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Abstract 

 

This paper deals with developing a continuum damage mechanics model belonging to constitutive equations 

which represent linear electro-thermo-elastic behavior of a composite material, where the material was 

reinforced with arbitrarily distributed single fiber family and which have micro-cracks. The composite medium 

is assumed to be dielectric, incompressible, homogeneous, and dependent on temperature gradient. The matrix 

material made of elastic material involving an artificial anisotropy because of fibers reinforcing by arbitrary 

distributions and the existence of micro-cracks, has been assumed as an isotropic medium. It is accepted that the 

fiber family is inextensible. Using the basic laws, of continuum damage mechanics and continuum 

electrodynamics and the equations belonging to kinematic of fiber, the constitutive functionals have been 

obtained. It has been detected as a result of the thermodynamic constraints that stress potential function depends 

on two symmetric tensors and two vectors, and the heat flux vector function depends on two symmetric tensors 

and three vectors. To determine arguments of the constitutive functionals, findings relating to the theory of 

invariants have been used as a method because of that isotropy constraint is imposed on the matrix material. 

Finally, the constitutive equations of symmetric stress, polarization field, asymmetric stress, heat flux vector and 

strain-energy density release rate have been written in material coordinates.  

 

Key Words: Electro-thermoelastic behavior, Continuum damage mechanics, Constitutive equations, Composite 

materials, Invariants. 

 

DİELEKTRİK KOMPOZİT MALZEMELER İÇİN BİR 

TERMOELASTİK SÜREKLİ ORTAM HASAR MODELİNİN 

GELİŞTİRİLMESİ ÜZERİNE 
 

 
Özet 

 

Bu makale, keyfi dağılımlı tek fiber ailesi ile takviyeli ve mikro çatlaklara sahip bir kompozit malzemenin lineer 

elektro-termo elastik davranışını temsil eden kurucu denklemlere ait bir sürekli ortam hasar mekaniği modeli 

geliştirmeyi ele almaktadır. Kompozit ortamın dielektrik, sıkıştırılamaz, homojen olduğu ve sıcaklık gradyanına 

bağlı olduğu varsayılmaktadır. Keyfi dağılımlı fiber takviyesi ve mikro çatlakların varlığı nedeniyle yapay bir 

anizotropi içeren elastik malzemeden yapılmış matris malzemesi izotropik bir ortam olarak kabul edilmiştir. 

Fiber ailesinin uzatılmaz olduğu kabul edilmektedir. Sürekli ortam hasar mekaniğinin ve sürekli ortam 

elektrodinamiğinin temel kanunları ve süreklilik fiber kinematiğine ait denklemleri kullanılarak bünye 

fonksiyonelleri elde edilmiştir. Termodinamik kısıtlamaların sonucu olarak, gerilme potansiyeli fonksiyonunun 

iki simetrik tensör ve iki vektöre bağlı olduğu ve ısı akısı vektör fonksiyonunun ise iki simetrik tensör ve üç 

vektöre bağlı olduğu belirlenmiştir. Bünye fonksiyonellerinin argümanlarını belirlemek için, invaryantlar 

teorisine ilişkin bulgular, matris malzemesine uygulanan izotropi kısıtlaması nedeniyle bir yöntem olarak 

kullanılmıştır. Sonunda, simetrik gerilmenin, polarizasyon alanının, asimetrik gerilmenin, ısı akısı vektörünün ve 

gerinme-enerjisi yoğunluğunun değişim hızının bünye denklemleri maddesel koordinat sisteminde yazılmıştır.  
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Anahtar Kelimeler: Elektro-termoelastik davranış, Sürekli Ortam Hasar Mekaniği, Bünye denklemleri, 

Kompozit malzemeler, İnvaryantlar. 

 

1. Introduction 

 

Composite materials are now widely used in the aircraft and motor sport industries, due to 

their high strength to weight ratio. A common design problem in the aerospace industry is the 

development of a damage tolerance and damage resistance design to all forms of impacts, 

from low velocity, such as may occur from tool drops to high velocity impacts from runway 

debris or in the ballistic regime, micrometeorites. Unlike ductile metals, which can absorb 

large amounts of energy via plasticity without significant loss of strength, brittle composites 

absorb energy by elastic deformation and irreversible damage. Hence in practice, many 

composite structures are overengineered to compensate for their low damage tolerance. The 

full potential of composite materials remains unused [1]. 

 

Damage progression in composite materials and structures is, in general, very complicated 

and involves multiple failure modes, such as fiber breakage, fiber pullout, delamination 

between plies, matrix cracking, fiber–matrix debonding, etc [2]. Modeling the damage 

process accurately poses a very difficult problem because these mechanisms clearly operate at 

various length scales [3]. However, if more rational design and damage tolerance approaches 

are to be developed for composite structures, it becomes necessary to develop engineering 

tools that will enable analysts to model damage and its propagation [2]. 

 

Temperature changes frequently represent a significant factor of failure of composite 

structures subjected to severe environmental loads. The thermal stresses accompanying the 

uniform, unsteady heating cause thermal fatigue and considerable plastic strains leading to 

complete or progressive destruction of the composite structures. Further, the repeated action 

of thermal stresses in some fiberreinforced composite structures leads to debonding of layers, 

longitudinal cracks, and a thermal buckling in composite thin-walled members [4]. 

 

A dielectric is an insulating material that exhibits polarization in the presence of an electric 

field. Electromechanical behaviors of interest include piezoelectric, pyroelectric, and 

ferroelectric effects. Piezoelectricity, in a general sense, refers to the coupling between 

electric field or polarization and stress or deformation. In continuum theories, piezoelectricity 

of first order is attributed to the particular choice of free energy functional for the body that 

may depend, for example, on the product of the strain and the polarization [5]. Transversely 

isotropic piezoelectric materials are widely used in transducers and smart structures. The 

study of thermoelastic problems has always been an important branch in solid mechanics [6, 

7]. In particular, the thermoelastic fracture problems subjected to various types of thermal 

boundary conditions have been discussed extensively in the literature [8, 9, 10, 11, 12, 13]. 

