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ABSTRACT: Determination of zeros of Bessel functions and their derivatives are essential in the TE and
TM modes supported by the circular waveguides. However, since these functions are conventionally
defined as infinite series, fast calculation of their numerical values and zeros with reliable accuracy
requires improved numerical techniques or approximations. Moreover, modes are usually sorted by
human inspection and instant retrieval of correctly ordered modes becomes essential especially for
higher mode-index values. Here, a fast-computational algorithm design based on the numerical
Bisection method to determine the sorted TE and TM mode solutions of the circular waveguides is
presented. Our suggestion involves: i) determination of the critical points close to the zeros of Bessel
functions and their derivatives within the user selected sampling width (typically =0.01), ii) application
of the numerical Bisection method to these functions one after another to scan up to the user selected
maximum index number by using these critical points up to maintain the user selected sensitivity
values, iii) Bubble sorting of the unified roots matrix, iv) scan the bubble sorted roots matrix to decide
the mode type. As a result, our design finds the related TE and TM modes along with the cut-off and
propagating wave frequencies in the correct order with a very fast calculation by the user controlled
Computable Document File (CDF) environment.

Key Words: Bessel functions, Circular waveguides, Computable document file (CDF), Cylindrical waveguides,
Real time computation, TE modes, TM modes,

Dairesel Dalga Kilavuzlarinin Modlarini Belirlemede ikiye Bolme Temelli Hizl1 Bir Analizér
Tasarimi

OZ: Dairesel dalga kilavuzlarinin destekledigi TE ve TM modlarinin belirlenmesinde, Bessel
fonksiyonlarimin ve tiirevlerinin sifirlarinin bulunmasi elzemdir. Ancak, bu fonksiyonlar konvansiyonel
olarak sonsuz seri seklinde tamimlandigindan, sayisal degerlerinin ve sifirlarinin hizli ve makul
giivenirlikte hesaplanmasi, gelistirilmis sayisal teknikleri ya da yaklasim yapmay1 gerektirir. Ayrica,
modlar genellikle insan tarafindan kontrol edilerek siralandirilir ve 6zellikle yiiksek mod endekslerinde,
dogru olarak siralanmis modlara aninda erisim Onemlidir. Burada, siralanmis modlar1 hizli olarak
hesaplayan, sayisal yontemlerden ikiye bolme (Bisection) temeline dayanan bir algoritma tasarim
sunulmaktadir. Onerimiz su hususlari icermektedir: i) Bessel fonksiyonlarinin ve tiirevlerinin sifirlarina
yakin kritik noktalarin, kullanici tarafindan secgilen Ornekleme genisligine gore (tipik olarak=0.01)
belirlenmesi, ii) Kullanic1 tarafindan segilen hassasiyet degeri elde edilinceye kadar, bu kritik noktalar
kullanarak, kullanic1 tarafindan secilen maksimum indeks degerine kadar taranan bu fonksiyonlara
ardisik olarak sayisal ikiye bolme yonteminin uygulanmasi, iii) Birlestirilmis kokler matrisinin kopiik
siralamast (bubble sorting), iv) kopiik siralamasi yapilmis kokler matrisinin taranarak mod tipinin
belirlenmesi. Neticede, tasarimimiz hizli bir hesaplamayla, ilgili modlari, kesim frekanslar: ve ilerleyen
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dalga frekanslar1 ile birlikte dogru siralanmis olarak, kullamici kontrollii hesaplanabilir dokiiman
dosyasi (CDF) ortaminda bulmaktadir.

Anahtar Kelimeler: Bessel fonksiyonlari, Dairesel dalga kilavuzlari, Hesaplanabilir dokiiman formati, Lindirik
Dalga kilavuzlari, Gergek zamanl hesaplama , TE modlari, TM modlar1.

