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Abstract

This paper deals with developing a continuum damage mechanics model belonging to constitutive equations
which represent linear electro-thermo-elastic behavior of a composite material, where the material was
reinforced with arbitrarily distributed single fiber family and which have micro-cracks. The composite medium
is assumed to be dielectric, incompressible, homogeneous, and dependent on temperature gradient. The matrix
material made of elastic material involving an artificial anisotropy because of fibers reinforcing by arbitrary
distributions and the existence of micro-cracks, has been assumed as an isotropic medium. It is accepted that the
fiber family is inextensible. Using the basic laws, of continuum damage mechanics and continuum
electrodynamics and the equations belonging to kinematic of fiber, the constitutive functionals have been
obtained. It has been detected as a result of the thermodynamic constraints that stress potential function depends
on two symmetric tensors and two vectors, and the heat flux vector function depends on two symmetric tensors
and three vectors. To determine arguments of the constitutive functionals, findings relating to the theory of
invariants have been used as a method because of that isotropy constraint is imposed on the matrix material.
Finally, the constitutive equations of symmetric stress, polarization field, asymmetric stress, heat flux vector and
strain-energy density release rate have been written in material coordinates.

Key Words: Electro-thermoelastic behavior, Continuum damage mechanics, Constitutive equations, Composite
materials, Invariants.

DIELEKTRIK KOMPOZIT MALZEMELER iCiN BIR
TERMOELASTIK SUREKLi ORTAM HASAR MODELININ
GELISTIRILMESI UZERINE

Ozet

Bu makale, keyfi dagilimli tek fiber ailesi ile takviyeli ve mikro ¢atlaklara sahip bir kompozit malzemenin lineer
elektro-termo elastik davranisini temsil eden kurucu denklemlere ait bir siirekli ortam hasar mekanigi modeli
gelistirmeyi ele almaktadir. Kompozit ortamin dielektrik, sikistirilamaz, homojen oldugu ve sicaklik gradyanina
bagl oldugu varsayilmaktadir. Keyfi dagilimli fiber takviyesi ve mikro gatlaklarin varligi nedeniyle yapay bir
anizotropi iceren elastik malzemeden yapilmis matris malzemesi izotropik bir ortam olarak kabul edilmistir.
Fiber ailesinin uzatilmaz oldugu kabul edilmektedir. Siirekli ortam hasar mekaniginin ve siirekli ortam
elektrodinamiginin temel kanunlari ve siireklilik fiber kinematigine ait denklemleri kullanilarak biinye
fonksiyonelleri elde edilmistir. Termodinamik kisitlamalarin sonucu olarak, gerilme potansiyeli fonksiyonunun
iki simetrik tensor ve iki vektdre bagli oldugu ve 1s1 akis1 vektor fonksiyonunun ise iki simetrik tensor ve lig
vektdre bagli oldugu belirlenmistir. Biinye fonksiyonellerinin argiimanlarini belirlemek ig¢in, invaryantlar
teorisine iliskin bulgular, matris malzemesine uygulanan izotropi kisitlamasi nedeniyle bir ydntem olarak
kullanilmistir. Sonunda, simetrik gerilmenin, polarizasyon alaninin, asimetrik gerilmenin, 1s1 akis1 vektoriiniin ve
gerinme-enerjisi yogunlugunun degisim hizinin biinye denklemleri maddesel koordinat sisteminde yazilmustir.
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Anahtar Kelimeler: _EIektro-termoelastik davrams, Siirekli Ortam Hasar Mekanigi, Biinye denklemleri,
Kompozit malzemeler, Invaryantlar.

1. Introduction

Composite materials are now widely used in the aircraft and motor sport industries, due to
their high strength to weight ratio. A common design problem in the aerospace industry is the
development of a damage tolerance and damage resistance design to all forms of impacts,
from low velocity, such as may occur from tool drops to high velocity impacts from runway
debris or in the ballistic regime, micrometeorites. Unlike ductile metals, which can absorb
large amounts of energy via plasticity without significant loss of strength, brittle composites
absorb energy by elastic deformation and irreversible damage. Hence in practice, many
composite structures are overengineered to compensate for their low damage tolerance. The
full potential of composite materials remains unused [1].

Damage progression in composite materials and structures is, in general, very complicated
and involves multiple failure modes, such as fiber breakage, fiber pullout, delamination
between plies, matrix cracking, fiber-matrix debonding, etc [2]. Modeling the damage
process accurately poses a very difficult problem because these mechanisms clearly operate at
various length scales [3]. However, if more rational design and damage tolerance approaches
are to be developed for composite structures, it becomes necessary to develop engineering
tools that will enable analysts to model damage and its propagation [2].

Temperature changes frequently represent a significant factor of failure of composite
structures subjected to severe environmental loads. The thermal stresses accompanying the
uniform, unsteady heating cause thermal fatigue and considerable plastic strains leading to
complete or progressive destruction of the composite structures. Further, the repeated action
of thermal stresses in some fiberreinforced composite structures leads to debonding of layers,
longitudinal cracks, and a thermal buckling in composite thin-walled members [4].

A dielectric is an insulating material that exhibits polarization in the presence of an electric
field. Electromechanical behaviors of interest include piezoelectric, pyroelectric, and
ferroelectric effects. Piezoelectricity, in a general sense, refers to the coupling between
electric field or polarization and stress or deformation. In continuum theories, piezoelectricity
of first order is attributed to the particular choice of free energy functional for the body that
may depend, for example, on the product of the strain and the polarization [5]. Transversely
isotropic piezoelectric materials are widely used in transducers and smart structures. The
study of thermoelastic problems has always been an important branch in solid mechanics [6,
7]. In particular, the thermoelastic fracture problems subjected to various types of thermal
boundary conditions have been discussed extensively in the literature [8, 9, 10, 11, 12, 13].