 

Our early studies have provided a basis for the conduction of this study. In our previous study, 

viscoelastic composites of a single fiber family have been studied assuming that the material 

has a discontinuity surface [14]. In our study, it has been assumed that a viscoelastic 

composite material with two different inextensible fiber families does not have a discontinuity 

surface [15]. Again, in our studies, the exposure of a viscoelastic composite material to the 

effect of electrical and magnetic fields in addition to its reinforcement by a single fiber family 

has been researched in the form of separate studies [16, 17]. In our study [18], we have 

examined the electromechanical behavior of a dielectric viscoelastic composite material with 

two fiber families. Since temperature was assumed to be constant in all of the these studies, 
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temperature change has not been taken into consideration. Furthermore, in our study [19], we 

have investigated theoretically electro-thermomechanical behavior of a thermoelastic 

dielectric body subject to external loading in his study. In study titled [20], the linear 

thermoelastic behavior of a composite material reinforced by two independent and 

inextensible fiber families has been analyzed theoretically by Usal. In this study [20], the 

composite material is assumed to be anisotropic, compressible, dependent on temperature 

gradient, and showing linear elastic behavior. In our study [21], we have developed 

constitutive equations for the thermoelastic analysis of composites consisting of an isotropic 

matrix reinforced by independent and inextensible two families of fibers having an arbitrary 

distribution. In our study [21], it is assumed that an element from two different continuous 

fiber families is placed on each point of the composite material. In our study [21], the 

mechanical interaction and temperature change have been assumed to be linear. In our study 

[22], a relevant mathematical model is developed in the context of continuum damage 

mechanics. This mathematical model represents mechanic behavior of an elastic media which 

have micro-voids and which is subjected to a mechanical loading [22]. Our paper is 

concerned with developing the continuum damage mechanics model for elastic behavior of 

composites having micro-cracks consisting of an isotropic matrix reinforced by independent 

and inextensible two families of arbitrarily fibers [23]. Furthermore, in study titled  [24],  Usal 

has developed a continuum damage model for the linear viscoelastic behavior of composites 

with micro-cracks consisting of an isotropic matrix reinforced by two arbitrarily independent 

and inextensible fiber families. 

 

In this paper, a systematic approach from balance laws and thermodynamics to constitutive 

theory is presented for an attempt to make a synthesis in a unified and systematic fashion for 

the linear electro-thermoelastic behavior of a thermoelastic-dielectric composite having 

micro-cracks reinforced by arbitrary and inextensible single family of fiber. In this paper, 

mechanical interactions and effect of damage have been assumed to be linear while electrical 

interactions have been assumed to be non-linear. Furthermore, since the matrix material has to 

remain insensitive to directional changes along fiber, even number vector components of fiber 

vector have been included in the operations. It is assumed that mechanical interactions will be 

considered linear, from this point of the constitutive relationship is limited to a linear 

response. In addition to, in the present paper, constitutive equations have been obtained that 

determine the electro-thermomechanical behavior of a thermoelastic-dielectric composite 

having micro-cracks reinforced by arbitrary and inextensible single family of fiber. Such 

constitutive equations relate to polarization, stress, strain-energy density release rate and heat 

distribution. Since temperature is no longer constant in this study, the temperature gradient 

has been incorporated into calculations as an independent constitutive variable. 

On the other hand, inextensibility of the fiber and incompressibility of the composite are 

acceptable as broad recognition in practice in terms of formulation. Thus, the composite is 

assumed to be incompressible and fiber family-inextensible. Due to some technological 

requirements, it is aspired that specific construction elements have rather elastic properties, 

provided that they have high durability in certain directions. Fiber-reinforced composite 

materials are produced sticking fibers in a polymeric matrix which is elastic but with low 

strength. These fibers are manufactured from high strength grafit or bor. They can be easily 

bent due to the very small size of their cross-section and it can be assumed that these fibers 

show a continuous distribution in a medium. Assuming inextensibility of the fibers is a 
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reasonable approach since the rigidity of the fibers is very high according to the rigidity of the 

matrix [25]. 

 

2. Mechanical Representation of Damage 
 

In some researches, in order to be able to define the damage variable, a representative volume 

element (RVE) has been considered that has a k number of micro cracks. While the open or 

active part of any k
th

 micro crack has been shown by A
(k)

, its closed or passive surface has 

been shown by A
*(k)

. Active or passive surfaces of a crack can switch positions among each 

other depending on stress, temperature and humidity percentage. Despite that, Weitsman 

states that these open and closed surfaces can be selected as independent variables 

characterizing the state of a material at a certain time range [26, 27].  

 

Stress and strain at the macro level are average values over the RVE volume. Infinitesimal 

deformations can also be considered among these macro values. To fully consider the 

behaviors of RVE it is necessary to deal with a K number of crack parameters representing 
)(k

A and )*(k
A , (no sum on k, k=1,...,K) surfaces. Because the real shape of these surfaces is 

unknown on the meso scale, assuming them to be equivalent plane surfaces, Weitsman 

represented them by vectors )()()( kkk A nA   and )()*()*( kkk A nA  . Here, )(k
n  stands for a unit 

normal vector of a micro crack surface [27]. Let us consider two micro cracks inside a 

material with different convexities around a material point. Depending on the load applied on 

the material the cracks having different convexities can demonstrate different types of 

behavior depending on their crack surfaces. Different infinitesimal crack surfaces with very 

big curvature radii can be accepted topologically and mechanically equivalent. In this case 

topologic representation of the crack surface can be expressed independent of the direction of 

that surface. Mathematically that representation can be shown by using the symmetric tensor, 

which is a dyadic product of two vectors. Thus, any micro crack can be defined using 

symmetric dyads as follows. 

 
)()()( kkk

AAH    and    
)(*)(*)(* kkk

AAH   ,   )()()( k

j

k

i

k

ji AAH                                         (1) 

 

Because detailed information about the value and location of surfaces )(k
A and )*(k

A can only 

be found statistically on the micro scale, on the meso scale where Continuum Mechanics is 

used, we can show the combined effects of the tensor expressions stated in (1) by the sum of 

the dyadic products given below. This operation represents homogenization when moving 

from the micro to the meso scale. 