INTRODUCTION

The circular waveguide, occasionally used as an alternative to the rectangular waveguide, is
constructed from a single, enclosed conductor and supports transverse electric (TE) and transverse
magnetic (TM) modes (Balanis, 1989; Beattie, 1958; Cheng, 1989; Kushwaha et al, 2014; Sekeljic, 2010;
Deniz, 2016; Deniz, 2017). Each mode has a characteristic cut-off frequency, below which
electromagnetic energy is severely attenuated as typical to the other waveguides. Circular waveguide’s
round cross section makes it easy to machine and it is often used to feed conical horns. Moreover, very
low attenuation of their TE,, modes also makes it popular in engineering applications (Balanis, 1989;
Cheng, 1989). These modes are conventionally given by the x;,, values for the TE,, mode and x,,
values for the TM,,,, mode where the first one is the nth zero of derivative of the first kind of Bessel
functions with index m, namely J;,(x), and the second one is the nth zero of the first kind of Bessel
functions with index m, namely J,, (x), respectively (Balanis, 1989; Beattie, 1958; Cheng, 1989; Kushwaha
et al, 2014; Sekeljic, 2010; Deniz, 2016; Deniz, 2017). Bessel functions have infinite zeros in the entire
domain or finite zeros in a given subdomain; like trigonometric functions, Airy functions, etc., and
finding their zeros as accurate and as fast as possible is essential here for the circular waveguides. Since
analytical solutions in finding roots of such functions is always not possible, various numerical and
approximation techniques are being improved (Abuelma’atti, 1999; Blachman and Mousavinezhad,
1986; Deniz, 2016; Deniz, 2017; Harrison, 2009; Luke, 1975; Millane and Eads, 2003; Newman, 1984;
Waldron, 1981). For the Bessel functions of the first kind and their derivatives, we have the following
conventional analytic expressions in the form of infinite series (Abramowitz and Steugun, 1965; Arfken
and Weber, 2005; Bell, 1968; Boas, 2006; Korenev, 2002; Watson, 1995):

_ = (_1)" Xy 2k+m . (1a)
]m(x)_;)kll‘(k+m+1) (5) ymeR
d m m—1 —Jm+1
iy = ) I @ ZInanl) 1y (1b)

where J,,(x)&];,(x) are the Bessel functions of first kind and their derivatives with index m and T is the
gamma function. Their values for negative index values are also defined as well as their integral forms
and approximate forms under special cases (such as asymptotic, large Bessel indices, etc.) (Abramowitz
and Steugun, 1965; Arfken and Weber, 2005; Bell, 1968; Boas, 2006; Korenev, 2002; Watson, 1995). We can
also see that their exact analytical calculations as well as finding their zeros are impractical but can be
calculated by some approximations such as asymptotic approximations, approximations for large Bessel
indices, etc. Todays advanced computation software, such as Mathematica, Mapple, Matlab, etc., can
find their numerical values and zeros by some approximations within the desired sensitivity (Richards,
2002; Wolfram, 2003; Wolfram, 2017a). Besides the determination of these zeros, their sorting, fast and
accurate ordering is also important for designing and analyzing the circular waveguides.

Here we suggest a very fast and accurate algorithm design based on the conventional Bisection
method to find and sort the zeros of Bessel functions of first kind and their derivatives to represent the
solutions of the circular waveguides. For the root finding part, our suggestion employs the conventional
numerical Bisection technique given in the fundamental textbooks regarding numerical methods such as
in (Chapra and Canale, 2014; Hamming, 1987; Hoffman, 2001). It is also applicable to the other similar
functions involving oscillatory zeros obeying the Intermediate Value Theorem (IVT) in a given domain.
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General view of our design while operating is given in Figure 1. It runs under the Mathematica CDF
(Computable Document Format) player, which is a free-software downloadable from the Wolfram’s web
page given in (Wolfram, 2017b). General properties of the CDF are given in (Guillermo and Ledn, 2017;
Hastings et al., 2016; Hong, 2016; Wellin, 2016; Wolfram, 2017b; Wolfram, 2017c; Wolfram Research,
2017) and some of the sample applications are available in (Al-Shamali, 2015; Beaulieu, 2012; Deshmukh,
2012; Hollingsworth and Narayanan, 2016; Jones, 2014; Kahle, 2014; Russel, 2013; Selinger, 2016; Tasgal
and Band, 2015). To summarize, it can be coded to have a user console enabling real time computations.
Moreover, once it is coded on Mathematica software, it can be easily converted to a CDF file which runs
under the free CDF player without requiring any other software purchasing (Guillermo and Ledn, 2017;
Hastings et al., 2016; Hong, 2016; Wellin, 2016; Wolfram, 2017a; Wolfram, 2017b; Wolfram, 2017c;
Wolfram Research, 2017).

Our Bisection-based algorithm involves two main stages. In the first stage, we use iterations by the
desired scanning step (typically=0.01) to scan the related Bessel functions of first kind first and then its
derivative to determine the critical points near the zeros for both roughly. These critical points are then
instantaneously being processed by the conventional Bisection technique given in (Chapra and Canale,
2014; Hamming, 1987; Hoffman, 2001) to determine the related zeros in the second stage. In effect, we
have very fast and accurate results since the iteration number for the desired accuracy level is very low
(typically=5 iterations for the sensitivity set value=0.0001). Once these roots are found, they are unified
and the conventional Bubble Sorting, which is normally known to be not much fast and practical (Arora
et al, 2012; Astrachan, 2003; Cormen et al, 2009; Khairullah, 2013; Rohil and Manisha, 2014) is applied.
Though, we have very fast and accurate modes in the correct order. Sorted and unified roots matrix is
then re-scanned to determine the related mode type to be assigned for each. In effect, we have very fast
and correctly ordered modes with the related cut-off and propagating wave frequency values. As seen in
Figure 1, user console involves guide radius, operation frequency, relative permittivity and permeability
values of the medium, maximum Bessel index value, Bisection precision value, count step value and an
update button. When the update button is pushed, user selected values are entered.