Our early studies have provided a basis for the conduction of this study. In our previous study,
viscoelastic composites of a single fiber family have been studied assuming that the material
has a discontinuity surface [14]. In our study, it has been assumed that a viscoelastic
composite material with two different inextensible fiber families does not have a discontinuity
surface [15]. Again, in our studies, the exposure of a viscoelastic composite material to the
effect of electrical and magnetic fields in addition to its reinforcement by a single fiber family
has been researched in the form of separate studies [16, 17]. In our study [18], we have
examined the electromechanical behavior of a dielectric viscoelastic composite material with
two fiber families. Since temperature was assumed to be constant in all of the these studies,
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temperature change has not been taken into consideration. Furthermore, in our study [19], we
have investigated theoretically electro-thermomechanical behavior of a thermoelastic
dielectric body subject to external loading in his study. In study titled [20], the linear
thermoelastic behavior of a composite material reinforced by two independent and
inextensible fiber families has been analyzed theoretically by Usal. In this study [20], the
composite material is assumed to be anisotropic, compressible, dependent on temperature
gradient, and showing linear elastic behavior. In our study [21], we have developed
constitutive equations for the thermoelastic analysis of composites consisting of an isotropic
matrix reinforced by independent and inextensible two families of fibers having an arbitrary
distribution. In our study [21], it is assumed that an element from two different continuous
fiber families is placed on each point of the composite material. In our study [21], the
mechanical interaction and temperature change have been assumed to be linear. In our study
[22], a relevant mathematical model is developed in the context of continuum damage
mechanics. This mathematical model represents mechanic behavior of an elastic media which
have micro-voids and which is subjected to a mechanical loading [22]. Our paper is
concerned with developing the continuum damage mechanics model for elastic behavior of
composites having micro-cracks consisting of an isotropic matrix reinforced by independent
and inextensible two families of arbitrarily fibers [23]. Furthermore, in study titled [24], Usal
has developed a continuum damage model for the linear viscoelastic behavior of composites
with micro-cracks consisting of an isotropic matrix reinforced by two arbitrarily independent
and inextensible fiber families.

In this paper, a systematic approach from balance laws and thermodynamics to constitutive
theory is presented for an attempt to make a synthesis in a unified and systematic fashion for
the linear electro-thermoelastic behavior of a thermoelastic-dielectric composite having
micro-cracks reinforced by arbitrary and inextensible single family of fiber. In this paper,
mechanical interactions and effect of damage have been assumed to be linear while electrical
interactions have been assumed to be non-linear. Furthermore, since the matrix material has to
remain insensitive to directional changes along fiber, even number vector components of fiber
vector have been included in the operations. It is assumed that mechanical interactions will be
considered linear, from this point of the constitutive relationship is limited to a linear
response. In addition to, in the present paper, constitutive equations have been obtained that
determine the electro-thermomechanical behavior of a thermoelastic-dielectric composite
having micro-cracks reinforced by arbitrary and inextensible single family of fiber. Such
constitutive equations relate to polarization, stress, strain-energy density release rate and heat
distribution. Since temperature is no longer constant in this study, the temperature gradient
has been incorporated into calculations as an independent constitutive variable.

On the other hand, inextensibility of the fiber and incompressibility of the composite are
acceptable as broad recognition in practice in terms of formulation. Thus, the composite is
assumed to be incompressible and fiber family-inextensible. Due to some technological
requirements, it is aspired that specific construction elements have rather elastic properties,
provided that they have high durability in certain directions. Fiber-reinforced composite
materials are produced sticking fibers in a polymeric matrix which is elastic but with low
strength. These fibers are manufactured from high strength grafit or bor. They can be easily
bent due to the very small size of their cross-section and it can be assumed that these fibers
show a continuous distribution in a medium. Assuming inextensibility of the fibers is a
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reasonable approach since the rigidity of the fibers is very high according to the rigidity of the
matrix [25].

2. Mechanical Representation of Damage

In some researches, in order to be able to define the damage variable, a representative volume
element (RVE) has been considered that has a k number of micro cracks. While the open or
active part of any k™ micro crack has been shown by A%, its closed or passive surface has
been shown by A"®. Active or passive surfaces of a crack can switch positions among each
other depending on stress, temperature and humidity percentage. Despite that, Weitsman
states that these open and closed surfaces can be selected as independent variables
characterizing the state of a material at a certain time range [26, 27].

Stress and strain at the macro level are average values over the RVE volume. Infinitesimal
deformations can also be considered among these macro values. To fully consider the
behaviors of RVE it is necessary to deal with a K number of crack parameters representing
A®and A (no sum on k, k=1,...,K) surfaces. Because the real shape of these surfaces is
unknown on the meso scale, assuming them to be equivalent plane surfaces, Weitsman
represented them by vectors A® = AXn® and A = A®n®  Here, n® stands for a unit
normal vector of a micro crack surface [27]. Let us consider two micro cracks inside a
material with different convexities around a material point. Depending on the load applied on
the material the cracks having different convexities can demonstrate different types of
behavior depending on their crack surfaces. Different infinitesimal crack surfaces with very
big curvature radii can be accepted topologically and mechanically equivalent. In this case
topologic representation of the crack surface can be expressed independent of the direction of
that surface. Mathematically that representation can be shown by using the symmetric tensor,
which is a dyadic product of two vectors. Thus, any micro crack can be defined using
symmetric dyads as follows.

H® = AOQAK® and H® = A" @A™ ’ Hi(ljf) _ A(k)Aj(k) (1)

Because detailed information about the value and location of surfaces A® and A" can only
be found statistically on the micro scale, on the meso scale where Continuum Mechanics is
used, we can show the combined effects of the tensor expressions stated in (1) by the sum of
the dyadic products given below. This operation represents homogenization when moving
from the micro to the meso scale.

K
AY® A® and H =) A®We A' (2)

1 k=1

K
H=
k=
Thus, the effect of damage on the meso scale can be expressed with two interior conditional
variables, the variables bearing second degree symmetric tensor characteristics, as stipulated
by their definitions. Dealing with infinitesimal deformations does not mean that tensors
representing damage bear separate infinitesimal characteristics [26]. Therefore, while power
series is being used for representative strains, is may not be useable for the damage tensors.
As the constitutive variable, in this study we are going to deal with only one damage tensor
taking into consideration only the effect of open micro surfaces. In this study, due to the
existence of fiber distributions and micro voids in the material is it assumed that the material
has gained directed medium characteristics, i.e. that an anisotropic structure has appeared due
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to the damage and the fibers. We assume that initially the material was isotropic and that the
anisotropy is only caused by the dispersion of micro voids and fibers. For a medium like that
the role of material description vectors will be played by the vector A(X,t) representing the
mean values in RVE and the vector A(X,t) representing the change in time of the preceding

vector. We believe that, by dividing these vectors by the area of any characteristic surface
pertaining to RVE, we render them dimensionless.

