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Abstract 
 

The use of Monte Carlo in radiation transport is an effective way to predict absorbed dose distributions. 
Monte Carlo modeling has contributed to a better understanding of photon and electron transport by 
radiotherapy physicists. The aim of this review is to introduce Monte Carlo as a powerful radiation 
transport tool. In this review, photon and electron transport algorithms for Monte Carlo techniques are 
investigated and a clinical linear accelerator model is studied for external beam radiotherapy. The 
statistical uncertainties and variance reduction techniques for Monte Carlo simulation are also 
discussed. 
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1. Introduction 
 

Radiotherapy is the clinical process where ionizing 
radiation is used for the treatment of cancer. 
Approximately 60% of all cancer patients receive 
radiotherapy as a component of their treatment. The aim 
of radiotherapy is to deliver a prescribed radiation dose 
to a well-defined tumor volume with minimal damage 
possible to the surrounding healthy tissue (Perez 2008). 

The delivered dose is the main concern of 
radiotherapy physicists. Since the therapeutic doses for 
cancer treatment is high, dose calculation has the upmost 
importance in radiotherapy. Delivering a decreased dose 
than planned will reduce the probability of tumor 
control; on the contrary, delivering a higher dose may 
cause acute or chronic side-effects, even death. The ICRU  
recommends ± 5% accuracy for dose-delivery 
computations (ICRU-50 1993). Today, computerized 
treatment planning systems (TPS) calculate dose 
distributions using several different algorithms. The dose 
algorithm is the most unique, critical, and complex piece 
of software in a computerized planning system (Van Dyk 
1999). With respect to the conventional algorithms with 
approximations, Monte Carlo technique is introduced as 
a ‘gold standard’ for photon dose calculations which aim 
to simulate the complete microscopic radiation transport 
in the patient (Scholz 2003). Kernel based algorithms like 
pencil beam kernel, cone convolution, and superposition 
can calculate almost all dose distributions within ± 5%. 
These TPS algorithms work well with little density 
changes in the target path. The brain tumor is an example 
of little density changes with only the skull in the path 
which creates a density difference. However, many favor 
Monte Carlo simulation in radiotherapy for use in high 
inhomogeneity gradients like head & neck regions. 
(Chaves 2001; Leal 2003; Schwarz 2003). 

 
1.1. What is Monte Carlo? 
 
Monte Carlo is a numerical method for simulating the 
behavior of various physical and mathematical systems. 
It provides a solution to a problem that model objects  

 
 
interacting with other objects or with their environment 
based on simple relationships (Bielajew 2001). The 
origin of the name Monte Carlo comes from its gambling 
aspect. Every Monte Carlo simulation is based on 
randomly happening events so that the outcome is not 
always absolute.  

The general idea of Monte Carlo analysis is simulation. 
The idea is to build a model which, in all means, is able to 
represent the real system of interest. Interaction 
probabilities (of any kind) must be well defined within 
the system by probability distribution functions (PDF) 
(Figure 1).  

 
Figure 1. A typical probability distribution function. 
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These PDFs describe the behavior of a large number of 
events. The behavior of the entire system is inferred from 
the average behavior of the simulated events, using the 
central limit theorem, which states that, as the number of 
trials approaches infinity, the average result of the 
sample approaches the true solution. This is in contrast 
to deterministic methods, which explicitly solve the 
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equation. The trials are generated by inserting a random 
number into the probability distribution function. These 
random numbers are randomly generated variables 
which are uniformly distributed between 0 and 1. In 
Monte Carlo simulation, computer based random 
numbers (pseudo random numbers) are used as random 
number generators (RNG).  

Today’s applications of Monte Carlo Method include 
reactor design, radiation therapy, traffic flow, stock 
exchange predictions, weather forecasting, behaviors of 
nanostructures and polymers, oil-well exploration and so 
on (Zaidi 2003).  

 
2. Monte Carlo for Radiotherapy 

 
The application of Monte Carlo modeling in radiation 
therapy is a growing, enthusiastic topic which has 
unexplored ends. An accurate dose distribution 
calculation is a requirement of radiotherapy and several 
other fields like nuclear medicine imaging, radionuclide 
therapy, and radioprotection. In radiation therapy 
applications, the system is the transport of radiation 
particles (i.e. photons and electrons) through a defined 
geometry, and the events are interactions in matter. The 
probabilities of possible interactions of radiation in 
matter are well known, and depend on the particle’s 
energy and material it travels in. Random number 
selection dictates a particle interaction based on PDFs 
and a large number of trials will produce a true 
distribution of events. 