 

)()(

1

kk
K

k

AAH 


  and   )(*)(*

1

* kk
K

k

AAH 


                                                     (2) 

 

Thus, the effect of damage on the meso scale can be expressed with two interior conditional 

variables, the variables bearing second degree symmetric tensor characteristics, as stipulated 

by their definitions. Dealing with infinitesimal deformations does not mean that tensors 

representing damage bear separate infinitesimal characteristics [26]. Therefore, while power 

series is being used for representative strains, is may not be useable for the damage tensors. 

As the constitutive variable, in this study we are going to deal with only one damage tensor 

taking into consideration only the effect of open micro surfaces. In this study, due to the 

existence of fiber distributions and micro voids in the material is it assumed that the material 

has gained directed medium characteristics, i.e. that an anisotropic structure has appeared due 
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to the damage and the fibers. We assume that initially the material was isotropic and that the 

anisotropy is only caused by the dispersion of micro voids and fibers. For a medium like that 

the role of material description vectors will be played by  the vector ),( tXA  representing the 

mean values in RVE and the vector ),( tXA  representing the change in time of the preceding 

vector. We believe that, by dividing these vectors by the area of any characteristic surface 

pertaining to RVE, we render them dimensionless. 

 

On the other hand, because the material will not be able to detect the positive and negative 

sides of micro void surfaces, we had previously specified that the dependence on vectors 

),( tXA  and ),( tXA  can be expressed by a product of tensors. 

 

AAAAHAAH   ,                                              (3) 

 

We can specify it as follows in the index form: 

 

LKLKLKLKLK AAAAHAAH   ,                                                        (4) 

 

3. Kinematic of Fiber Deformation 

 

Before deformation and after deformation, the fiber family is represented by continuous unit 

vector )(XB ,  and )(xb , respectively. The fiber deforms along with the material, i.e. fiber 

does not have a relative motion with respect to the material in which they are embedded. 

Relationships given below are true for an B-fiber family [28,29]. 

 

KKkbk Bxb ,

1 ,                

b

b
Ld

ld








≡ ,        LKLKb BBC2                                                   (5) 

  

Where dL and dl are respectively arc length of fiber before and after deformation; KB fiber 

unit vector component before deformation, kb  fiber unit vector component after deformation, 

K

k
Kk

X

x
x




,  deformation gradient, b  rate of extension of fiber family, LkKkLK xxC ,,  Green 

deformation tensor. 

 

4. Electro-Thermo-Mechanical Equilibrium Equations and Thermodynamic Conditions 

 

Local electro-thermo-mechanical equilibrium equations can be summarized as follows [30, 

31]: 

 

Gauss law; 

 

0 D                                                                                                                                     (6)             

 

PED  0                                                                                                                             (7)   
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Faraday law;  

 

 EE 0                                                                                                               (8) 

 

Conservation of mass; 

 

0v ,  kk                                                                                                                            (9)       

 

Conservation of Mass in material representation; 

                

),(

)(
),( 0

tJ
t

x

X
x


                                                                                                                     (10) 

 

Balance of Linear Momentum;  

 

prrrprpp EPt ,,fv                                                                                                          (11) 

 

Balance of Moment of Momentum;  

 

0prprk t , rpprprpr tEPtt ≡                                                                                        (12) 

 

Conservation of Energy; 

 

  E hqt kkkllk ,,v                                                                                   (13) 

 

Clausius-Duhem Inequality; 

 

0≥h
1

,, 


  kkkk qq                                                                                               (14)  

  

In these equations, the physical meanings of various symbols are: D  electric displacement 

vector, E  electric field vector, P  polarization field vector, 0  electric permitivity of vacuum, 

  electrostatic potential, kik∇  gradient operator, 0  mass density before deformation, 

  mass density after deformation, kv components of velocity vector, t time, J Jacobian, pv  

components of acceleration vector, pf  mechanical body force per unit mass, lkt  asymmetric 

stress tensor, lklklk EPtt    a symmetric stress tensor, prk  permutation tensor, kq  heat flux 

vector, h  heat source per unit mass,   internal enerji density per unit mass,   entropy density 

per unit mass,   absolute temperature of X  at any time,   entropy production per unit 

mass. 

 

Local energy equation (13) is then suitably combined with the entropy inequality (14) and, 

using a Legendre transformation such as ΠE  ≡  for free energy, entropy inequality 

is obtained as follows in the material form:  
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0
1

2

1
)( ,0  KKKKKLKL EQCT  


                                                                      (15) 

 

Relationships between material and spatial forms of values appearing in this inequality have 

been presented as follows [25]: 

 

0≡                                                                                                                                 (16) 

 LlKklkKL xxC ,,d2
lLkKKLkl XXCd ,,

2

1                                                                               (17) 

 

lklLkKKL tXJXT ,,  KLLlKklk TxxJt ,,

1                                                                                  (18) 

 

kkKK qXJQ ,≡  KKkk QxJq ,

1                                                                                       (19)  

 

kkKK PX ,
0≡



  KKkk xJP  

,

1                                                                                      (20)  

 

kKkK ExE ,≡  KkKk EXE ,                                                                                               (21)     

 

kKkKK xG ,,,    KkKkk Xg ,,,                                                                                (22) 

 

Where   thermodynamical stress potential,   generalized free energy density, KLC  Green 

deformation tensor, kld  deformation rate tensor, Kkx , deformation gradient, kKX ,  deformation 

gradient of inverse motion, KLT symmetric stress tensor in material coordinates, KQ  heat 

vector in material coordinates, KG  temperature gradient, K  polarization vector per unit 

mass in material coordinates. 

 

5. Constitutive Model 

 

To be able to use the inequality (15), which is a general expression of entropy production, we 

need to know which independent variables the thermodynamic potential  depends on and 

how. Accordingly, selecting the arguments of  would formally mean selecting a material. 

According to the material selected, arguments of  and variables it depends on have been 

found using constitutive axioms.  Suggesting that the stress potential  at a point in time t of a 

material point X  in the material under consideration depends on the motion and the 

temperature background of all material points constituting the object and on the electrostatic 

field, formulation of constitutive equations for a dielectric-thermoelastic material under 

consideration can be summarized as follows.  