On the other hand, because the material will not be able to detect the positive and negative
sides of micro void surfaces, we had previously specified that the dependence on vectors

A(X,t) and A(X,t) can be expressed by a product of tensors.
H=A®A, H=A®A + AQA (3)

We can specify it as follows in the index form:

Heo = AA, HKLEAKAL+AKAL (4)
3. Kinematic of Fiber Deformation

Before deformation and after deformation, the fiber family is represented by continuous unit
vector B(X), and b(x), respectively. The fiber deforms along with the material, i.e. fiber

does not have a relative motion with respect to the material in which they are embedded.
Relationships given below are true for an B-fiber family [28,29].

B _( dl

bk:Zlek,K By ﬂb:(d_L) ' ﬂbzchLBK B, )
b

Where dL and dl are respectively arc length of fiber before and after deformation; B, fiber

unit vector component before deformation, b, fiber unit vector component after deformation,

an
X, K= P

deformation gradient, A, rate of extension of fiber family, Cy | =xy x xx,. Green
K

deformation tensor.
4. Electro-Thermo-Mechanical Equilibrium Equations and Thermodynamic Conditions

Local electro-thermo-mechanical equilibrium equations can be summarized as follows [30,
31]:

Gauss law;
V-D=0 (6)
D=g,E + P )
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Faraday law;

VxE=0= E=-V¢ )
Conservation of mass;

pP+pVv., =0 (9)

Conservation of Mass in material representation;

p(x,1) = % (10)
Balance of Linear Momentum:;

PV, =pfy+tepr =P E, (11)
Balance of Moment of Momentum;

&, ,=0,f =t +PE =1, (12)
Conservation of Energy;

pPE=t Vi~ G +ph+pE-TI (13)
Clausius-Duhem Inequality;

pOI~Gyy+ 00, ~ph 20 (14)

In these equations, the physical meanings of various symbols are: D electric displacement
vector, E electric field vector, P polarization field vector, &, electric permitivity of vacuum,

¢ electrostatic potential, V =0, i, gradient operator, o, mass density before deformation,
p Mmass density after deformation, v, components of velocity vector, t time, J Jacobian, v,
components of acceleration vector, f, mechanical body force per unit mass, t,, asymmetric
stress tensor, t,, =t,, + R E, asymmetric stress tensor, &, ., permutation tensor, g, heat flux

vector, h heat source per unit mass, ¢ internal enerji density per unit mass, » entropy density
per unit mass, @ absolute temperature of X at any time, py entropy production per unit
mass.

Local energy equation (13) is then suitably combined with the entropy inequality (14) and,
using a Legendre transformation such as w = &—6n —E -1 for free energy, entropy inequality
is obtained as follows in the material form:

Vol. 9, No 3,December 2017



On Developing Of A Thermoelastic Continuum Damage Model For Dielectric Composite Materials 39

. ol 1 .
—(Z+p0776’)+§TK,_CK,_ —EQKQK -I1,E, =0 (15)

Relationships between material and spatial forms of values appearing in this inequality have
been presented as follows [25]:

S=p, v (16)
Cu =20 X (X L = dy =%CKLXKYKXL’, (17)
T =X X = 6 =3 %0 X0 T (18)
Q = I X & =G =37 X, « Qc (19)
I, = %xm P.=PR =37 Ty (20)
Ex =X « Ec=E =X Ex (21)
Gy=0k =% 0=>09c=0, =X 0 (22)

Where X thermodynamical stress potential, v generalized free energy density, C,, Green
deformation tensor, d,, deformation rate tensor, x, . deformation gradient, X, , deformation

gradient of inverse motion, T, symmetric stress tensor in material coordinates, Q, heat
vector in material coordinates, Gy temperature gradient, IT, polarization vector per unit
mass in material coordinates.

5. Constitutive Model

To be able to use the inequality (15), which is a general expression of entropy production, we
need to know which independent variables the thermodynamic potential ¥ depends on and
how. Accordingly, selecting the arguments of ~ would formally mean selecting a material.
According to the material selected, arguments of ¥ and variables it depends on have been
found using constitutive axioms. Suggesting that the stress potential X at a point in time t of a
material point X in the material under consideration depends on the motion and the
temperature background of all material points constituting the object and on the electrostatic
field, formulation of constitutive equations for a dielectric-thermoelastic material under
consideration can be summarized as follows.

2 =2(Cy . Hy Ex. B, 0) (23)
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m, =—2% 24)
OE,

T =2 o0z (25)
0Cy

— o0x — ox

MNE_aHMN, Yoo =Yk, YKLE@HKL (26)

QK :QK (CKL’HKL’EK1BK’GK’0) (27)

GKQK (CKL’HKL7EK’BK’GK!0)ZO (28)

QK(CKL7HKL’EK7BK'0’0):0 (29)

T, =Tk —II E, C} (30)

In the expression (26), Y,, is called as the strain-energy density release [32]. The definition
Y, = —Y k1 is used in order to deal with a positive value . From the equations provided in the

expressions (25), (24) and (26), it is understood that symmetric stress, the polarization and the
strain-energy density release rate are derived from the free energy function X and that the heat
flux vector appears in a isotropic vectorial form with definite arguments independent of the

stress potential. Thus, a need arises to determine the explicit forms of £ and Q, that appear as
constitutive functions with known arguments.

However, firstly we should consider the constraints imposed by the material symmetry axiom
onto the material under consideration. Because the symmetry group of the material under

consideration is the fully orthogonal group, property [S, 1 *=[S, 1" . detS =1 is true for
the symmetry operation [S, ]. Therefore, each material point conversion matches an
orientation of the material medium. Such conversion should, for every [S,, ] be in the
following form

X;< =Sk XL XL :SIKX;( J [SKL]_l :[SKL]T (31)

and leave constitutive functionals form invariant. Mathematically this means the validity of
the following conversions.

