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Abstract — In this short paper, the authors establish some inequalities involving the ¢ and (g, k)
deformed Gamma functions by employing some basic analytical techniques.
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1 Introduction

Let I'(z) be the classical Gamma function and 1 (z) be the classical Psi or Digamma function defined

for x € R as: .
I(z) = / t*“ e tdt,
0

W) = L inT(a) = FF/((;)).

dzx

It is common knowledge in literature that the Gamma function satisfies the following properties.
'ln+1)=n!, neZt,
I'(z+1)=al(x), z€RT.

Also, let T'y(«) be the g-deformed Gamma function (also known as the ¢-Gamma function or the ¢-

analogue of the Gamma function) and ,(x) be the ¢g-deformed Psi function defined for ¢ € (0,1) and
r € R as (See [6], [7] and the references therein):

R d
Fq({E) _ (1 _ q)l_'L H ﬁ and ’(/Jq(l') = %lnFq(x)

n=1
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with T'y(z) satisfying the properties:

L,n+1)=[n],! neZzt, (1)
L (x+1) = [z],ly(x) z€R. (2)
where [z], = 11%‘1; and [z +yl, = [x]q + ¢*[y]ly for xz,y € RT. See [2].

Similarly, let T'¢; xy(x) be the (g, k)-deformed Gamma function and 4 k) (x) be the (g, k)-deformed
Psi function defined for ¢ € (0,1), k > 0 and € RT as (See [2], [8], [10] and the references therein):

z_q

(1-q")} (1 - ") d
ok _ ok and V() (@) = - InT(g k) (@)

r = - = :
@) = T T U - g &

where (z +y)7 , = H;:Ol (x + ¢’*y) with (4,1 () satisfying the following property:

F(q’k)(x +k) = [x]qF(q,k) (z), z¢€ R*. (3)

The g-addition (otherwise known as the g-analogue or g-deformation of the ordinary addition) can be
defined in the following two ways:

The Nalli-Ward-Alsalam g-addition, &, is defined (See [11], [1], [3]) as:

(a @y b)" = E (n) a*v"= % for a,be R, neN. (4)
k
k=1 q
where (Z)q = m is the g-binomial coefficient.

The Jackson-Hahn-Cigler ¢-addition, B, is defined (See [4], [5], [3]) as:

n

maqw%_E:(Z)Jﬁfhnkw for a,be R, neN. (5)
k=1 q

Notice that both @, and B, reduce to the ordinary addition, 4+ when ¢ = 1.

In a recent paper [9], the inequalities:

T(m+n+1) (m + n)mtn
F'm+1)I'(n+1) mmnn

, m,n€ 2t (6)

Paty+1) _ (@+y™
Fe+1)I(y+1) = %y
which occur in the study of probability theory were presented together with some other results. In this
paper, the objective is to establish related inequalities for the ¢ and (g, k) deformed Gamma functions.
The results are presented in the following section.

., =xy€RT (7)

2 Main Results

Theorem 2.1. Let ¢ € (0,1) and m,n € Z*. Then, the inequality:

Py(m+n+l) _ (megn)™™
Fym+1)Ty(n+1) =  mmnn

holds true.
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Proof. By equation (4) we obtain;

(m @q n)m+n > <m + n) mmn"
m q

since the binomial expansion of (m @, n)™" includes the term (mnt”)qmmn” as well as some other
terms. That implies,

! < (m &4 n)ern'
el Tl =

Now using relation (1) yields,

Lymtntl) _ (mogn)m

Fym+1)Ty(n+1) — mmn”
completing the proof.
O
Theorem 2.2. Let g € (0,1) and m,n € Z*. Then, the inequality:
n(1—n)
Fym+n+1) < (mByn)™tg = ()
Fym+1T(n+1) — mmn"
holds true.
Proof. Similarly, by equation (5) we obtain;
(m Eﬂq n)m-‘rn Z (m + TL) qn(nzfl) mmnn.
n
q
Implying,
[m + n}q[ < (m Bﬂq n)m—‘—nqn(l;n)
[m]g![n]g! — mmn"
By relation (1), we obtain;
Iym+n+1) < (m &, n)m*'"qw
Fom+1)Ty(n+1) — mmn”
concluding the proof.
U
Lemma 2.3. If ¢ € (0,1) and z € (0,1) then,
In(1 —-¢*)—In(1—¢q) <0. (10)

