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Abstract – As a continuation of the study of various algebraic structures of Fuzzy Multisets, in this paper the 

concept of Abelian fuzzy multigroups, left and right cosets of fuzzy multi groups and fuzzy  multi order of an 

element of a group are introduced and its various properties are discussed. In the last section some of the 

homomorphic properties between two Fuzzy multigroups are discussed. 
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1 Introduction 
 

Modern set theory formulated by George Cantor is fundamental for the whole Mathematics. 

But to represent imprecise, vague data classical set theory is insufficient. So many non 

classical sets were put forward to overcome this problem. Some of them are fuzzy sets, soft 

sets, rough sets, multisets etc. To make these non classical sets even more powerful 

combinations of them were also introduced in time. One of them is Fuzzy Multisets.Fuzzy 

Multisetsis a powerful tool for modelling quantitative and qualitative properties of objects 

simultaneously. 

 

Many fields of modern mathematics have been emerged by violating a basic principle of a 

given theory only because useful structures could be defined this way. Set is a well-defined 

collection of distinct objects, that is, the elements of a set are pair wise different.  If we relax 

this restriction and allow repeated occurrences of any element, then we can get a 

mathematical structure that is known as Multisets or Bags.  For example, the prime 
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factorization of an integer n>0 is a Multiset whose elements are primes. The number 120 has 

the prime factorization 120 = 2
3
3

1
5

1
 which gives the Multiset {2, 2, 2, 3, 5}. A complete 

account of the development of multiset theory can be seen in [1,2, 9, 10,11,12,13]. As a 

generalization of multiset, Yager [6] introduced the concept of Fuzzy Multiset (FMS). An 

element of a Fuzzy Multiset can occur more than once with possibly the sameor different 

membership values. 

 

 

2 Preliminaries 
 

Definition 2.1.[11] Let X be a set. A multiset (mset) M drawn from X is represented by a 

function Count M or CM defined as CM : X {0,1, 2, 3,…}.For each xX, CM(x) is the 

characteristic value of x in M. Here CM(x) denotes the number of occurrences of x in M.  

 

Definition 2.2.[10] Let X  be a group. A multi set G over X is a multi group over X if the 

count of G satisfies the following two conditions 

 

1. CG(xy)  ≥   CG (x) CG(y)   x,y  X; 

2. CG(x
-1

)  ≥   CG(x)  x  X 

 
Definition 2.3.[12] If Xis a collection of objects, then a fuzzy set A in X is a set of ordered 

pairs: A = {(x,µA(x)) : x X,µA : X [0,1]} where µAis called the membership function of A, 

and is defined from X into [0, 1]. 

 

Definition 2.4.[2] Let G be a group and µ FP(G) (fuzzy power set of G), then µ is called 

fuzzy subgroup of G if 

 

1. µ(xy)  ≥µ(x) µ(y)  x, y    and 

2. µ(x 
-1

)   µ(x) x    

Definition 2.5.[9] Let X be a nonempty set. A Fuzzy Multiset (FMS) A drawn from X is 

characterized by a function, „count membership‟ of A denoted by CMA such that CMA :X  Q 

where Q is the set of all crisp multisets drawn from the unit interval [0,1].   

 

Then for any x  X, the value CMA(x) is a crisp multiset drawn from [0,1].  For each x  X, the 

membership sequence is defined as the decreasingly ordered sequence of elements in CMA(x). 

It is denoted by*   
 ( )    

 ( )    
 ( )        

 ( ) +       
 ( )     

 ( )      
 ( )       

   
 ( ). 

 

When every x  X is mapped to a finite multiset of Q under the count membership function 

CMA, then A is called a finite fuzzy multiset of X.The collection of all finite multisets of X is 

denoted by FM(X). Throughout this paper fuzzy multisets are taken from FM(X). 

 

Definition 2.6.[7] Let A   ( ) and x  A. Then   (     )      *     
 ( )    + 

When we define an operation between two fuzzy multisets, the length of their membership 

sequences should be set to equal. So if Aand B are FMS at consideration, take  (      )  
     * (   )  (   )+. When no ambiguity arises we denote the length of membership by 

L(x). 
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Basic relations and operations, assuming that A and B are two fuzzy multisets of X is taken 

from [7] and is given below. 