) (SKP SLR CPR7SKP SLR HPR’ SKL EL’SKL BL’ 9):2 (CKL’ HKL’ EK’ BK ’9) (32)
QJ (SKPSLRCPR’SKPSLRHPR’SKPEP’SKP BP’SKPGP’G) = SJNQN (CKL' HKL’ EK ! BK’(BK ’9) (33)

On the other hand, both incompressibility of the composite and inextensibility of the fibers is
broadly accepted in practice for formulation purposes. The following conditions should be
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satisfied once the composite is assumed to be incompressible and the fiber familY
inextensible, respectively [25].

J=1 or detC=111=1 (34)
A:=C, BB =1 (35)
Thus, the constitutive equation for the stress is obtained as follows in material coordinates.

T =—pCy +T,B, B, +2 oz

(36)

KL

In this expression, p and I, are Lagrange coefficients and are defined by field equations and
boundary conditions. ¢, =Xy X, , Piola deformation tensor.

6. Determination of Symmetric Stress, Polarization Field, Asymmtric Stress and Strain-
Energy Density Release Rate Constitutive Equations

Since the matrix has been assumed to be isotropic, the relation (32) is expressed as below.

) (CKL’HKL’EK’BK ’9):2 (MKP MLRCPR’ MKP MLRHPR’ I\/IKL EL’ MKL BL’ 0) (37)

Here, the orthogonal matrix indicating the symmetry group {M, } shall be expressed for
[M,]eO(3)and [M ] =[M,, 1" = detM=+1istrue forthe [M ] .

On the other hand, since X has been assumed to be the analytical function of its arguments,
such arguments, which are expected to remain invariant under orthogonal transformations
belonging to the symmetry group, should depend on a finite number of invariants. Using the
methods of the invariants theory [33], 21 invariants of two symmetric matrices (Cx, ,Hg.) and

two polar vectors (E,, B,) independent of one another have been expressed as follows:

I, =Cyy, 1,=Cy Cx, 1,=C . C yCux, l,=Hy«, Iy=EE, I;=BBy,

IL=E(B., L=ECE, I,=EC CyEy, [1OEBKCKLBL:/15'
1,=B,C,.C.\ Bu, 1L,=E,C, B_, IL,=E.C, . C.vwBy, Iu=E ,H, E_,
lL.=E.C, H wEyw, 4, =B H. B, [,=B,C, H By, lz;=E H, B,

Le=E C Hiy By, 10=Cy Hi, 1, =C¢ C yHy« (38)

Instead of the first three invariants of the Green deformation tensor C, we can use the
principal invariants below.

=1, ||=%(|f—|2), III=%(If—3IlI2+2I3)=detC (39)
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Given the incompressibility of the composite, inextensibility of the fiber family and the fact
that B is unit vector, the invariants 11 and lg in expressions (38) and (39) are equal to 1 thus
eliminating the dependence of X on these invariants. As a result, the invariants on which =
depends are expressed as follows.

S=S( U101, 1,,1,,0), (m=11,.,21) (40)

Taking the derivative of expression (40) according to C.,, Hpzand E; and substituting it
into equations (36), (26) and (24), the following expressions are obtained.

0L 21 0% oll 0% Gli)
o1 6C,y 01l 8C., 01, 0C.,"" (41)
(i=8,9,11,12,13,15,17,19, 20, 21)

Ter =— pCps +T;, Bp By +2(

=22 o a145, 20) (42)
o1, oHpp

My=—(2= 9y (k=5789121314151819) (43)
ol, 0E,

It is understood that, as always, repeated indices will undergo summation. If derivatives of
invariants appearing in these equations according to Cpr, Hpgand E; are taken from

expressions (38) and (39) and substituted afterwards, constitutive equation of the symmetric
stress in non-linear form is obtained as follows.

— _ 0Y 02X 0 0 0x
Ter=— pCop+1;, BBy + 2 {(E + an Cu ) — an Cer +6_|8 E.Eq+ a_lg(EPEKCKR +
0x 02X 0
+CPKEKER)+ (BP BL CLR + CPLBLBR)+ aTEP BR + a_l(EP BL CLR +CPL EL BR)+
11 12 13
0 0x 0
(Er E,Hg+Hp E Eg)+ — (BB Hy + Hp B By)+ ——(EpB Hir+Hp E By)+
ol ol ol
0x 0x
_HPR+_(CPLHLR +HPLCLR) (44)
ol ol,

And polarization field in non-linear form is obtained as follows.

) ) o ) o )
n=-2—E,+—8B,+2—C,E +2—C,C,.E,. +—C,B +—C_,C, B, +
R (8[5 R 8[7 R 818 RL™=L 019 RL™LK =K 8[12 RLPL 5113 RL¥LK PK
0x o0X o0X 0x
ZaTMHRLEL + ZaTlSCRLHLK EK + aTlgHRLBL + aTlQCRLHLK BK) (45)

And the strain-energy density release rate in non-linear form is obtained as follows.
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Yer :_62 Opr +a_ZEPER +a_ZCPKEKER +a_ZBPBR +a_ZCPLBLBR+6_ZEPBR +
ol, ol 0l dl ol ol
0% 0% 0%
—= Cp EBy+——Cpa+—-C,. C 46
a Ilg PL LR a |20 PR 6 |21 PL LR ( )

More concrete form of the constitutive equations given by (44), (45) and (46) can be obtained
provided that Lagrange coefficients —p and I, and the derivatives of = based on its

invariants are known. It has been already stated that —p and I, can be obtained from field

equations and boundary conditions. To obtain the derivatives of * according to its invariants
it should be estimated how = depends on the invariants it is shown to depend on in expression
(40). In this study, the matrix material has been considered as an isotropic medium.
According to that > is an analytical function of those invariants, assuming that this function is
analytic, the stress potential is expanded in the power series around natural condition. To
obtain a quadratic theory, the terms in this series expanding should be kept to second order,
therefore the stress potential can be represented by a polynomial [25, 34]. However, the grade
and number of terms of the polynomial representing X~ depends on the size of its deformation
invariant and their shares of interaction in the case, shortly on their nonlinearity grades [35-
37].