 

),,,,( KKKLKL BEHC                                                                                                     (23) 
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K

K
E∂

∂
                                                                                                                             24)   

 

KL

KL

C
T




 2                                                                                                                          (25) 

 

NM

NM
H

Y



 ,         LKLK YY  ,           

LK

LK
H

Y



                                                        (26) 

 

),,,,,( KKKKLKLKK GBEHCQQ                                                                                          (27) 

 

0),,,,,( KKKKLKLKK GBEHCQG                                                                                      (28) 

 

0),0,,,,( KKKLLKK BEHCQ                                                                                               (29) 

 
1 MLMKLKLK CETT                                                                                                         (30) 

 

In the expression (26), KLY is called as the strain-energy density release [32]. The definition 

LKLK YY   is used in order to deal with a positive value . From the equations provided in the 

expressions (25), (24) and (26), it is understood that symmetric stress, the polarization and the 

strain-energy density release rate are derived from the free energy function  and that the heat 

flux vector appears in a  isotropic vectorial form with definite arguments independent of the 

stress potential. Thus, a need arises to determine the explicit forms of  and KQ  that appear as 

constitutive functions with known arguments.  

 

However, firstly we should consider the constraints imposed by the material symmetry axiom 

onto the material under consideration. Because the symmetry group of the material under 

consideration is the fully orthogonal group, property 1det,][][ 1 
S

T

KLKL SS  is true for 

the symmetry operation ][ KLS . Therefore, each material point conversion matches an 

orientation of the material medium. Such conversion should, for every ][ KLS  be in the 

following form 

 
T

KLKLK

T

KLLLLKK SSXSXXSX ][][,, 1''                                                                        (31) 

 

and leave constitutive functionals form invariant. Mathematically this means the validity of 

the following conversions.  

 

),,,,(),,,,(  KKKLKLLKLLKLPRLRKPPRLRKP BEHCBSESHSSCSS                             (32) 

 

),,,,,(),,,,,(  KKKKLKLNJNPKPPKPPKPPRLRKPPRLRKPJ GBEHCQSGSBSESHSSCSSQ   (33) 

 

On the other hand, both incompressibility of the composite and inextensibility of the fibers is 

broadly accepted in practice for formulation purposes. The following conditions should be 
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satisfied once the composite is assumed to be incompressible and the fiber familY 

inextensible, respectively [25]. 

 

1J          or              1det  IIIC                                                                                            (34)     

                                                                                                                              

12  LKLKb BBC                                                                                                                 (35)    

 

Thus, the constitutive equation for the stress is obtained as follows in material coordinates. 

 

KL

LKbKLKL

C
BBCpT




  21                                                                                       (36) 

 

In this expression, bp   and are Lagrange coefficients and are defined by field equations and 

boundary conditions. lLlKLK XXC ,,
1


  Piola deformation tensor.  

 

6. Determination of Symmetric Stress, Polarization Field, Asymmtric Stress and Strain-

Energy Density Release Rate Constitutive Equations 

 

Since the matrix has been assumed to be isotropic, the relation (32) is expressed as below. 

 

),,,,(),,,,(  LKLLKLPRLRKPPRLRKPKKKLKL BMEMHMMCMMBEHC                  (37) 

 

Here, the orthogonal matrix indicating the symmetry group }{ KLM  shall be expressed for 

)3(][ OMKL  and 1det][][ 1 
M

T

KLKL MM  is true for the ][ KLM . 

 

On the other hand, since   has been assumed to be the analytical function of its arguments, 

such arguments, which are expected to remain invariant under orthogonal transformations 

belonging to the symmetry group, should depend on a finite number of invariants. Using the 

methods of the invariants theory [33], 21 invariants of two symmetric matrices ( KLKL HC , ) and 

two polar vectors ),( KK BE   independent of one another have been expressed as follows: 

 

KKCΙ 1 ,      KLLK CCΙ 2 ,       KMMLLK CCCΙ 3 ,     KKHI 4 ,     KK EEΙ 5 ,  KK BBΙ 6 ,  

KK BEΙ 7 ,     LLKK ECEΙ 8 ,   MMLLKK ECCEΙ 9 ,         2

10 bLLKK BCBΙ  , 

MMLLKK BCCBΙ 11 ,          LLKK BCEΙ 12 ,             MMLLKK BCCEΙ 13 ,  LLKK EHEΙ 14  ,  

MMLLKK EHCEΙ 15 ,  LLKK BHBΙ 16 ,   MMLLKK BHCBΙ 17 , LLKK BHEΙ 18 ,  

MMLLKK BHCEΙ 19  ,  KLLK HCΙ 20 , KMMLLK HCCΙ 21                                                   (38)    

 

Instead of the first three invariants of the Green deformation tensor C, we can use the 

principal invariants below.  

1II  ,                 )(
2

1
2

2

1 IIII   ,               Cdet)23(
6

1
321

3

1  IIIIΙΙΙ             (39) 
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Given the incompressibility of the composite, inextensibility of the fiber family and the fact 

that B  is unit vector, the invariants III  and I6 in expressions (38) and (39) are equal to 1 thus 

eliminating the dependence of   on these invariants. As a result, the invariants on which   

depends are expressed as follows. 

 

)21,...,11(,),,(ΣΣ 98754  mθΙ,ΙI,ΙI,Ι,ΙIΙ, m                                                              (40) 

 

Taking the derivative of expression (40) according to PRC , PRH and RE  and substituting it 

into equations (36), (26) and (24), the following expressions are obtained.  
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)19,18,15,14,13,12,9,8,7,5(,)( 







 k

E

I

I R

k

k

R                                                             (43)  

 

It is understood that, as always, repeated indices will undergo summation. If derivatives of 

invariants appearing in these equations according to RPC , PRH and RE  are taken from 

expressions (38) and (39) and substituted afterwards, constitutive equation of the symmetric 

stress in non-linear form is obtained as follows. 
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                                                                                      (44) 

 

And polarization field in non-linear form is obtained as follows. 
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And the strain-energy density release rate in non-linear form is obtained as follows. 
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
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More concrete form of the constitutive equations given by (44), (45) and (46) can be obtained 

provided that Lagrange coefficients p  and b  and the derivatives of   based on its 

invariants are known. It has been already stated that p  and b  can be obtained from field 

equations and boundary conditions. To obtain the derivatives of   according to its invariants 

it should be estimated how   depends on the invariants it is shown to depend on in expression 

(40). In this study, the matrix material has been considered as an isotropic medium. 