 

a) Inclusion 

     µ
 

 
( )  µ

 

 
( )            ( )      . 

 

b) Equality 

    µ
 

 
( )  µ

 

 
( )            ( )     . 

 

c) Union 

µ
   
 ( )  µ

 
 ( )  µ

 
 ( )            ( )  where   is the maximum operation. 

 

d) Intersection 

µ
   
 ( )  µ

 
 ( )  µ

 
 ( )            ( )where   is the minimum operation. 

 

By CMA(x) ≥ CMA(y) it is taken that µA
i
(x) ≥ µA

i
(y)  i= 1, . . . , Max{L(x), L(y)}. And 

CMA(x)CMA(y)  means that {µA
i
(x) µA

i
(y) }  i = 1, . . . , Max{L(x), L(y)}. And by CMA(x) 

CMA(y) we mean {µA
i
(x) µA

i
(y)}  i = 1, . . . , Max{L(x), L(y) }. 

 

Definition 2.7.[8] Let A  FM(X). Then A
-1

 is defined as CMA
-1

(x) = CMA(x
-1

). 

 

Definition 2.8.[8] Let A, B FM(X). Then define A o B as  

 

     ( )        *    ( )      ( )                    +. Also 

        ( )           *   ( )     ( 
   )+    

      *   (  
  )     ( )+     

 

Definition 2.9.[8] Let Xbe a group. A fuzzy multiset G over X is a fuzzy multi group (FMG) 

over X if the count (count membership) of G satisfies the following two conditions. 

 

1. CMG(xy)  ≥  CMG(x) CMG(y)         . 

2. CMG(x
-1

)  ≥CMG(x)     . 

 

Definition 2.10.[8] Let     ( )  Then  

A[α, n]  *        
 ( )      ( )             +. This is called n-α level set of A. 

 

Definition 2.11.[8] Let     ( ). Then define A*   *        ( )     ( ) }. 

 
Proposition 2.12.[8] Let A FMG (X). Then  

 

a) CMA(e)    ≥  CMA(x)   x    
b) CMA(x

n
)  ≥  CMA(x)   x   . 

c) A
-1⊇A. 

 

Proposition 2.13.[8] Let     ( )           ( ) iff  CMA(xy
-1

) ≥  CMA(x) ˄ CMA(y) 

 x, y  X. 
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Proposition 2.14.[8] If A    ( )  and H is a subgroup of X, then A|H (i.e. A restricted to 

H)    ( ) and is a fuzzy multi subgroup of A . 

 

Proposition 2.15.[8] Let      ( )  Then A[α, n] are subgroups of X. 

 

Proposition 2.16.[8] Let      ( ). Then A* is a subgroup of  X. 

 

Some of the basic properties of groups are given below. 

 

Definition 2.17.[14]Let (G,*),(  ,o) be two groups. A mapping          is called a 

homomorphism if   (   )    ( )  ( )        
 

Definition 2.18.[14] Let          be a homomorphism. Then the kennel of   is the set of 

all those elements of G which are mapped to the identity element of G‟. That is 

 Ker       *       ( )     +                                        
 

Proposition 2.19.[14] Let        be a homomorphism. Then 

 

 ( )      (   )  , ( )- -1 

 

Proposition 2.20. [14] Let       ‟ with kernel K. Then K is a normal subgroup of G. 

 

Definition 2.21.[14] A one-one homomorphism from G onto G‟ is called an isomorphism. 

 

Definition 2.22.[14] Two groups G, and G* are said tobe isomorphic if there is an 

isomorphism of G onto G*. 

 

Note :- If G and G* are isomorphic then both groups will have the same properties. 

 

Definition 2.23.[14] An isomorphism of a group G to itself is called an Automorphism. 

 

 

3. Abelian Fuzzy Multi Group 

Proposition 3.1. Let      ( ). Then the following assertions are equivalent. 

 

a)    (  )     (  )               

b)    (   
  )     ( )          

c)    (   
  )     ( )          

d)    (   
  )     ( )          

Proof. (a)   (b)    Let      . Then    (   
  )     ( 

    )     ( ) 
 

(b)   (c)Straight forward 

 

(c)   (d)   (   
  )     , 

  (     )(   )  -      ( ) 
 

(d)   (a)Let       

Then    (  )     , (  ) 
  -     (  )     , (  ) 

  -      (  ) 
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Hence    (  )     (  ).Thus the above assertions are equivalent. 