In this study, mechanical interactions and effect of damage have been assumed to be linear
while electro-mechanical interactions have been assumed to be non-linear. Furthermore,
considering that the material remains insensitive to directional changes along fiber, double
components of fiber vector have been included in the operation. Because mechanical
interactions and effect of damage are assumed to be linear, the symmetric stress, the
polarization field and the strain-energy density release rate should remain linear according to
the deformation tensor and the damage tensor. Therefore function X could be represented by
a second degree polynomial according to the invariants it depends on. On the other hand,
because internal energy is defined as a positive definite form, for a polynomial to be
positively defined and for the order of invariants not to affect X, the polynomial must have
symmetric coefficients, i.e. be in a quadratic form. Accordingly, if polynomial approximation
is selected, the following expression can be recorded for the stress potential X in terms of the
existing invariants.

2:2a||;(i;j=1, 2,4,7,9,11,...,21), a. =a.. (47)
J

o

In the expansion (47) 1, and 1, have been substituted by principal invariants | and 11,

respectively. The derivatives of £ based on its invariants in the equations (44), (45) and (46)
are obtained from the expression (47) as follows.

02 0
522(31,114' a I +a 1), a7:2(31,21"' 8, Il +a,, 1),
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gTzzz(amH a,,ll+a,, 1), (m=4578911..,21), (k=4,57,8,9,11,...,21) (48)

m

At this stage, derivatives of the stress potential have been taken without paying attention to
whose functions the invariants are. Expressions (38) and (39) have shown on what the
invariants in the expression (48) depend. Due to the existence of the relationship
CkL = Ok +2Ek_ between the Green deformation tensor with the strain tensor, and assuming

mechanic interactions are linear ( Ex, = Ex_ =%(UK7L +U| k) ), those invariants that depend

on the Green deformation tensor (C,, ) can be expressed in terms of strain tensor (Ei, ) , which
Is a more useful parameter.

Terms after the third term on the right side of the equation (44) and all terms of the right side
of the equation (45) and (46) have been calculated using the partial derivatives given in the

expression (48) and invariants that depend on the strain tensor (E,, ). Due to the assumptions
made in this study, of the first grade components of the strain tensor (E,, ) and the damage
tensor Hy, and of the external multiplication components of vector B, , those whose number
is even have been taken into consideration. Thus, in the beginning, the elastic stress is
expressed for the condition without stress and without load (with the term «, ., assumed to
be zero) by taking common coefficients into common parenthesis.

Ter=—pCop, +T, BB, +a, EKK5PR+ o Hy Opr + B By Spp + 05 EKEKLELgPR +

6 E Hi EnSon + 2By Hyy By og + @B ELE | Sog + OgEpr + g Ex ExEpr + @ EpEp +
0, EpEg + 0ty H i EpEg + 1B H oy ByEoEg + 15 (EpEoE g + EpgEoEr) +

al6EKK B-B: +

07 H 4 B Bg + 5By By BoBg + 040 E By E BBy + oo E H iy EnBpBg + a2, [BoByg +
(BoB,E 5 + Ep B B)] + @pE Ex (BoB.E g + Ep B Bg)+ ct,sE B By +

& BBy By En By + s Hiy By Ep B + 1y By (EoBLE ¢ +Ep E,By)+

¢y, (EoE H s+ Ho B, Ex)+ a2y (BoB H  + Hp B Bg) +

poE By (EpB H o+ Hp B, Br) + gyH pg + 023 E B Hig (49)

The polarization field has been obtained as follows.

HR E_{ﬂlER +ﬂ2EKK ER +IB3EK BK BR +IB4(EKHKN BN BR + EK BKHRLBL)+
ﬁS ERLEL +IBGEKBKERLBL +ﬁ7EKEKLBLBR +ﬁ8HRLEL} (50)

The strain-energy density release rate is expressed as follows by taking common coefficients
into parenthesis in the beginning, without micro-cracks (the term 5, 6pr is taken here as

zero) has been obtained as follows.

Yer = 72Euk Opr + 7sH ik Opr + V4B ExOpr + V5 Ex Ew ELOpr + 76Ex Hi ELOpr + 77Bi H i BLOpr +
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¥sEpEr + 7oE i EpEr + 710H i ErEr +721B Hy BLERE + 712Ep EL Eq + 715B5 B, +

714EKK BpBr + 715Huk BoBr + 716E« Ex Bp B +717EKEKLELBPBR + 718Ex Hi B BpBg +
719EPLBL Br + 720Ex EKEPLBL Br +721Ex B¢ E By +722EKEKL BLE-Br + 723EcHi BLEBr +
EN= BKEPLELBR +725EPR +726Ex EKEPR (51)

The coefficients { ¢ (i=1,2,3,...,31) , B;(j=1,23..,8) and y, (m=1,23,..,26) } in the
equations (49), (50), and (51) have been and depend on the medium temperature ¢ and a;; .

In a composite material that consist of an isotropic matrix reinforced by one arbitrary and
inextensible fiber family, the medium is assumed to be linear, dielectric, isotropic,
incompressible, has micro-cracks and dependent on temperature gradient. The equation (49)
is the linear constitutive equation of symmetric stress. First and second terms of the equation
(49) are hydrostatic pressure and contribution of fiber tension to the symmetric stress
respectively; third and tenth terms combined are the contribution of the elastic deformation;
fourth and thirty second terms combined are the contribution of the damage tensor; fifth and
twelfth terms are the second grade electrostatic contribution; sixth, ninth, eleventh, thirteenth
and sixteenth terms are the stress produced by the interaction of the non-linear electric field
with the deformation field; seventh, fourteenth, twenty ninth and thirty third terms are the
stress produced by the interaction of the non-linear electric field with the damage tensor;
eighth, eighteenth and thirtieth terms are the stress arising of the interaction between the fiber
distribution B and the damage tensor; fifteenth, twenty first, twenty seventh and thirty first
terms are the contribution arising of the triple interaction between the non-linear electrostatic
field, the damage tensor and the fiber field B; seventeenth and twenty third terms are the
stress arising of the interaction between the fiber distribution B and the elastic deformation;
nineteenth and twenty fifth terms are the contribution of the non-linear electrostatic field and
the fiber field B to the stress; twentieth, twenty fourth, twenty sixth and twenty eighth terms
are the contribution arising of the triple interaction between the non-linear electrostatic field,
elastic field and the fiber field B; twenty second term is the contribution of the fiber
distribution B to the stress.