According to that  is an analytical function of those invariants, assuming that this function is 

analytic, the stress potential is expanded in the power series around natural condition. To 

obtain a quadratic theory, the terms in this series expanding should be kept to second order, 

therefore the stress potential can be represented by a polynomial [25, 34]. However, the grade 

and number of terms of the polynomial representing   depends on the size of its deformation 

invariant and their shares of interaction in the case, shortly on their nonlinearity grades [35-

37]. 

 

In this study, mechanical interactions and effect of damage have been assumed to be linear 

while electro-mechanical interactions have been assumed to be non-linear. Furthermore, 

considering that the material remains insensitive to directional changes along fiber, double 

components of fiber vector have been included in the operation. Because mechanical 

interactions and effect of damage are assumed to be linear, the symmetric stress, the 

polarization field and the strain-energy density release rate should remain linear according to 

the deformation tensor and the damage tensor. Therefore function   could be represented by 

a second degree polynomial according to the invariants it depends on. On the other hand, 

because internal energy is defined as a positive definite form, for a polynomial to be 

positively defined and for the order of invariants not to affect  , the polynomial must have 

symmetric coefficients, i.e. be in a quadratic form. Accordingly, if polynomial approximation 

is selected, the following expression can be recorded for the stress potential   in terms of the 

existing invariants. 

 

ijjijiij
ji

aajiIIa  ,)21...,,11,9,7,4,2,1,(,
.

                                                         (47) 

 

In the expansion (47) 1I  and 2I  have been substituted by principal invariants I  and II , 

respectively. The derivatives of   based on its invariants in the equations (44), (45) and (46) 

are obtained from the expression (47) as follows. 
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,)(2 ,2,1, kkmmm

m

ΙaΙΙaΙa
Ι

Σ
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


)21...,,11,9,8,7,5,4(,)21,...,11,9,8,7,5,4(  km     (48) 

 

At this stage, derivatives of the stress potential have been taken without paying attention to 

whose functions the invariants are. Expressions (38) and (39) have shown on what the 

invariants in the expression (48) depend. Due to the existence of the relationship 

KLKLKLC  2  between the Green deformation tensor with the strain tensor, and assuming 

mechanic interactions are linear ( )(
2

1~
,, KLLKKLKL UU  ), those invariants that depend 

on the Green deformation tensor )( KLC  can be expressed in terms of strain tensor )( KL , which 

is a more useful parameter.   

 

Terms after the third term on the right side of the equation (44) and all terms of the right side 

of the equation (45) and (46) have been calculated using the partial derivatives given in the 

expression (48) and invariants that depend on the strain tensor ( KL
~

). Due to the assumptions 

made in this study, of the first grade components of the strain tensor ( KL
~

) and the damage 

tensor KLH  and of the external multiplication components of vector  KB , those whose number 

is even have been taken into consideration. Thus, in the beginning, the elastic stress is 

expressed for the condition without stress and without load (with the term PR1  assumed to 

be zero) by taking common coefficients into common parenthesis. 
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24 RPNKNK BEBHE25  )
~~

(26 RLPLLRLPKK BEBEBE

 )(27 RLPLLRLP EEHHEE  )(28 RLPLLRLP BBHHBB  

 )(29 RLPLRLLPKK BEHHBEBE PRKKPR HEEH 3130                            (49)  

 

The polarization field has been obtained as follows. 

 

 )(
~

{ 4321 LLRKKRNKNKRKKRKKRR BHBEBBHEBBEEE   

        }
~~~

8765 LLRRLLKKLLRKKLLR EHBBEBBEE                                                 (50)  

 

The strain-energy density release rate is expressed as follows by taking common coefficients 

into parenthesis in the beginning, without micro-cracks (the term  PR1  is taken here as 

zero) has been obtained as follows. 

 

 PRLKLKPRKKPRKKPRKKPR EEEEHY 
~~

5432
PRLKLK EHE  6 PRLKLK BHB  7  
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 RPLKLKRPKKRPKKRP EEBHBEEHEEEE 111098
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  RLPL EE

~
12 RPBB13

 RPKK BB
~

14  RPLKLKRPKKRPKK BBEEBBEEBBH
~

171615  RPLKLK BBEHE18

 RLPL BB
~

19  RPLKLKRLKKRLPLKK BEBEBEBEBBEE
~~

222120  RPLKLK BEBHE23

PRKKPRRLPLKK EEBEBE 
~~~

262524                                                                                (51)    

 

The coefficients { )31,...,3,2,1( ii  , )8,...,3,2,1( jj  and )26,...,3,2,1( mm } in the 

equations (49), (50), and (51) have been and depend on the medium temperature  and ija . 

 

In a composite material that consist of an isotropic matrix reinforced by one arbitrary and 

inextensible fiber family, the medium is assumed to be linear, dielectric, isotropic, 

incompressible, has micro-cracks and dependent on temperature gradient. The equation (49) 

is the linear constitutive equation of symmetric stress. First and second terms of the equation 

(49) are hydrostatic pressure and contribution of fiber tension to the symmetric stress 

respectively; third and tenth terms combined are the contribution of the elastic deformation; 

fourth and thirty second terms combined are the contribution of the damage tensor; fifth and 

twelfth terms are the second grade electrostatic contribution; sixth, ninth, eleventh, thirteenth 

and sixteenth terms are the stress produced by the interaction of the non-linear electric field 

with the deformation field; seventh, fourteenth, twenty ninth and thirty third terms are the 

stress produced by the interaction of the non-linear electric field with the damage tensor; 

eighth, eighteenth and thirtieth  terms are the stress arising of the interaction between the fiber 

distribution B  and the damage tensor; fifteenth, twenty first, twenty seventh and thirty first 

terms are the contribution arising of the triple interaction between the non-linear electrostatic 

field, the damage tensor and the fiber field B ; seventeenth and twenty third terms are the 

stress arising of the interaction between the fiber distribution B  and the elastic deformation; 

nineteenth and twenty fifth terms are the contribution of the non-linear electrostatic field and 

the fiber field B  to the stress; twentieth, twenty fourth, twenty sixth and twenty eighth terms 

are the contribution arising of the triple interaction between the non-linear electrostatic field, 

elastic field and the fiber field B ; twenty second term is the contribution of the fiber 

distribution B  to the stress. 