Proof. We have ¢ > ¢ for all ¢ € (0,1) and = € (0,1). That implies, 1 — ¢ < 1 — q. Taking the
logarithm of both sides concludes the proof.
O

Theorem 2.4. Let ¢ € (0,1) fixed, z € (0,1) and y € (0,1) be such that ¢4(x + 1) > 0. Then, the
inequality:

Dye+y+1) & + y)i Ve

Do+ DL+ 1)~ (ol [yler T (y) )

holds true.
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Proof. Let @ and T be defined for ¢ € (0, 1) fixed, z € (0,1) and y € (0,1) by,

Q(z +y)
Q(r)Q(y)

[z]q
Q(a:)—e;f;jf” and  T(z,y) =
q

Let pu(z) = InQ(x). That is,

p(z) = [z]y + nTy(x + 1) — [x]4In]x],. Then,

X

ple)' = g(e+1) + (ng) = Infal,

T

q

=¢g(z+ 1)+ (Ing)7— (In(1 - ¢*) ~In(1 —¢)) > 0
This is as a result of Lemma 2.3 and the fact that Ing < 0 for ¢ € (0,1). Hence Q(z) is increasing.

Next, we have,

Qu+y) _Qu+y) 1 _ 1 )™
Q@R Ql) Q) ~

since Q(z) is increasing and I'g(y + 1) = [y]I'(y). That implies,

T(l‘,y) =

Tlay) = B el Tya+y+1)
[+ y) e et Ty (o + 1) (y + 1)
el et Ty@y+1) [yl
[y et Ty + 1T (y +1) = eWla[ylTy(y)
yielding the results as in (11). O

Remark 2.5. Let B,(z,y) = % be the ¢-deformation of the classical Beta function. Then,

inequality (11) can be rearranged as follows.

[x}([f]q—leq”” Wla, ()

o+ gl

Theorem 2.6. Let ¢ € (0,1) fixed, ¥ > 0 and = € (0,1) be such that ¢, x)(z + k) > 0. Then, the
inequality:

Bq(x7y) S

Pan@ty+k) [ + gl

SR (12)
Ligiy (@ +F)Tqr) (Y + k) ™ (2] ay],ea T, 1) ()

is valid.

Proof. Let G and H be defined for ¢ € (0,1) fixed, k > 0, z € (0,1) and y € (0,1) by,

_ el (@ + k) _ Glz+y)
N )

In a similar fashion, let A(z) = In G(x). That is,
Az) = [z]qg +InT (g py (2 + k) — [z]gIn[z]g.  Then,

N@)' = by (o4 8) + (n0) 7 (1 = ") (1 = ) > .
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Hence G(x) is increasing.
Next, observe that,

ey Gty Gty 1 L_
H(z,y) = G(x)G(y) G(z) G(y) = Gly) el [y]g g 1) ()

since G(x) is increasing and I'¢g ) (y + k) = [y]q[ (1) (y). That implies,

Hiz,y) = Dl el Tty +k) [yld™
’ [z 4yl e elrlatlle "Tg (@ 4+ F)T (g (v +5) ~ ellafy]oTigm (y)
establishing the results as in (12). O

Remark 2.7. Let By (z,y) = % be the (g, k)-deformation of the classical Beta func-

tion. Then, inequality (12) can be written as follows.

Tlg—1 4%
(2] ea" WlaT 4 (1)

[+ ylg T

B(q,k:) (l‘v y) <

3 Concluding Remarks

Some new inequalities related to (6) and (7) have been established for the ¢ and (¢, %) deformed
Gamma functions. In particular, if we allow ¢ — 1 in either inequality (8) or (9), then, inequality
(6) is restored as a special case. Also, by allowing ¢ — 1 in (12), then we obtain the k-analogue of
inequality (11).
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