The equation (50) is the linear constitutive equation of the polarization field. First term of the
equation (50) shows the well-known electrical sensitivity. The second and fifth terms show
the interaction of the linear electric field with the deformation field. The third term shows the
interaction of the linear electric field with the fiber field B. The fourth term is the
contribution arising of the triple interaction between the linear electrostatic field, the damage
tensor and the fiber field B ; sixth and seventh terms are the contribution arising of the triple
interaction between the linear electrostatic field, the damage tensor and the fiber field B;
eighth term is the polarization produced by the interaction of the linear electric field with the
damage tensor.

The equation (51) is the linear constitutive equation of strain-energy density release rate. First
and twenty fourth terms combined are the contribution of the elastic deformation; second term
is the contribution of the damage tensor; third and seventh terms are the second grade
electrostatic contribution; fourth, eighth, eleventh and twenty fifth terms are the strain-energy
density release arising of the interaction between the non-linear electric field and the
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deformation field; fifth and ninth terms are the strain-energy density release produced by the
interaction of the non-linear electric field with the damage tensor; sixth and fourteenth terms
are the strain-energy density release stress arising of the interaction between the fiber
distribution B and the damage tensor; tenth, seventeenth and twenty second terms are the
contribution arising of the triple interaction between the non-linear electrostatic field, the
damage tensor and the fiber field B ; twelfth term is the contribution of the fiber distribution
B to the strain-energy density release; thirteenth and eighteenth terms are the strain-energy
density release arising of the interaction between the fiber distribution B and the elastic
deformation; fifteenth and twentieth terms are the contribution of the non-linear electrostatic
field and the fiber field B to the strain-energy density release; sixteenth, nineteenth, twenty
first and twenty third terms are the contribution arising of the triple interaction between the
non-linear electrostatic field, elastic field and the fiber field B to the strain-energy density
release.

Equations of the symmetric stress provided by the expression (49) and of the polarization
field provided by the expression (50) are substituted into the equation (30), thus the total
stress (the asymmetric stress) has been obtained as follows.

Tog =—PCok +T, BBy + @, By Spp+ @ Hie Opm + 4 B Ey S + 0% Ey By E Oog +

6 E Hiy EyOon + 2By Hyy By Oog + B E(E | Sog + OgEog + g Ex ExEpr + 0y EpEpg +
0B i EpEg + 0y Hig EpEg + By iy By EoEg + 0ty (EpEQEr + EpgEoEx) +

o BoBg + s Hy BoBg + o, E Ey BoBy + o E Ey E, BoBg + 0By H oy En BoBg +

1, [BpBg + (BoB_E 5 + Ep B B)]+ @pE Ey (BoB E s + Ep B Bg)+ pEy B EpBy +

&, E By By Ep By + s Hiy By Ep B + 1 E By (EoBLE ¢ +Ep E,By) +

o, (EpE H g +Hp E ER)+ a,5(BoB H s +Hp B Br)+ a,E B (E-B H s +Hp E B)+
0tgH o + 00y Ey E  Hon + BE.E C.L + B,E E-E,Ct + BEBB.E, C +

B, (EH o ByBo + E.BHo By )E, Cit + A Eoy ENE, Cit + BEBE, ByE,CLt +

BEE, \ByB-E,C.t+ BHpELE.C2 (52)

Expression (52) is the constitutive equation of the stress that occurs asymmetrically in a
polarized, has micro-cracks, arbitrary fiber-reinforced thermoelastic composite material that is
undergoing deformation due to the electro-thermo mechanical loading, is in interference with
an electrostatic field and is considered as an isotropic medium. According to the expression
(52), the last nine terms arising of polarization cause the stress to be asymmetric. Assuming
that the electrical interactions are linear, too, terms of this equation arising of polarization and
the terms arising of the symmetric stress and containing the second degree electric field will
be neglected. As understood from here, asymmetry of the stress on material coordinates
occurring inside the material is caused by strong electrical interactions.

7. Determination of Heat Flux Vector Constitutive Equation

It has been determined that the heat flux vector depends on the deformation tensor, the
damage tensor, the electric field vector, the fiber field vector and temperature gradient and
expressions (27)-(29) have been provided. Additional constraints imposed on the heat flux
vector by constitutive functions originate from the material symmetry of the medium. The
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structure of the heat flux vector should be in compliance with following transformation for
each orthogonal matrix [M,, ]Je O(3) belonging to the symmetry group of the material.

MJNQN(CKL’HKL’EK’BK’GK’G):
QJ(MKPMLRCPR’MKP MLR HPR’MKPEP’MKPBP’MKPGP’H) (53)

Where the matrix is isotropic, the relation (53) is valid for each orthogonal matrix of the fully
orthogonal group. The heat flux vector is an isotropic function of the symmetric matrices Cy,

and Hy, and polar vectors E,, B, and G, . To obtain an explicit expression of the Q.
vector, a scalar multiplication of the vector Q, with the vector V is required with V being an
arbitrary vector. Such multiplication is defined as a scalar function R as indicated below

[33]. This review article [33] summarizes the subject of representation methods for
constitutive equations based on material symmetry.

m(CKL’ HKL’EK7BK’GK’VK) EVK QK(CPR’ HPR7EP’ BP7GP) (54)

Taking the partial derivative of the expression (54) according to Vi , the following can be
recorded.

aER(CKL’HKL’ EK’BK’GK’VK)
oV,

QK(CPR1HPR’EP’BP1GP): (55)

Because the left part of this expression is independent of the vector V, the equation (55)
should also be valid for V=0. Thus, the isotropic vector function Q, is expressed as follows.

69%(C:KL’HKL7 EK’BK’GK7VK)

oV, (56)

QK(CPR’HPR’EPIBPle):

Vy =0

In this situation, in order to find the vector Q, from the relation (56), one needs to define the
structure of the scalar % depending on the arguments C.;,Hgx, Eq,Bp,Gp,V, and calculate

the partial derivative of this function based on the vector V for V=0. Let us first remove the
arbitrary vector V from the arguments of the scalar function R and define a scalar function
with arguments C.,, Hoz, Eq, By, Go.