 

Definition 3.2. G  FMG(X)is called an Abelian fuzzy multi groupover X, if    (  )  
   (  )       . Let AFMG(X) denote the set of all abelian fuzzy multi groups over X. 

 

Example 3.3. Let X be an abelian group and G be a FMG of X. Then G is an abelian FMG 

over X. 

 

Proposition 3.4. Let A AFMG(X). Then A
*
, A[α,n]; n N, α  [0,1] are normal subgroups of 

X.  

 

Proof. By Propositions 2.15 and 2.16 A
*
 and A[α,n] are subgroups of X. 

 

1.  Let x X and y A
*
. So    ( )     ( ). Since A  AFMG(X)  

   (  )     (  )        So    (   
  )        ( )        ( )  by (3.1.)                 

So        . Hence the proof by the definition of normal subgroup. 

 

2. Let x X and y A[α, n]. Since A AFMG(X),    (  )     (  )        So 

   (   
  )        ( )  by(3.1.)  So xy     ,   - Hence the proof by the definition of 

normal subgroup. 

 

Proposition 3.5. Let A AFMG(X). Then A
j
; j N, isnormal subgroup of X iff  

  
   (    )             

 

Proof. In [8] it is proved thatA
j
 is a subgroup of Xiff   

   (    )              Let x X 

and y A
j
. So   

 ( )         
   ( )     Since A AFMG(X) , 

   (  )     (  )         So    (   
  )     ( )  by (3.1.).  Then                  

  
 (     )           

   (     )     So         . Hence the proof by the definition 

of normal subgroup. 

 

Corollary 3.6. Let A AFMG(X). Then  A
j
 ; j N, isnormal subgroup of X iff A

j
is a subgroup 

of X. 

 

Definition 3.7. Let X be a group andA FM(X).Then,   ( )-  FM(X) with only one 

element x and    ,   ( )- 
( )      ( )   

 

Definition 3.8. Let Xbe a group H FMG(X) and x X. Also let e be the identity element of X. 

Then 

 

a)  the FMS ,   ( )-      is called a left fuzzy multi coset (LFMC) of H in X and is denoted 

by xH, where  

    ( )     *   ,   ( )- 
( )       ( )       + 

    ,   ( )- 
( )       ( 

   ) 

                                                           ( )       ( 
   )   by  (3.9.) 

                                                     ( 
   )   by (2.10) 

 

b)  the FMS    ,   ( )- is called a right fuzzy multi coset (RFMC) of H in X and is 

denoted by Hx, where 
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    ( )     *    ( )     ,   ( )- 
( )        + 

      (  
  )       ,   ( )- 

( ) 

                                                            (  
  )       ( ) 

                                                            (  
  ) 

 

Remark 3.9. If H   AFMG(X), then xH = Hx,  x   X. 

 

Proof. Let  H   AFMG(X)  

 

    ( )         (  
  ) 

                          ( 
   ) 

                           ( ) 
 

Proposition 3.10. Let H   FMG(X). Then  x, y   X, 

 

a) xH = yH  xH* = yH*  

b) Hx = Hy H*x = H*y 

 

Proof. a)  Let xH = yH. Then     ( )      ( )  and hence 

    ( 
   )     ( 

   )   z   X.     

Now since z is arbitrary, put z = y, we get     ( 
   )     ( 

   )       ( ) 
Thus x

-1
y H* and hence xH* = yH*      

Conversely, let xH* = yH*. Thus x
-1

y, y
-1

x H*. …….(1) 

Now    ( 
   )         (, 

   -,    -)   by associativity of group  

       ( 
   )      ( 

   ) by (2.9) 

       ( )        ( 
   )  by (1)  

       ( 
   )         

Similarly      ( 
   )        ( 

   )        
So     ( )      ( )         Hence the proof. 

 

b)     Proof is similar to part (a).   

 

Proposition 3.11.  Let H AFMG(X). If xH = yH, then    ( )      ( )           
 

Proof. Let xH = yH. Then     ( )      ( )and hence    ( 
   )     ( 

   )  z X. 