 
2. 1. Photon Transport 

 
In photon transport, the major photon interactions with 
matter include the photoelectric effect, Compton 
scattering, pair-production, Rayleigh scattering, and 
photonuclear interactions. These interactions are 
governed with photon cross sections of the travelled 
medium. Photon cross sections refer to the various kinds 
of attenuation coefficients. They play an essential role in 
particle transport simulations. The probability of 
occurrence of a certain kind of interaction depends on its 
relative contribution to the total cross section. The 
probability of photon interaction can be expressed in 
terms of the linear attenuation coefficient µ, which 
indicates the fraction of incident photons that will 
interact per unit thickness of the attenuating medium.  
 

_comptonphotoelectric pair production rayleigh       
 

 

where 
 
 

photoelectric
, compton

, _pair production
and rayleigh

 
are cross sections for photoelectric effect, Compton 
scattering, pair production and Rayleigh scattering 
respectively. The contribution from photonuclear 
interactions is often excluded. The inverse of µ is the 
mean free path λ, in units of length. 
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            (3) 
It indicates the average distance traveled by a particle 
before undergoing an interaction. The exponential nature 
of photon attenuation can be represented by: 
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where N is the number of photons transmitted through a 
medium of thickness x with No incident photons. Since µ 
depends on the material density, it is often scaled by the 
mass, atomic, or electron density.  

Typically, the mass attenuation coefficient µm is in 
units of cm2/g, the atomic attenuation coefficient µa is in 
units of cm2/atom, and the electronic attenuation 
coefficient µe is in units of cm2/electron. These quantities 
are related as following: 
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where Na is the Avogadro's number, Z is the atomic 
number, and A is the mass number of the attenuator. 
Photon interaction cross sections depend on the photon 
energy and the atomic number of the medium. As an 
illustrative example, Figure 2 shows the fraction of the 
total cross section for each interaction for carbon and 
tungsten. The data is obtained from the NISTXCOM 
database. Carbon represents low-Z materials whereas 
tungsten represents high-Z materials. 
 

 
 

Figure 2. Contribution of each photon interaction type to the 
total cross section for (a) carbon and (b) tungsten. (NISTXCOM 
database) 
 

In Monte Carlo simulation, particles are transported 
on a history by history basis. A history batch contains all 
the information of particles and their secondary created 
particles in the geometry of interest until the energy of 
each particle falls below a cut-off value. This procedure 
increases efficiency by depositing the energy of the 
photon locally when it is too small to be of significance, 
rather than tracking its full trajectories until it gets 
absorbed. 

In general, the distance to the next interaction, s, can 
be sampled from the total cross section µ, in units of cm-1: 

 

                                 
1
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where R1 is a random number uniformly distributed 
between 0 and 1. If the photon remains in the volume of 
interest after it is transported, the branching ratios of the 
photon interactions will be sampled to determine which 
interaction will follow. The sampling requires another 
random number R2 uniformly distributed between 0 and 
1. Since the contribution of each interaction reflects its 
probability of occurrence, it can be stated that; 
photoelectric effect will happen if,  
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Compton scattering will happen if, 
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pair production will happen if, 
 

_
2
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and Rayleigh scattering will happen if, 
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2

photoelectric compton pair production R
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After the interaction, the parameters of the resultant 
particles will be sampled. The procedure continues until 
every particle is processed. At that point, a new particle 
history can start. 

 
2. 2. Electron Transport 

 
Electron interactions can be separated into two sections; 
catastrophic events and soft events. If electrons lose their 
energy via soft events, there needs to be a large number 
of interactions on the order of 105-106 before an electron 
lose all of its energy. So it is sensible to condense these 
interactions into large step sizes (Figure 3).  
 

Figure 3. Condensing electron interactions into large step sizes 
for soft events. 

 
These step sizes should be large enough so that 

sufficient number of interactions occurs within each step 
for energy loss models to be valid, and they should be 
small enough to reduce errors due to the approximation 
of electron tracks into line segments. The soft events can 
be summarized as, low-energy Møller (Bhabha) 
scattering (modeled as part of the collision stopping 
power), atomic excitation (modeled as another part of 
the collision stopping power), soft bremsstrahlung 
(modeled as radiative stopping power), and elastic 
electron (positron) multiple scattering from atoms. 
(Bielajew 2001). 

However, it is relatively easy to model catastrophic 
events. These events can be summarized as, large energy-
loss Møller scattering (e−e−  e−e−), large energy-loss 
Bhabha scattering (e+e−  e+e−), hard bremsstrahlung 
emission (e±N  e± γN), and positron annihilation in-
flight and at rest (e+e− γ γ). Electron interactions are 
mainly dependent on material composition. The electron 
stopping powers (both collision and radiative) play an 
important role.  