FEF(CKUHKL’EK’BK’GK) (57)

For the function F, which is an isotropic function, to remain invariant under orthogonal
coordinate transformations, its arguments must depend on a finite number of invariants. Using
the methods in the theory of invariants [33], 36 invariants of the two symmetric tensors C,,
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and H,, and the three polar vectors E,,B, and G, independent of one another have been
expressed below.

l,=Cux, 1,=CC, 1,=CCyCuk, li=Hu Is=E(E¢, I;=B(By, 1; =G,Gy,
ls =E«By, lo=Ec Gy, 1, =BcGy, Iy=E.Cy E, 1,=EC CyEy,
1,=B.C. B =47, I1,=BC( CuBy, 1,5=GC. G, 14=G.Cc C Gy,
I,=E,C B, I;=E,C, C.uBy, l,g=E(C,. G, I,,=E(C C Gy,

Iy =B C Gy 1, =E¢Cy CLy Gy, Ip=EcH B, L,=E(Cc HyEy,
Is=By He B, I=BCyHyBy, 1=CG(H G, Iz=GCy H yGy,
Ig=ExH B, Io=E(Cy H By, Iy=E H G, I;=EC H Gy,
I3=By Hy Gy, I54=ByCy H yGy, Is=Cy Hii, I3 =Cy . CLyHuk (58)

However, the arguments of the scalar isotropic function %, the function which the main
function to be found, are C.;,Hqz,E-,Br,Gp,V,. A linear function of the vector V, the
scalar % is also dependent on the following invariants in addition to the invariants in (58).

K=V E(, K,=V, B, K;=V,.G,, K,=V,C, . E , K. =V,C, B, K=V, C, G,
K7=Vi Ckm Cu Bl Ke=Vi G Gyl Bl Ko=Vie G Gyl Gl Kye=ViH B,
Ku=VikHe Bl Kp=ViH G, Kiz=Vk Cum Hu L EL,

K=V Cin Hu Be, Kis=Vk Ckm HuL GL (59)

Thus, the function % can be written down as follows.

15
ER(CKL’HKL’EK’BK'GK’VK):Zla K. (60)

a=1

Coefficients A in the equation (60) are each a scalar function of the invariants given in the

equation (58). Furthermore, the heat flux vector has been obtained as follows using the
relation (56) given the assumptions made on the mechanical interaction in this study and
considering the first-grade terms of the tensor C.

Qr=A1Eg+ 4,Ba+4,Gg +4,Cpp BEp +45Cpp Bp + 4:Cp Gp + A H o B +
AgHpg Bp + AgH o Gp (61)

Because mechanical interactions and effect of damage have been assumed to be linear,
coefficients in the equation (61) are each a scalar function of invariants that do not contain
square or higher grade terms of tensor C and terms in the form (CH) in the equation (58).

Besides, taking into account that values of the invariant 1, is equal to 1 due to the
inextensibility of fiber family and value of the invariant I, is equal to 1 because it is unit
vector pertaining to the distribution of fiber B before deformation, invariant on which the
said coefficients depend have been recorded as follows in terms of EKL :
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3,=3+2E., J,=H., J,=E.E., J,=G,G,, J,=E.B,, J,=E.G,, J, =B, Gy,
Jy=E.E  +2E E E,, J,=G,G, +2G.E, G, , J,= E B +2E.,E, B,

J, =EG,+2EE,G,, J,=BG+2BEG,, J,=E H, E, J,=B.H,B_,
Je=G,H, G, Jg=E.H. B, J,=E(H, G, Jz=B.H, G, (62)

Coefficients in the equation (61) can be defined as follows as a scalar function of the
invariants in (62).

18
ﬂa:ﬂofglﬂi\]i, 1<a <9, (a=1=p=a, a=2=p=b, a=3=p-=c,
a=4=p=d,

a=5=p=f,a=6=>p=k,a=7T=p=l,a=8==m, a=9=L=5) (63)

Due to the existence of the relationship C,, = o, +2E, between the Green deformation
tensor with the strain tensor, and assuming mechanical interactions are linear {

E. =E, =%(UK,L +U_ )}, those invariants that depend on the Green deformation tensor

(C,.)can be expressed in terms of strain tensor (E, =E, ) which is a more useful

parameter. Using the expressions (63) in the equation (61), considering mechanical
interactions, effect of damage and temperature changes have been assumed to be linear,
electrical interactions have been assumed to be non-linear, the following expression has been
obtained.

Qu = QE,+ QB Eq +Q, Hy Eq +OQ,E, G E + QE, E, G Eq + QB H, B Ey +

Q.E H, G E, +O,E, BB, +Q,B, G, B, +Q, E E, B B, +,B.E, G,B, +

QZ EK H KL BL BR + QBBK H KLGL BR + g)l4GR + QSEKKGR +g216H KKGR + glﬂ EK EKGR +
QSEKEKL ELGR + gllQEKHKL ELGR +QZO BKHKL BLGR +QZlﬁPR EP +Q22 EKGKEPR EP +

QZ?:EK BKEPR BP +QZ4BKGKEPR BP + QZSEPRGP + QZGEK EKEPRGP +QZ7HPR EP +

0B Gy HorEp + Qs E By HogBo + Q0B G H o By + QO H ok Gy + QB E HoGo  (64)

Coefficients Q, (k =1, 2, 3,...,32) have been depend on the medium temperature ¢ and A4 .

Because the tensor C,, can be expressed in the terms of the tensors E,, = E,, the expression

(29) imposes a constraint on the coefficients in the equation (64). Accordingly, the following
expression can be recorded.

0=0QF, +Q,E, E, +QH, Er + QB H, B Eg + QE, BB, + O, EE, BB+
QlZEK HKL BL BR + QZlﬁF’REP + Q23EK BKEPR BP + QZ7HPREP + QZQEK BKHPR BP (65)

Because, according to the expression (65), the above-mentioned are arbitrary, the necessary
and sufficient condition for validity of this equation is the following coefficients being zero.
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Q=Q,= Q3: Qez Qs = QlO =Q,,=Q, = Q232927 = ngzo (66)

In this situation, expression providing the material form of the heat flux vector is obtained as
follows.