Now since z is arbitrary, put z = y, we get     ( 
   )     ( 

   )       ( )   
Thus x

-1
y H*. Similarly  y

-1
x H*. ………….(1) 

Since H AFMG(X), it follows that    ( )         ( 
    )   by (3.1.)                       

      ( 
   )        ( )    by (2.9.) 

      ( )       ( )   by (1) and (2.10) 

      ( ) 
Similarly    ( )        ( )and hence the proof. 

 

Definition 3.12. Let A    ( )  Then 

 [A] = {x: x          (  )     (  )         + is called the normalizer of A in X. 

 

Proposition 3.13.  Let A    ( )  Then [A] is a subgroup of X and A|[A]     (, -)  
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Proof. Clearly e  , -  Let x, y , -  Then         
 

   (,  
  - )              ( , 

   -) 
                                          (, 

   - )      by  x , - and y
-1     

                                      (, 
     - )   by (2.9)  

                                          ( , 
     -)   by  y , - and x

-1
z

-1    
                                          (  ,  

  -)by (2.9)  ................... (1) 

 

   (  ,  
  -)             ( , 

     -) 
                                          (, 

     - )       
                                          (, 

   - ) 
                                          (,  

  - ) ........................(2) 

 

From (1) & (2) xy
-1 , - So [A] is a subgroup of X. By (2.14) it is provedA|[A]    (, -)  

And by the definition of  AFMG the proof is complete. 

 

Proposition 3.14.Let A, B    ( ) and A    Then the following assertions are 

equivalent.  

 

a)    (   
  )         ( )       ( )                  

b)    (  )         (  )       ( )                  
c) ,   ( )-            (  ,   ( )- )         
 

  Proof. (a)   (b) 

 

Since A     (  )       (    
  )          (  )      ( )        by(a) 

 

1. (b)   (c) 

          (,   ( )-      )
( )          ,  ,   ( )- 

( )       ( 
   )-  

                    ( )       ( 
   ) 

                                                        =      ( 
   ) 

                                                            ( 
   ) by(2.9.) 

                                                              (  
  )        ( 

  )  by (b)       

                                                             (  
  )        ( 

  )   by (2.9.) 

                                                        =       ( )        ( )  by(3.8 and 2.9)     

                                                        =   (    ( )       ( ))( ) 
 

2.  (b)    (a)               

   ( ,  
  -)               (,  

  - )        ( ) 
                                                             ( )         ( )     
 

3. (c)  (b)              

                                            (  )         ( 
     )  by(2.9) 

                                                                 ( 
  ) 

                                                   (  )    ( 
  )  by(c) 

                                                                 ( 
     )       ( 

  )    
                                                                (  )         ( )     Hence the proof by (2.9.) . 
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4 Fuzzy Multi Order 

 
4.1 Fuzzy Multi Order of an Element of a Group 

 

Throughout the rest of the paper we consider X as a group with finite order. And A 
   ( )  Also x, y     
 

Definition 4.1.1. Let A be a FMG of X and x  . The least positive integer n such that 

   ( 
 )     ( ) is known as fuzzy multi order of x w.r.t. A and is denoted by (O(x);A). If 

no such n exists, x is said to be of infinite order w.r.t. A.  

 

Example 4.1.2. (Z4, +4 ) is a group. Let A = {(.6, .4, .3, .1 )/2, (.9, .8, .7, .5, .1, .1)/0}  is a 

fuzzy multi group.     ( 
 )      ( ). So (O(2);A) = 2.  

 

Also O(x) = O(y) does not imply (O(x);A) = (O(y);A). It is illustrated below. Consider the 

Klein four cycle X = {e, a, b, c}. Then A = {(.6, .4, .3, .1)/a, (.9, .8, .7, .5, .1, .1)/b, (.9, .8, .7, 

.5, .1, .1)/c, (.9, .8, .7, .5, .1, .1)/e}. Here O(a) = O(b) = O(c). But (O(a);A)   (O(b); A) = 

(O(c);A). 

 

Proposition 4.1.3. Let A    ( )  If     ( 
 )     ( ), for some positive integer m, 

then  (O(x);A)|m. 

 

Proof. Let (O(x); A) = n. Given      ( 
 )     ( ). Hence n≤m. 

