

where β is an arbitrarily introduced constant to improve the convergence speed of the method (Fernandez 2004; 
Aygun et al. 2010). Putting this wave function into Eq. 18, we obtain the following second-order equation, which is 
amenable to an AIM solution.  
 

2 2 3 4 5 7

1 2 3 4 5 6

2
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d r m df r m r r r r r r r
f r f r

dr r dr r

                  
    
        (20) 

 

In order to use the AIM procedure, we compare Eq. 20 with Eq. 2 and obtain λ0(r) and s0(r) equations as follows 
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Higher λk(r) and sk(r) equations are obtained by using the recurrence relations in Eq. 5. Due to the fact that Eq. 6 is not 
solvable at every r point, we have to choose a suitable r0 point to solve the equation δk(r0, ɛ)=0 iteratively in order to 
find ɛ values. There are two ways to define the r0 point: First one is to use the maximum value of the asymptotic wave 
function given by Eq. 19 or the second one is to determine it from the minimum point of the potential. In our study, we 
obtain r0 from the maximum point of the asymptotic wave function, which is the same as the root of λ0(r) =0, namely r0 
= (2m+1)/2β. On the other hand, the speed of the convergence depends on the arbitrarily introduced constant β. In 
our calculations, we have examined the optimum values of β which give the best convergence. Thus, we have kept β =1 
value. 
 
5. The energy eigenvalues of the ECSC potential in magnetic field 
 

In previous section, we have investigated the case without the MF. Now, let us examine the radial SE of ECSC potential 
with the MF. For this, if we take wL≠0, by using the following ansatz, 
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In order to solve Eq. 23, we use the same physical wave function used in no MF. Thus, we can obtain the following 
second-order equation, which is amenable to an AIM solution.  
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In order to use the AIM procedure, we compare Eq. 24 with Eq. 2 and obtain λ0(r) and s0(r) equations as follows 
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In this part, we obtain r0 from the maximum point of the asymptotic wave function, which is the same as the root of 
λ0(r)=0, namely r0=(2m+1)/2β. However, the speed of the convergence depends on the arbitrarily introduced constant 
β. In the calculations, we have kept β=10 value. 

The energy levels over the various values of δ, wL and A of the ECSC potential without and with a constant MF have 
been calculated and given in Tables. Firstly, in Tables 1 and 2, we have shown the Enm values for various δ with wL=1 
and A=1 values. The Enm take negative values for n=0 in m=0. Then, by increasing of n values, Enm values increase and 
take positive values. For m=1, while Enm take positive values for all the n values, like m=0, Enm increases with  

 

 
 

 
 

 
 
 
 
 
 

Table 1: The energy eigenvalues (Enm) for various δ parameters of a particle under the ECSC potential field with wL=1 and  
                  A=1 values in atomic units.  
 

m=0 

δ n=0 n=1 n=2 n=3 n=4 

0.01 -1.82620753 1.58689478 3.83838683 5.97313551 8.06262332 

0.02 -1.81620822 1.59688953 3.84837681 5.98312088 8.07260416 

0.03 -1.80621006 1.60687543 3.85835004 5.99308193 8.08255331 

0.04 -1.79621363 1.61684831 3.86829876 6.00300758 8.09245654 

0.05 -1.78621949 1.62680411 3.87821559 6.01288745 8.10230068 

0.06 -1.77622818 1.63673896 3.88809357 6.02271184 8.11207356 

0.07 -1.76624024 1.64664910 3.89792609 6.03247173 8.12176398 

0.08 -1.75625620 1.65653094 3.90770694 6.04215870 8.13136167 

0.09 -1.74627658 1.66638103 3.91743024 6.05176496 8.14085726 

0.1 -1.73630189 1.67619603 3.92709045 6.06128330 8.15024220 

Table 2: The same as Table 1, but for m=1 
 

m=1 

δ n=0 n=1 n=2 n=3 n=4 

0.01 2.04962893 4.20112661 6.28386820 8.33958598 10.38099906 

0.02 2.05962535 4.21111839 6.29385542 8.34956871 10.39097734 

0.03 2.06961571 4.22109638 6.30382136 8.35952281 10.40091977 

0.04 2.07959712 4.23105416 6.31375626 8.36943537 10.41081041 

0.05 2.08956679 4.24098560 6.32365095 8.37929437 10.42063456 

0.06 2.09952199 4.25088486 6.33349682 8.38908868 10.43037877 

0.07 2.10946009 4.26074639 6.34328581 8.39880800 10.44003072 

0.08 2.11937855 4.27056494 6.35301037 8.40844284 10.44957923 

0.09 2.12927490 4.28033549 6.36266347 8.41798448 10.45901417 

0.1 2.13914675 4.29005333 6.37223858 8.42742494 10.46832640 

Table 3: The energy eigenvalues (Enm) of a particle for various wL and  δ values with A=1 for m=0 
 
  wL=0  wL=1.0  wL=5.0  wL=8.0 
δ  n=0 n=1  n=0 n=1  n=0 n=1  n=0 n=1 
0.01  -1.99000 -0.21222  -1.82620 1.58689  0.19484 11.89358  2.18061 20.09823 
0.03  -1.97000 -0.19234  -1.80621 1.60687  0.21484 11.91358  2.20061 20.11823 
0.05  -1.95001 -0.17276  -1.78621 1.62680  0.23483 11.93356  2.22061 20.13822 
0.07  -1.93004 -0.15364  -1.76624 1.64664  0.25482 11.95352  2.24060 20.15819 
0.08  -1.92006 -0.14429  -1.75625 1.65653  0.26482 11.96349  2.25060 20.16817 
0.1   -1.90011 -0.12610  -1.73630 1.67619  0.28480 11.98341  2.27059 20.18812 