 

The equation (50) is the linear constitutive equation of the polarization field. First term of the 

equation (50) shows the well-known electrical sensitivity. The second and fifth terms show 

the interaction of the linear electric field with the deformation field. The third term shows the 

interaction of the linear electric field with the fiber field B . The fourth term is the 

contribution arising of the triple interaction between the linear electrostatic field, the damage 

tensor and the fiber field B ; sixth and seventh terms are the contribution arising of the triple 

interaction between the linear electrostatic field, the damage tensor and the fiber field B ; 

eighth term is the polarization produced by the interaction of the linear electric field with the 

damage tensor. 

 

The equation (51) is the linear constitutive equation of strain-energy density release rate. First 

and twenty fourth terms combined are the contribution of the elastic deformation; second term 

is  the contribution of the damage tensor;  third and seventh  terms are the second grade 

electrostatic contribution; fourth, eighth, eleventh and twenty fifth terms are the strain-energy 

density release arising of the interaction between the non-linear electric field and the 

http://tureng.com/search/thirty%20second
http://tureng.com/search/thirtieth
http://tureng.com/search/fifteenth
http://tureng.com/search/thirty-first
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deformation field; fifth and  ninth terms are the strain-energy density release produced by the 

interaction of the non-linear electric field with the damage tensor; sixth and fourteenth terms 

are the strain-energy density release stress arising of the interaction between the fiber 

distribution B  and the damage tensor; tenth, seventeenth and twenty second terms are the 

contribution arising of the triple interaction between the non-linear electrostatic field, the 

damage tensor and the fiber field B ; twelfth term is the contribution of the fiber distribution 

B  to the strain-energy density release; thirteenth and eighteenth terms are the strain-energy 

density release arising of the interaction between the fiber distribution B  and the elastic 

deformation; fifteenth and twentieth terms are the contribution of the non-linear electrostatic 

field and the fiber field B  to the strain-energy density release; sixteenth, nineteenth, twenty 

first and twenty third terms are the contribution arising of the triple interaction between the 

non-linear electrostatic field, elastic field and the fiber field B  to the strain-energy density 

release. 

 

Equations of the symmetric stress provided by the expression (49) and of the polarization 

field provided by the expression (50) are substituted into the equation (30), thus the total 

stress (the asymmetric stress) has been obtained as follows.  
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Expression (52) is the constitutive equation of the stress that occurs asymmetrically in a 

polarized, has micro-cracks, arbitrary fiber-reinforced thermoelastic composite material that is 

undergoing deformation due to the electro-thermo mechanical loading, is in interference with 

an electrostatic field and is considered as an isotropic medium. According to the expression 

(52), the last nine terms arising of polarization cause the stress to be asymmetric. Assuming 

that the electrical interactions are linear, too, terms of this equation arising of polarization and 

the terms arising of the symmetric stress and containing the second degree electric field will 

be neglected. As understood from here, asymmetry of the stress on material coordinates 

occurring inside the material is caused by strong electrical interactions. 

 

7. Determination of Heat Flux Vector Constitutive Equation 

 

It has been determined that the heat flux vector depends on the deformation tensor, the 

damage tensor, the electric field vector, the fiber field vector and temperature gradient and 

expressions (27)-(29) have been provided. Additional constraints imposed on the heat flux 

vector by constitutive functions originate from the material symmetry of the medium. The 
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structure of the heat flux vector should be in compliance with following transformation for 

each orthogonal matrix )3(][ OMKL   belonging to the symmetry group of the material. 

 

),,,,,( KKKKLKLNJN GBEHCQM  

                                          ),,,,,( PKPPKPPKPPRLRKPPRLRKPJ GMBMEMHMMCMMQ       (53) 

 

Where the matrix is isotropic, the relation (53) is valid for each orthogonal matrix of the fully 

orthogonal group. The heat flux vector is an isotropic function of the symmetric matrices KLC

and KLH and polar vectors KE , KB  and KG . To obtain an explicit expression of the KQ

vector, a scalar multiplication of the vector KQ with the vector V is required with V being an 

arbitrary vector. Such multiplication is defined as a scalar function   as indicated below 

[33]. This review article [33] summarizes the subject of representation methods for 

constitutive equations based on material symmetry. 

 

),,,,(),,,,,( PPPPRPRKKKKKKKLKL GBEHCQVVGBEHC                                                    (54)   

 

Taking the partial derivative of the expression (54) according to VK , the following can be 

recorded. 

 

K
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V
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
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

),,,,,(
),,,,(                                                   (55) 

 

Because the left part of this expression is independent of the vector V, the equation (55) 

should also be valid for V=0. Thus, the isotropic vector function KQ  is expressed as follows. 

 

0

),,,,,(
),,,,(







KVK

KKKKKLKL
PPPPRPRK

V

VGBEHC
GBEHCQ                                            (56)   

 

In this situation, in order to find the vector KQ  from the relation (56), one needs to define the 

structure of the scalar   depending on the arguments PPPPPRPR VGBEHC ,,,,,  and calculate 

the partial derivative of this function based on the vector V for V=0. Let us first remove the 

arbitrary vector V from the arguments of the scalar function   and define a scalar function 

with arguments  PPPPRPR GBEHC ,,,, . 

 

),,,,( KKKKLKL GBEHCFF                                                                                                   (57)  

 

For the function F, which is an isotropic function, to remain invariant under orthogonal 

coordinate transformations, its arguments must depend on a finite number of invariants. Using 

the methods in the theory of invariants [33], 36 invariants of the two symmetric tensors KLC
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and KLH   and the three polar vectors KK BE ,  and KG  independent of one another have been 

expressed below. 