Qr =€, Gp + B, Gg + Qg H i G + B B G + QB By B G + QB Hy B, Gp +
Q,,B(H B G + Q,E, G E; +Q.EE, G E;+ QE(H, G E; +Q,B,G, B +
;B Ey G\ B + Q3B Hy G\ By + QB Gy EppEp + €y, B G EppBp +£2,sEpr Gy +

QB By EprGp + Q6B Gy HprEp +Q250B Gy Hpe By + €25 H o Gp + QB By HippGp (67)

Expression (67) is constitutive equation of the heat flux vector on material coordinates in
terms of its components in a composite material that consist of an isotropic matrix reinforced
by one arbitrary and inextensible fiber family, the medium is assumed to be linear, dielectric,
isotropic, incompressible, has micro-cracks and dependent on temperature gradient, the
mechanical interactions and the temperature changes—linear and the electrical interactions—
non-linear. As understood from this equation, interactions of the temperature gradient on its
own and of the deformation field, the damage tensor, fiber distribution field and square of
electric field separately and collectively contribute to the formation of the heat flux vector.

8. Conclusions

In the present paper we present a continuum damage model for the linear electro-thermo-
elastic behavior of the temperature dependent dielectric composite materials, which have
micro-cracks and consisting of an isotropic matrix reinforced by inextensible single fiber
family. The developed model is based on continuum damage mechanics (CDM), continuum
electrodynamics and equations belonging to kinematic and deformation geometry of fiber.
Damage is incorporated by means of two second-rank, symmetric tensors that represented the
total areas of open (active) and closed (passive) micro-voids contained within a representative
volume element (RVE). It is further assumed that an element from single continuous fiber
family is placed on each point of the composite material. The matrix material has been
assumed to be an isotropic medium, however, due to the distribution of fiber and the existence
of micro-cracks, it has gained the property of a directed object, thus gaining the appearance of
an anisotropic structure. The composite material is assumed showing linear thermoelastic
behavior. Both incompressibility of the medium and inextensibility of the fiber is broadly
recognized in terms of formulation. Thus, fiber family is assumed to be inextensible and
composite medium is assumed to be incompressible. In this context, the composite expresses
itself behaviorally in terms of the symmetric stress, the electrical polarization, the heat flux
and the strain-energy density release rate. Since the matrix has been assumed to be isotropic,
findings of the theory of invariants have been suitably used to concretely determine
arguments of both the stress potential and the heat flux vector functions. To obtain a more
concrete expression of non-linear constitutive equations of the symmetric stress, the
polarization field and the strain-energy density release rate given by expressions (44), (45)
and (46), derivatives of ¥ must be known according to the arguments it depends on. Thus,
stress potential X has been represented by a second degree polynomial and its derivatives
according to its invariants have been calculated. During these operations mechanical
interactions and effect of damage have been assumed to be linear while electrical interactions

Vol. 9, No 3,December 2017



On Developing Of A Thermoelastic Continuum Damage Model For Dielectric Composite Materials 51

have been assumed to be nonlinear. Furthermore, since the matrix material has to remain
insensitive to directional changes along fiber, even-numbered exterior products of vector field
representing fiber distribution have been considered. The linear constitutive equations of the
symmetric stress, the polarization field and the strain- energy density release rate have been
found by expressions (49), (50) and (51). From these equations, it can be seen that the
deformation field, the damage tensor, electric field, distribution of fiber and interactions of
them both contribute to the creation of the symmetric stress, the polarization field and the
strain-energy density release rate. Using the symmetric stress and polarization field, the
asymmetric stress has been determined by the expression (52) in material coordinates.

Since the heat flux is a vector-valued isotropic function, the equation (61) has obtained by
using the invariants of the arguments depends on of heat flux. Coefficients in this equation
have been expressed in terms of the invariants on which they depend and each term has been
calculated. When these calculations are made, the mechanical interaction, temperature change
and the effect of damage have been assumed to be linear while electrical interactions have
been assumed to be nonlinear and even number vector components of fiber vectors have been
included in the operations, since the composite remains indifferent to change of direction
along the fiber. The linear constitutive equation of the heat flux vector has been expressed by
the equation (67). From this equation, it is observed that the temperature change contributes to
the creation of the heat flux vector alone, with the deformation field, with the damage tensor,
with the fiber distribution field, with square terms of the electric field and with interaction
among them.

This paper is concerned with developing the continuum damage mechanics model for the
linear electro-thermoelastic behavior of composites having micro-cracks consisting of an
isotropic matrix reinforced by inextensible single family of arbitrarily fiber. The symmetric
stress, the polarization field and strain-energy density release rate are expressed in terms of
the thermodynamic stress potential, a function of the left Cauchy-Green tensor, the damage
tensor, the electric field vector, the fiber distribution and the temperature. The heat flux vector
depends on these quantities and the temperature gradient. The material symmetry group is
assumed to be the full isotropy group. Standard methods in invariant theory are used to
construct representations for the constitutive equations for symmetric stress, polarization
field, strain energy density release rate and heat flux vector. The symmetric stress,
polarization field, strain-energy density release rate and heat flux vector are treated in separate
sections. The appropriate invariants used as arguments for thermodynamic stress potential
function and heat flux vector function are introduced and the symmetric stress, polarization
field, strain-energy density release rate and heat flux vector constitutive equations are worked
out. This is followed by specializations for incompressibility, inextensibility of the fiber, the
special case when thermodynamic stress potential is a quadratic polynomial in the invariants
and a linearization based on small strains.

After this paper, practical problems will be solved by forming B(X) vector field for various

fiber distribution whose parametric equations in the material medium are in the form of
X =X(s) and necessary interpretations will be made in a more concrete way. Also, in a

future work we will study the development of numerical methods for this model. In this work,
developing a theoretical investigation for formulation constitutive modeling based on
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continuum damage mechanics has been purposed for the thermoelastic behavior of a dielectric
composite material reinforced by single inextensible fiber family.
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