By division algorithm                such that m = ns+t ; 0    . The 

  

             ( 
 )       ( 

    ) 
                                   ( 

 (  )  ) 
                                  ( 

 )    ( 
 )    by (2.9)     

                          =       ( )    ( 
  )   

                          =       ( 
  )    by 2.12(a) 

                               ( 
  )  by 2.9 

                          =      ( 
 ) ) 

                               ( 
 )  by 2.12(b) 

                                ( ) 
 

So     ( 
 )       ( ). Hence t=0 by the minimality of n. i.e. m= ns. Hence the proof. 

 

Proposition 4.1.4.  Let A    ( )  Then        (O(x);A)|O(x). 

 

Proof. O(x) = m,   (O(x);A) =n 

   ( 
 )       ( ) 

So (O(x);A) = n  ( )    (Since n is the least) 

Let n   and let m = np + q ; 0 <q<n. Then 

 

         

        

          

   ( 
  )     ( 

  ) 



Journal of New Theory 5 (2015) 80-93                                                                                                               88 

 

 

Thus    ( 
  )     ( 

 )  by 2.9 

   ( 
 )     (( 

 ) )     ( )   by (2.9.) 

i.e.            ( 
 )     ( )  This is a contradiction to (O(x); A) =n.  

Hence the proof. 

 

Proposition 4.1.5.  Let A    ( )  Let x, y   such that ((O(x) ;A), (O(y); A) ) = 1 and xy 

= yx. Then if    (  )     (e), then    ( )     ( )     ( )  
 

Proof. Let (O(x); A) = n,  (O(y); A) = m. …….. (1) 

 

   ( )       (  )   (given) 

                    ((  )
 )by 2.12(b) 

                      ( 
   )   …………… (2)   

 

Hence      ( )         ( 
   )  by (2.10.) Now 

 

   ( 
 )          ( 

      ) 
                                                                           ( 

   )     (( 
 )  )   by  (2.9.)  

                                                                        ( )     ( )   by (1) and (2) and 2.9 

                                                                           ( )   
 

Thus     ( 
 )         ( )  Then n|m. (by 4.1.4). But (n, m) =1  (given). Thus n = 1.   

i.e.    ( )            ( 
 )          ( )  Similarly    ( )     ( )  

 

Corollory 4.1.6.  Let A    ( )  Let x, y   such that (O(x), O(y) ) = 1and xy = yx. Then if 

   (  )     (e), then    ( )     ( )     ( )  
 

Proof. (O(x), O(y) ) = 1 

(O(x) ;A)\ O(x).  by (4.1.5.). Then  

((O(x) ;A), (O(y); A) ) = 1 Then the proof  by (4.1.5) 

 

Theorem 4.1.7. Let A     ( )  Let (O(x); A) = n ; x    If m is an integer with (m,n) = d, 

then (O(x
m
); A) = n/d. 

 

Proof. Let (O(x
m
); A) = t. Now 

 

   (( 
 )   )         ( 

  )                +
 

                               ( 
 )  by  (2.12)   

                                      ( ) 
 

i.e.      (( 
 )   )       ( )  Thus t|(n/d)    by(4.1.3)     …………(1) 

Now, since (m, n) = d,                         So 

   ( 
  )        ( 

 (     )) 

                                                                        (( 
 )  )    ((( 

 ) ) )   
                                                                        ( 

 )     (( 
 ) )    by  (2. 12) 

                                                                           ( ) 
 

   ( 
  )       ( ) 
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 So n|(td)   by(4.1.3)  i.e. (n/d)|(td/d).  (n/d)|t. ……..(2) 

t = (n/d)   by (1) and (2). Hence the proof 

 

Proposition 4.1.8. Let A    ( )  Let (O(x); A) = n ; x    If m is an integer with (m, n) = 

1, then    ( 
 )       ( )  

 

Proof. Since (m, n) = 1,                          We then have  

 

   ( )              ( 
     ) 

                                                                            (( 
 ) )    (( 

 ) )    by  (2.9)  

                                                                           ( 
 )     ( 

 ) 
                                                                           ( )     ( 

 ) 
 

   ( )     ( 
 ) So 

   ( 
 )         ( )   by(2.12(b)) 

 

Theorem 4.1.9. Let       ( )  Let ( ( );  ) =   ;      If    (    )  i    . Then 

(O(  )  )    ( (  )  )   
 

Proof. ( (  )  )        ( (  )  )     Alsoi = j + nk; k  . So  

 

                                     (( 
 ) )         (( 

    ) ) 

                                                             (( 
 )

 
)    (( 

 )  ) 

    ( )     ( 
 )  

                                                              ( )     
 

Then    (( 
 ) )         ( )   by (2.12) 

So t|s. Similarly by    (( 
 ) )       ( )we get s|t. Thus t = s.  