 

KKCI 1 , LKKLCCI 2 ,  MKLMKL CCCI 3 ,  KKHI 4 ,  KK EEI 5 ,  KK BBΙ 6 , KK GGI 7 , 

KK BEI 8 ,  KK GEI 9 ,   KK GBI 10 ,  LLKK ECEΙ 11 ,  MMLLKK ECCEΙ 12 , 

2

13 bLLKK BCBΙ  ,    MMLLKK BCCBΙ 14 ,     LLKK GCGI 15 ,      MMLLKK GCCGI 16 , 

LLKK BCEΙ 17 , MMLLKK BCCEΙ 18 ,  LLKK GCEI 19 ,  MMLLKK GCCEI 20 ,  

LLKK GCBI 21 ,  MMLLKK GCCEI 22 ,    LLKK EHEΙ 23 ,   MMLLKK EHCEΙ 24 , 

 LLKK BHBΙ 25 ,   MLMKLK BHCBΙ 26 ,   LLKK GHGΙ 27 ,    MMLLKK GHCGΙ 28 ,  

LKLK BHEΙ 29 ,  MMLLKK BHCEΙ 30 ,   LLKK GHEΙ 31 ,  MMLLKK GHCEΙ 32 ,   

 LLKK GHBΙ 33 ,  MMLLKK GHCBΙ 34 ,   KLLK HCΙ 35  ,       KMMLLK HCCΙ 36             (58) 

 

However, the arguments of the scalar isotropic function  , the function which the main 

function to be found, are PPPPPRPR VGBEHC ,,,,, . A linear function of the vector V , the 

scalar  is also dependent on the following invariants in addition to the invariants in (58). 

 

KK EVK 1 ,   KK BVK 2 ,  KK GVK 3 ,  LLKK ECVK 4 ,  LLKK BCVK 5 ,   LLKK GCVK 6 ,  

 LLMMKK ECCVK 7 ,   LLMMKK BCCVK 8 ,    LLMMKK GCCVK 9 ,     LKLK EHVK 10 ,   

 LLKK BHVK 11 ,     LLKK GHVK 12 ,      LLMMKK EHCVK 13 ,    

LLMMKK BHCVK 14 ,       LLMMKK GHCVK 15                                                                  (59)   

 

Thus, the function   can be written down as follows.  

 





15

1

),,,,,(


 KVGBEHC KKKKKLKL                                                                               (60) 

 

Coefficients  in the equation (60) are each a scalar function of the invariants given in the 

equation (58). Furthermore, the heat flux vector has been obtained as follows using the 

relation (56) given the assumptions made on the mechanical interaction in this study and 

considering the first-grade terms of the tensor C .  

 

 PPRPPRPPRPPRRRRR EHGCBCECGBEQ 7654321   

       PPRPPR GHBH 98                                                                                                         (61) 

 

Because mechanical interactions and effect of damage have been assumed to be linear, 

coefficients in the equation (61) are each a scalar function of invariants that do not contain 

square or higher grade terms of tensor C  and terms in the form )( HC  in the equation (58). 

Besides, taking into account that values of the invariant 13I  is equal to 1 due to the 

inextensibility of fiber family and value of the invariant 6I  is equal to 1 because it is unit 

vector pertaining to the distribution of fiber B  before deformation, invariant on which the 

said coefficients depend have been recorded as follows in terms of KLE
~

. 
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KKJ 
~

231 ,  KKHJ 2 ,  KK EEJ 3 ,  KK GGJ 4 , KK BEJ 5 ,  KK GEJ 6 ,  KK GBJ 7 ,  

LKLKKK EEEEJ 
~

28
,   

LKLKKK GGGGJ 
~

29
,   

LKLKKK BEBEJ 
~

210
,  

LKLKKK GEGEJ 
~

211 ,      LKLKKK GBGBJ 
~

212 ,   LLKK EHEJ 13 ,    LKLK BHBJ 14 , 

LLKK GHGJ 15 ,    LLKK BHEJ 16 ,  LLKK GHEJ 17 ,    LLKK GHBJ 18                        (62) 

 

Coefficients in the equation (61) can be defined as follows as a scalar function of the 

invariants in (62). 

 

ii
i

J

18

1
0


 ,     91   ,    ( ,1 a  b  2 , ,3 c 

,4 d   

 ,5 f  ,6 k  ,7 l  ,8 m  s  9 )                    (63) 

 

Due to the existence of the relationship KLKLKLC  2  between the Green deformation 

tensor with the strain tensor, and assuming mechanical interactions are linear {

)(
2

1~
,, KLLKKLKL UU  }, those invariants that depend on the Green deformation tensor 

)( KLC can be expressed in terms of strain tensor )
~

( KLKL   which is a more useful 

parameter. Using the expressions (63) in the equation (61), considering mechanical 

interactions, effect of damage and temperature changes have been assumed to be linear, 

electrical interactions have been assumed to be non-linear, the following expression has been 

obtained. 

 

 RLKLKRLKLKRKKRKKRKKRR EBHBEGEEGEEHEEQ 654321

~~
 

  RLKLKRLKLKRKKRKKRLKLK BGBBBEBGBBBEEGHE
~~

1110987  

  RKKRKKRKKRRLKLKRLKLK GEEGHGGBGHBBBHE 171615141312

~
 

  PPRKKPPRRLKLKRLKLKRLKLK EGEEGBHBGEHEGEE
~~~

2221201918
 

  PPRPPRKKPPRPPRKKPPRKK EHGEEGBGBBBE 2726252423

~~~~
 

 PPRKKPPRPPRKKPPRKKPPRKK GHEEGHBHGBBHBEEHGE 3231302928         (64) 

 

Coefficients )32,..,.3,2,1(  kk  have been depend on the medium temperature   and  . 

Because the tensor KLC  can be expressed in the terms of the tensors KLKL 
~

 the expression 

(29) imposes a constraint on the coefficients in the equation (64). Accordingly, the following 

expression can be recorded. 

 

 RLKLKRKKRKKR EBHBEHEE 6321

~
0  RKK BBE8  RLKLK BBE

~
10

 RLKLK BBHE12  PPRE
~

21  PPRKK BBE
~

23
 PPREH27 PPRKK BHBE29                   (65) 

 

Because, according to the expression (65), the above-mentioned are arbitrary, the necessary 

and sufficient condition for validity of this equation is the following coefficients being zero. 
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  321  029272321121086                                        (66) 

 

In this situation, expression providing the material form of the heat flux vector is obtained as 

follows.  