Aygün / Bitlis Eren Univ J Sci & Technol / 3 (2), 32 – 38, 2013 

37 

 

 

 
Table 6: The same as Table 5, but for m=1 

 
increasing of n values. In order to see the change of Enm with wL, Enm values calculated for different wL values for both 
m=0 and m=1 are displayed in Tables 3 and 4. Like δ change, we have seen the increased values with MF. Finally, we 
have calculated the Enm for various A constants with different δ values in wL =1 and have displayed the results in 
Tables 5 and 6. For m=0, in general sense, Enm  have negative values and are increasing with MF. On the other hand, 
Enm take positive values for A=1 and 2 in m=1. Then, by increasing of A values, Enm  takes negative values. However, Enm  
values increase with δ. Eventually, if these results are examined, one can see that the EEs in any n value are increasing 
for both m=0 and m=1 with increasing wL. Also, the EEs for the bigger δ parameter take the bigger values. 

 
6. Conclusion 
 

In the present study, we have examined the solution of 
two-dimensional radial SE for the ECSC potential with a 
constant MF. Firstly, in order to make comparative study, 
we have calculated Enm values for the case without MF 
(wL=0). Then, we have investigated two dimension 
solution of the SE for ECSC potential in a constant MF 
(wL≠0). Since the solution of the SE for ECSC potential 
with MF can not be obtained analytically, we have 
applied an iterative approach within the framework of 
AIM. We have calculated Enm values for arbitrary δ, wL 
and A parameters and have given the results in Tables 1-
6. We have observed that Enm values increase with 
increasing of δ values. This behavior is valid for both 
m=0 and m=1. Then, we have examined the effect on the 
EEs values of MF for different wL values. We have found 
that the Enm values increase when the MF strength 
increases. Finally, we have investigated the change of the 
Enm with various A constants. We have seen that a rapid 

 
 

change in Enm results occurs in various A constants. 
Especially, this situation is very clear in A=8 value. Also, 
we have plotted the effective potential and 
corresponding energy levels with increasing wL in order 
to show the effect on the EEs of a constant MF. We have 
observed that the potential energy function and 
corresponding energy levels are raised in energy when 
the MF strength increases. In the short potential range, 
we have seen that the effective potential changes 
gradually from the pure ECSC potential to a harmonic-
oscillator type behavior as the MF applied increases. 

The importance of this the study denotes to its 
providing an insight into the behavior of the ECSC 
potential in a MF that has not been studied so far in 
literature. The method presented in this study is a 
systematic one and it is very practical and efficient in 
obtaining the eigenvalues for the Schrödinger type 
equations in a MF. 

 
 

 Table 4: The same as Table 3, but for m=1 
 

       wL=0  wL=1.0        wL=5.0   wL=8.0 

  δ       n=0   n=1  n=0 n=1        n=0       n=1   n=0   n=1 

0.01  -0.21222 -0.07002  2.04962 4.20112  12.95913 23.24296  21.43496 37.78369 

0.03  -0.19231 -0.05071  2.06961 4.22109  12.97913 23.26295  21.45496 37.80369 

0.05  -0.17264 -0.03300  2.08956 4.24098  12.99912 23.28293  21.47495 37.82367 

0.07  -0.15332 -0.01757  2.10946 4.26074  13.01909 23.30288  21.49494 37.84364 

0.08  -0.14383 -0.01088  2.11937 4.27056  13.02907 23.31284  21.50492 37.85361 

0.1  -0.12526 0.00049  2.13914 4.29005  13.04902 23.33272  21.52489 37.87354 

Table 5: The energy eigenvalues (Enm)  of a particle with various A and δ values for wL=1 
 
m=0 
  A=1  A=2  A=4  A=8 

δ  n=0 n=1  n=0 n=1  n=0 n=1  n=0 n=1 

0.02  -1.81620 1.59688  -7.91370 0.20126  -31.90829 -3.06556  -127.83707 -13.94902 
0.04  -1.79621 1.61684  -7.87370 0.24120  -31.82829 -2.98562  -127.67707 -13.78905 
0.05  -1.78621 1.62680  -7.85370 0.26114  -31.78829 -2.94568  -127.59707 -13.70909 
0.06  -1.77622 1.63673  -7.83371 0.28104  -31.74829 -2.90577  -127.51707 -13.62914 
0.08  -1.75625 1.65653  -7.79373 0.32075  -31.66830 -2.82605  -127.35707 -13.46931 
0.1   -1.73630 1.67619  -7.75376 0.36028  -31.58832 -2.74651  -127.19708 -13.30959 

m=1 

 A=1  A=2  A=4  A=8 

δ n=0 n=1  n=0 n=1  n=0 n=1  n=0 n=1 

0.02 2.05962 4.21111  0.93099 3.35459  -2.16158 1.44863  -12.97516 -3.30146 

0.04 2.07959 4.23105  0.97095 3.39448  -2.08162 1.52846  -12.81519 -3.14163 
0.05 2.08956 4.24098  0.99090 3.41435  -2.04167 1.56827  -12.73522 -3.06182 

0.06 2.09952 4.25088  1.01084 3.43417  -2.00173 1.60799  -12.65526 -2.98210 

0.08 2.11937 4.27056  1.05062 3.47360  -1.92195 1.68711  -12.49539 -2.82300 
0.1 2.13914 4.29005  1.09027 3.51268  -1.84230 1.76569  -12.33561 -2.66445 
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