 

Proposition 4.1.10. Let A    ( )  Let x, y   such that ((O(x);A), (O(y); A) ) = 1 and xy 

= yx. Then  (O(xy);A) = [(O(x); A)][(O(y);A)]. 

 

Proof. Let (O(xy);A) = n, (O(x); A)  =s,    (O(y);A) = t. Then (t,s) = 1  (given) 

 

                        ((  )
  )     ( 

  )    ( 
  ) 

                    ( 
 )    ( 

 ) 
         ( )     ( ) 

                 ( )     
 

So n|st  by (4.1.3)               ………………(1) 

Now     ( )          ((  )
 )        ( 

   )  
Since n|st and (t,s) = 1, n|s or n|t.Assume n|t, then (n,s) =1.  

So  ( (  )  )   /(n,s)  = s.    by (4.1.7) 

Also by the same  ( (  )  )      (   )    ……………..(a) 

Since (s,t) = 1, we have (s, (t/(n,t)) ) = 1.  

Thus  (( (  )  ) ( (  )  ))       by (a) 

Also    ((  )
 )        ( 

   )      ( )       (O(xy);A) = n.  
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Also    ( 
 )     ( 

 )     ( ) 
So s|n and t|n  by(4.1.3).  

Now since (s, t) =1, (st)|n.   ……………..(2)  Then from (1) and (2) n = st. 

 

Proposition4.1.11. Let A    ( )  Let z    (O(z); A) = mn with (m, n) = 1, then      
                 ( ( )  )        ( ( )  )      
 

Proof. (m,n) = 1                            ……………..(1) 

So (m,t) = (n,s) =1. Let x = z
nt

,  y = z
ms

. Then  xy  =  z
nt

 z
ms 

 =  z
ms 

z
nt

= yx  = z
nt+ms

=  z by (1) 

Given (O(z); A) = mn. So  by (4.1.7) 

( ( )  )   ( (   )  )      (     )        (   )            (since (m, t) =1) 

Similarly ( ( )  )        This proves the existence of x and y. 

 

 

4.2 Fuzzy Multi Order in Cyclic Groups 

 

In this section we consider X as a cyclic group with finite order. And A    ( )  
 

Lemma4.2.1. Let A    ( )  And let a, b be two generators of X. Then 

 

(O(a); A) =  (O(b); A). 

 

Proof. Let |X| = n. O(a) = O(b) = n. Now b = a
p
  ; p   . So (p,n) =1. Let( ( )   )      

Then m|n    by (4.1.4). Then 

( ( )   )    ( (  )   )      (   )               ( ( )   )   by (4.1.7)  

and since (p,n) =1. So (O(a);A) = (O(b);A). 

 

Theorem 4.2.2. Let A    ( ) with |X| = n.Then the following assertions hold          
 

a) If O(x)| O(y), then (O(x);A)| (O(y);A).      

b) If O(x) = O(y), then (O(x);A) = (O(y);A).          

c) If O(x) >O(y), then (O(x);A)   (O(y);A). 

 

Proof. Let X = (a), x = a
s
, y = a

t
 and (O(a);A) = m. HenceO(a) = n. Now by (4.2.1.) m is 

independent of a particular choice of a generatora ofX. Thus O(x) = n/(s,n) ,  By the property 

of a cyclic group  O(y) = n/(t,n) ………….(1) 

 

(O(x);A) = (O(a
s
);A) = m/(s,m)  by(4.1.7)  Similarly (O(y);A) = (O(a

t
);A) = m/(t,m)                                     

By (4.1.4) m|n. …………..(2) 

 

a) If O(x)| O(y), then by (1)  {n/(s,n)} | {n/(t,n)} =  (t,n)|(s,n). 