For external beam radiotherapy radiation transport, 
one should couple photon and electron transport 
algorithms because photons will produce secondary 
electrons and electrons will produce secondary photons. 
The important issue is to score and track every individual 
particle until the pre-determined cut-off energy.  
 
2. 3. Source Modelling 
 
In radiotherapy treatment planning, most dose 
calculation algorithms require a commissioning process 

that calibrates the algorithm such that calculated results 
and measured data agree for standard fields. For a linear 
accelerator, each combination of energy and field size 
must also be commissioned. For kernel based analytical 
dose calculation algorithms, measurements are used as a 
starting point and the model parameters are adjusted by 
the use of optimization techniques such that 
measurements and calculated doses agree for the 
benchmark cases (Cecen 2008). 

However, for Monte Carlo dose calculations, the 
resulting dose distributions are entirely defined by the 
radiation field, and not by any model approximation 
parameters. As the dose calculation is based on well-
defined principles of transport physics, the entire dose 
calculation only depends on the accurate modeling of the 
medium and the radiation field.  

It is important to create a realistic model of the linear 
accelerator’s treatment head, known as the beam 
modeling. The beam modeling provides the energy, 
positional and angular distributions of photons and 
electrons exiting the machine, known as the phase space 
data (PSD). The phase space data is defined as the 
collection of variables that describe the particle’s 
absolute location and direction in space with respect to 
the origin of the coordinate system. Phase space data also 
contains the type, energy and weight of the particle.                                 
    

{ , ( ), ( ), ( ), ( )}type E n x n u n weight n
 

 

where n is the history number, type is the type of 
radiation (electron or photon for our case), E is the 

current energy of the particle, x  is the location vector 

for (x, y, z), u is the direction vector ( , , )u u v w or 
(sin cos ,sin sin ,cos )u      and weight is the 

weight of the particle. A particle weight may be included 
in order to improve simulation efficiency if an interaction 
has been forced in low density material; a weighting 
factor must be applied to the resultant particles and all 
the dose deposited by those particles, track information 
history may be logged. The phase space vector for each 
particle is then collected into a data file to be used as the 
source for the dose calculations. 

There are two questions to be answered. First 
question is; “where is the particle?” This question is 
answered by the PSD. Second question is; “where is it 
going?” The answer is ray tracing, which is the definition 
of how particles are transported in space.  

 

0 ox x u s 
 

 

where 
 

0 0 0 0( , , )x x y z  
 

is the current position 
 

0 0 0 0( , , )u u v w
 

 

is the current direction and s is the distance to travel to 
the new position. s is dependent on the type of particle. 
For photon transport s was defined in equation. 
 
2. 4. Linear Accelerator modeling 
 
Today, most of the external beam radiation treatment is 
performed by linear accelerators (LINACs). LINAC is a 
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high energy photon and electron generator. An electron 
gun generates electrons and these electrons are guided 
onto a target to generate photons. The LINAC head 
should be geometrically modeled as the travelling 
medium for photon and electron transport. There are 
some essentials for the LINAC head model. Location, size 
and material composition of components must be known. 
The components of the head are to be modeled starting 
from the vacuum exit window. These components are the 
photon target, primary collimator, scattering foils for 
electron beams, flattening filter for photon beams, 
ionization chamber, mirror, wedges, secondary 
collimators (X-Y jaws), multi-leaf-collimators, and 
applicators for electron beams. As an example, a Philips 
SL 25 LINAC head model is shown in Figure 4.  

 
 
Figure 4. Philips SL 25 LINAC head model. (a) sketch of the 
LINAC head, (b) BEAMnrc modeled LINAC head. 

 
The LINAC head is modeled with the help of BEAMnrc 
Monte Carlo code. Figure 5 shows the energy spectrum of 
6 MV photons which are generated by 6 MeV electrons 
directed onto the photon target. This energy spectrum is 
also calculated with the help of BEAMnrc code (Cecen 
2008). 

 
Figure 5. Energy spectrum of the Philips SL 25 LINAC for 6MV 
photons modeled by BEAMnrc. PSD is scored at the exit of the 
LINAC head.  