 

 RKKRKKRKKRR GEEGHGGQ 17161514

~
 RLKLK GEE

~
18  RLKLK GEHE19

 RLKLK GBHB20  RLKLKRKK EGEEGE
~

54
 RKKRLKLK BGBEGHE 97

 RLKLK BGB
~

11  RLKLK BGHB13  PPRKK EGE
~

22  PPRPPRKK GBGB
~~

2524

 PPRKK GEE
~

26 PPRKKPPRPPRKKPPRKK GHEEGHBHGBEHGE 32313028         (67)    

 

Expression (67) is constitutive equation of the heat flux vector on material coordinates in 

terms of its components in a composite material that consist of an isotropic matrix reinforced 

by one arbitrary and inextensible fiber family, the medium is assumed to be linear, dielectric, 

isotropic, incompressible, has micro-cracks and dependent on temperature gradient, the 

mechanical interactions and the temperature changes–linear and the electrical interactions–

non-linear. As understood from this equation, interactions of the temperature gradient on its 

own and of the deformation field, the damage tensor, fiber distribution field and square of 

electric field separately and collectively contribute to the formation of the heat flux vector.  

 

8. Conclusions 

 

In the present paper we present a continuum damage model for the linear electro-thermo-

elastic behavior of the temperature dependent dielectric composite materials, which have 

micro-cracks and consisting of an isotropic matrix reinforced by inextensible single fiber 

family. The developed model is based on continuum damage mechanics (CDM), continuum 

electrodynamics and equations belonging to kinematic and deformation geometry of fiber. 

Damage is incorporated by means of two second-rank, symmetric tensors that represented the 

total areas of open (active) and closed (passive) micro-voids contained within a representative 

volume element (RVE). It is further assumed that an element from single continuous fiber 

family is placed on each point of the composite material. The matrix material has been 

assumed to be an isotropic medium, however, due to the distribution of fiber and the existence 

of micro-cracks, it has gained the property of a directed object, thus gaining the appearance of 

an anisotropic structure. The composite material is assumed showing linear thermoelastic 

behavior. Both incompressibility of the medium and inextensibility of the fiber is broadly 

recognized in terms of formulation. Thus, fiber family is assumed to be inextensible and 

composite medium is assumed to be incompressible. In this context, the composite expresses 

itself  behaviorally in terms of the symmetric stress, the electrical polarization, the heat flux 

and the strain-energy density release rate. Since the matrix has been assumed to be isotropic, 

findings of the theory of invariants have been suitably used to concretely determine 

arguments of both the stress potential and the heat flux vector functions. To obtain a more 

concrete expression of non-linear constitutive equations of the symmetric stress, the 

polarization field and the strain-energy density release rate given by expressions (44), (45) 

and (46), derivatives of   must be known according to the arguments it depends on. Thus, 

stress potential   has been represented by a second degree polynomial and its derivatives 

according to its invariants have been calculated. During these operations mechanical 

interactions and effect of damage have been assumed to be linear while electrical interactions 
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have been assumed to be nonlinear.  Furthermore, since the matrix material has to remain 

insensitive to directional changes along fiber, even-numbered exterior products of vector field 

representing fiber distribution have been considered. The linear constitutive equations of the 

symmetric stress, the polarization field and the strain- energy density release rate have been 

found by expressions (49), (50) and (51). From these equations, it can be seen that the 

deformation field, the damage tensor, electric field, distribution of fiber and interactions of 

them both contribute to the creation of the symmetric stress, the polarization field and the 

strain-energy density release rate. Using the symmetric stress and polarization field, the 

asymmetric stress has been determined by the expression (52) in material coordinates.  

 

Since the heat flux is a vector-valued isotropic function, the equation (61) has obtained by 

using the invariants of the arguments depends on of heat flux. Coefficients in this equation 

have been expressed in terms of the invariants on which they depend and each term has been 

calculated. When these calculations are made, the mechanical interaction, temperature change 

and the effect of damage have been assumed to be linear while electrical interactions have 

been assumed to be nonlinear and even number vector components of fiber vectors have been 

included in the operations, since the composite remains indifferent to change of direction 

along the fiber. The linear constitutive equation of the heat flux vector has been expressed by 

the equation (67). From this equation, it is observed that the temperature change contributes to 

the creation of the heat flux vector alone, with the deformation field, with the damage tensor, 

with the fiber distribution field, with square terms of the electric field and with interaction 

among them.  

 

This paper is concerned with developing the continuum damage mechanics model for the 

linear  electro-thermoelastic behavior of composites having micro-cracks consisting of an 

isotropic matrix reinforced by inextensible single family of arbitrarily fiber. The symmetric 

stress, the polarization field and strain-energy density release rate are expressed in terms of 

the thermodynamic stress potential, a function of the left Cauchy-Green tensor, the damage 

tensor, the electric field vector, the fiber distribution and the temperature. The heat flux vector 

depends on these quantities and the temperature gradient. The material symmetry group is 

assumed to be the full isotropy group. Standard methods in invariant theory are used to 

construct representations for the constitutive equations for symmetric stress, polarization 

field, strain energy density release rate and heat flux vector. The symmetric stress, 

polarization field, strain-energy density release rate and heat flux vector are treated in separate 

sections. The appropriate invariants used as arguments for thermodynamic stress potential 

function and heat flux vector function are introduced and the symmetric stress, polarization 

field, strain-energy density release rate and heat flux vector constitutive equations are worked 

out. This is followed by specializations for incompressibility, inextensibility of the fiber, the 

special case when thermodynamic stress potential is a quadratic polynomial in the invariants 

and a linearization based on small strains. 

 

After this paper, practical problems will be solved by forming )(XB  vector field for various 

fiber distribution whose parametric equations in the material medium are in the form of 

)(sXX   and necessary interpretations will be made in a more concrete way. Also, in a 

future work we will study the development of numerical methods for this model. In this work, 

developing a theoretical investigation for formulation constitutive modeling based on 
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continuum damage mechanics has been purposed for the thermoelastic behavior of a dielectric 

composite material reinforced by single inextensible fiber family. 
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