Bizection Based Modes Finder and Sorter for the Circular Waveguides in a Madium

guide radius R (in cmy: 9.761 freq. f (in GHz): 0.001
5.761| =k i+ Rz 0.001 ot LA G NS A s
medium  (in £ x10-12); 8.85419
m medium g in 21077 4x
8.85419 =k ||| m
mmax: | 10 d Bisection precision: | 0.0001 d count step (&) 0.0001 0.001 - ol 1 update

[[i=1:TM9, TEx,, (m=1,n=1) :1.84125, (£=0.001, £.-=0.900035, £.=0.)GHz},
[i=2:TMxp, (m=0,n=1) :2.405, (£=0.001, £.=1.17561, £,=0.)GHz,TE>{},
[i=3TM, TESx,, (m=2,n=1) :3.05438, (£=0.001, £.-1.49303, £,-0.)CHz},
[i=43TMxp, (m=1,n=1):3.83188, (£=0.001, £.-1.87309, £,-0.)GHz,TE-+x, (m=0,n=1):3.83188, (£=0.001, £.-1.87309, f£,-0.)CHz
}, [1=5:TM>®, TEx., (m=3,n=1) :4.20125, (£=0.001, £,=2.05364, £,=0.)GHz},
[1=6:TMxp, (M=2,n=1):5.13562, (£=0.001, £.-2.51038, £,-0.)GHz, TE->}},
[1=7 M, TE>x,, (M=4,n=1) :5.3175, (£=0.001, £.-2.59929, £,=0.)GHz},
[1=8:TM@, TE-x,, (m=1,n=2) :5.33125, (£=0.001, £.-2.60601, £,=0.)GHz},
[1=9:TM3xn, (m=0,n=2) :5.52031, (£=0.001, £.-2.69842, £,=0.)GHz,TE>}},
[1=104TM>¥ay (M=3,n=1) :6.38031, (£=0.001, £,=3.11B81, £,=0.)GHz,TE>@},
{i=11:TM>@, TESx,, (M=5,n=1) :6.415, (£=0.001, £.=3.13576, £,=0.)GHz},
[1=122TMSG, TE>¥o, (M=2,n=2) :6.70625, (£=0.001, £.=3.27813, £,=0.)GHz},
[1=138TM0y, (m=1,n=2):7.01563, (f=0.001, £.-3.420936, f,=0.)CHz,TE-x,, (m=0,n=2):7.01563, (£=0.001, £.-3.42036, f,=0.)CHz
b, [i=14:TM@, TE>x,, (m=6,n=1):7.50125, (£=0.001, £.=3.66674, £,=0.)GHz},
[1=152TM %oy (M=4,n=1) :7.58813, (£=0.001, £,=3.70921, £,=0.)GHz,TE>@},
[1=162TM>@, TE>¥,y, (m=3,n=2) :8.015, (£=0.001, £,=3.91787, £,=0.)GHz}],
[1=17$TM 3oy (M=2,n=2) :8.4175, (£=0.001, £.-4.11462, £,=0.)GHz,TE>}},
[1=182TMG, TE>¥o, (m=1,n=3) :8.53625, (£=0.001, £.-4.17267, £,=0.)GHz},
[1=192TM>@, TE>¥oy, (m=7,n=1) :8.5775, (£=0.001, £.-4.19283, £,=0.)GHz},
[1=202TM %oy (M=0,n=3) :8.65375, (£=0.001, £.-4.2301, £,=0.)GHz,TE>p},
[1=212TM %oy (M=5,n=1) :8.77125, (£=0.001, £,-4.28754, £,=0.)GHz,TE>@},
[1=222TM>@, TE¥,, (m=4,n=2) :9.2825, (£=0.001, £.-4.53745, £,=0.)GHz},
{1=23:TM-®, TE-),, (M=8,n=1) :9.6475, (£=0.001, f.=4.71586, £,=0.)cHz}}

Figure 1. General appearance of our analyzer while running
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Applications of the Bessel functions and their zeros to determine the modes of circular waveguides
is being summarized in Chapter 2. Bisection method and our suggested algorithm regarding the
numerical root finding based on the conventional Bisection method is being presented in Chapter 3 and

their application to specific circular waveguide is being presented and discussed in Chapter 4.