 
2. 5. Dose deposition calculations 
 
There are two phases of Monte Carlo modeling for 
external beam radiation therapy. The first phase is the 
source modeling. The second phase is the dose 
calculation in the patient, or phantom geometry. 
Modeling of the patients (or phantoms) is to be 
performed on the basis of DICOM files. All information 
available on the TPS (angles of gantry, table, collimator, 
leaf and jaw settings, monitoring units (MU), and 

isocentre relative to CT data) comes in a DICOM RT Plan 
file. The CT images are carried in DICOM CT files. This file 
should be handled by using an interface program to 
convert each grey-level pixel into a corresponding 
anatomical tissue type defined by its elemental 
composition and mass density (Cecen 2008). Then the 
source is directed into the system to calculate for dose 
deposition. This is a complex model and should be 
handled with Monte Carlo codes. 

The Monte Carlo technique for photon/electron 
transport is available as codes. Some of these codes are 
freely distributed and the reader is encouraged to 
investigate the following codes for use; OMEGA-BEAMnrc 
package, EGSnrc (Electron-Gamma-Shower), MCNP 
(Monte Carlo N-Particle Transport), ETRAN, ITS 
(Integrated Tiger Series), GEANT, PENELOPE 
(Penetration and Energy Loss of Positron and Electrons), 
DPM, FLUKA, PEREGRINE and VMC++ (Voxel Monte 
Carlo). 

The Monte Carlo codes in literature are mainly EGS 
(Malataras 1996; Ayyangar 1998; Leal 2003; Reynaert 
2004), MCNP (Moraleda 2004) and GEANT (Trindade 
2003; Rodrigues 2004) for radiotherapy studies.  
 
3. Statistical uncertainties 
 

A direct approach of estimating uncertainties in the 
precision of Monte Carlo simulations is to divide the 
simulation of histories into N equal batches, and calculate 
the standard error on the mean for the scored quantity x. 
The mean value; 

1
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j

j

x x
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for the jth batch 
 

and the square of variance associated with x is; 
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      the square of variance associated with x  is then, 
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At the end, the result of Monte Carlo calculations is 
expressed as: 

 

xx x s 
  

 

The number of batches should be large enough to avoid 
fluctuations in the uncertainties. 
 
4. Variance Reduction Techniques 
 
Variance reduction techniques are often employed in 
Monte Carlo simulations to increase efficiency ε by 
selectively discarding particles that do not contribute to 
the scored quantities and increasing the number of 
particles that do.  ε can be defined as: 
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2

1

xs T
 

 
 

where 
 

T is the simulation time [CPU seconds] required to obtain 

an estimated variance of 
2

xs
.  

There are two ways to improve efficiency. Either one 
can lower the calculation time or the variance. 
Calculation time depends on the power of computers and 
better programming techniques. However there are 
tricks to lower the variance which are called variance 
reduction techniques. To reduce the relative error 
without increasing the number of histories, variance 
reduction techniques are introduced. The main goal is to 
reduce sample variance so that the relative error 
decreases. Variance reduction (biasing) techniques for 
Monte Carlo simulations can also reduce the amount of 
computer time required for obtaining results of sufficient 
precision. Many of the variance reduction techniques 
produce and/or destroy particles during the simulation 
per history to produce outcomes closer to the solution. In 
some cases, the effect of biasing the simulations to gain 
efficiency has to be offset by properly adjusting the 
weights of the scored quantities.  

Variance reduction algorithms can be classified into 
four major categories. In the truncation methods, some 
aspects of the simulation that contribute little to the 
outcomes are truncated. Examples include not modeling 
the irrelevant parts of the geometry, and imposing an 
energy cutoff below which particles are terminated. The 
population control methods controls the quantities of the 
particles to be sampled based on their levels of 
importance. Methods such as particle splitting and 
Russian roulette belong to this category. The modified 
sampling methods modify the sampling distributions to 
improve the statistics, which may involve biasing the 
particle source or forcing an interaction to occur. Lastly, 
the partially deterministic methods incorporate some 
deterministic features in the sampling, which may alter 
the random number sequence. 

 
5. Conclusion 
 
Monte Carlo techniques have a wide range of application 
area in science and technology. Any complex problem can 
be modeled with proper probability distribution 
functions, a good random number generator and well-
defined geometric modeling.  

In radiation transport, Monte Carlo is a very precise 
modeling tool. Application of Monte Carlo techniques in 
radiation transport can be summarized as, basic 
dosimetry, radiation detector simulations, radiation 
protection and shielding calculations, brachytherapy and 
external beam radiotherapy. For external beam 
radiotherapy one can use Monte Carlo modeling for 
direct implementation into TPS, derivation of beam data, 
verification of beam models or treatment planning 
verification tool for IMRT and arc therapy. This study can 
be used for educational purposes and may provide a 
better understanding of Monte Carlo methods in 
radiotherapy. 
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