Now by (2)m|n                 So (t, mk)|(s, mk).  i.e. (t,m)|(s,m). 

Hence m/(s,m)| m/(t,m).  Hence the proof. 

 

b) Result follows from (a) 

 

c) O(x) >O(y), thenn/(s,n)   >n/(t,n)   So (s,n) < (t,n).  So (s,m)   (t,m)   by m|n. 
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5 Homomorphism between Fuzzy Multigroups 
 

Proposition 5.1 Let x, y be two groups and f: x y be a homomorphism. If 

A    ( )      ( )     ( ) 
 

Proof.  Let U,V, Y 

 

Case I: 

Let u,   ( )  Then 

   ( )( )     ( )( )         ( )(  ) 

   ( )( 
  )       ( )( ) 

 

Case II: 

   ( ) (    ( )                     )  
   ( )( )     ( )( )       ( )( )       ( )(  ) 

 

Case III: 

Let      ( ) Then there exist        such that  ( )     ( )    

Now    ( )( )    {  ( )( )      ( )    }   (1) 

 *  ( )(  )         ( )     ( )   + 

(Since    ( ) by the definition of homomorphism. i.e, 

  (  )   ( ) ( )    )  {  ( )( )    ( )( )         ( )     ( )   } 

           ( )   , *   ( )      ( )   +-  , *   ( )      ( )   +- 
     ( )( )     ( )( )  (2) 

Also 

           ( )( 
  )    *   ( 

  )          (   )   + 

                                  *   ( )      (   )     + (     ( )) 
                                *   ( )      ( )   + 
 

(f(   ) =  -1 (f(   ))
-1 

=( )-1   (f(   ))
-1

 =u  f( )=u, property of h-ism)  

=    ( )( )  ( ) 
 

From (2) and (3)   ( )       ( ) 
 

Proposition 5.2 Let x,y, be two groups and f: x  y be a homomorphism. If 

 

     ( )            ( ). 
 

Proof. Let x,y    

 

Case I, Case II, is similar to proposition 5.1. 

 

Case III 

Let x,y      ( )  Then there exist u,v,                 ( ) = x and     ( )   . 

Now      ( )(  ) =     (  ) (By definition  of inverse) 

       ( ) ( ) (Definition of homomorphism ) 

         ( )      ( ( ) (Since      ( ) 
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   =       ( )( )        ( )( ) 

Now      ( )( 
  ) =    ( ( 

  ))     (By definition of inverse) 

   =    ( ( ))
       (By definition of homomorphism) 

        ( ( ))       (Since      ( ) 
   =      ( )( ) 

 

Proposition 5.3 Let       ( ) and Y be a group. Suppose that       be an onto 

homomorphism. Then  ( )      ( ). 
 

Proof.By proposition 5.1,  ( )     ( ). Now let      . Since   is onto, there exist 

   . Such that  ( )   . Thus 

 
                ( )(   

  )    *   ( )      ( )       + 

    *   ( 
    )      (     )   + 

 

   ( )     ( 
    )             ( )                  

 

Now  ( )         ( ) ( ( ))   

 ( ( ))
  
 ( ) ( )     (   ) ( ) ( )    

  *   ( )      ( )   +     ( )( ) 

 

Hence by proposition 3.1,  ( )      ( ) 
 

Proposition 5.4 Let       ( ) and   be a group. Suppose that       be an into 

homomorphism. Then    ( )      ( ). 
 

Proof. By proposition 3.1,    ( )      ( ). Let      . Then  
 

     ( )(  )     , (  )-     , ( ) ( )-     , ( ) ( )- 

 
Since   is a homomorphism and       ( )     , (  )-        ( )(  ) 

Hence    ( )      ( ). 

 

6 Conclusions 

 
In this paperwe introduced the concept of Abelian fuzzy multi groups and find out some of 

the normal subgroups of X. Also left and right cosets of fuzzy multi groups and fuzzy multi 

order of an element of groups are introduced and its various properties are discussed. And it 

became evident that Fuzzy multi order of an element of a group has some properties similar 

to that of order of an element in a group. And finally we discussed some of the homomorphic 

properties of Fuzzy multigroups.  
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