CIRCULAR WAVEGUIDES

General properties of the 74 and 74/ modes given in (Balanis, 1989; Cheng, 1989; Deniz, 2017;
Kushwaha et al, 2014) can be summarized as follows:

TE Modes

The Transverse Electric to z, (TE?) modes, can be derived by letting the vector potential A and F be
equal to the followings:

A=0 (2a)
F = a,F,(p,0,2) (2b)

from which we have
V2E,(p.8,2) + B*F,(p,8,2) = 0 (3a)
whose solution gives:

E(p,®,2) = [AJm(Bop) + B1Ym(B,p)] X [C; cos(m®) + D, sin(m@)]

. . 3b
X [Aze~IPZ + ByelFz7) (35)

where
B3 + BZ = B? (4)

and J,&Y,, are the Bessel functions of first and second kind respectively. Constants:
{A1, B1, C;, Dy, A3, B3, m, B, B,} can be calculated by using the following boundary conditions:

EQ)(p =aq, (Z),Z) =0 (5&1)
E,(p=0a0,2z)=0 (5b)

from which we get
F,(p,9,2) = ApnJm(Bop) X [C; cos(m®) + D, sin(m@)] x Aze~/Fz* (6)
Then, the electric field component Eg can be calculated from

19F (p.9,
E§(p,8,2) = 75000 (72)

and by applying the boundary condition for Eg in (5a), we get:

Eg(p:a’m’z)=0:]’m(ﬁp)=03ﬁp:x’ﬂ (7b)

a



104 C. DENiz

where y',,, represents the nth zero (n = 1,2, 3, ...) of the derivative of the Bessel function J,, (x) of the first
kind of order m (m = 0,1, 2, 3, ...). The smallest value of y',,,, corresponds to X'11=18412(m=1,n=1).
Using (4) and (7b), B, of the mn mode can be written as follows:

(ﬂz)mn = X mn (83)

, Xr
_] .Bp BZ_] ﬁzﬁ<ﬁp =2
where Cut-off is defined when (s, = 0, namely:
Be = ONEE = () = 7202 (8b)

2ma\ue

where (f:)mn is the cut-off frequency above which the related TE mode propogates with the guide
wavelength:

21
= 8c
/19 (Bz)mn (8c)

TM Modes

Similarly, the Transverse Magnetic to z, (TM#) modes, can be derived by letting the vector potential
A and F be equal to the followings:

F=0 (9a)
A=a,A,(p 0 2) (9b)

from which we have
V2A,(p,8,2) + p?A,(p,8,2) =0 (10a)
whose solution gives:

A (p,®,2) = [A]_]m(.gpp) + Blym(,gpp)] X [C; cos(m®@) + D, sin(m@)]

. , 10b
X [Aze~IPZ + BelFe7) (10)

where
B; + B2 =pB* (11)

and J,,&Y;, are the Bessel functions of first and second kind respectively. Constants: {4, By, C;, D,, A3, B3,
m, B, B,} can be calculated by using the following boundary conditions:

Es(p=0a,0,2)=0 (12a)
E,(p=0a,0,2z)=0 (12b)



A Fast Bisection Based Analyzer Design for the Determination of Modes in Circular Waveguides 105

from which we get
A3 (p,0,2) = BuuJim(B,p) X [C, cos(m®) + D, sin(m®)] x Aze~/Pz? (13a)

Then, the electric field component E; can be calculated from

Ef (p,0,2) = —j = (25 + §?) 41 (0, 8, 2) (13b)

wpe \dp?
and by applying the boundary condition in (12b) to (13b), we get

E,(p=0a0,2)=0=],(8,)=0=p, =42 (13c)

a

where y,,,, represents the nth zero (n = 1,2, 3, ...) of the Bessel function J,,(x) of the first kind of order m
(m=0,1,2,3,..). The smallest value of y,,, corresponds to y,; =2.4049 (m = 0,n = 1).
Using (13c) and (11), B, of the mn mode can be written as follows:

[T = o= () > g, =
B = 0, B=B.=p=""2 (14)

3B =P =) (2) - g p <, =

a

where Cut-off is defined when ;) = 0, namely:

B = 0AHE = (fdmn = 200 (15)

where (f.)mn is the cut-off frequency above which the related TM mode propogates with the guide
wavelength given in equation (8c). Since the cut-off frequencies of the TE,, and TM;, modes are
identical (Yo, = X1n), they are referred to also as degenerate modes.

DETERMINATION OF THE MODES
The Bisection method

The conventional Bisection technique, based on the Intermediate Value Theorem, is also called as
Binary-search method and it is applicable if f(p) is a continuous function defined on the interval [a, b],
with f(a) and f(b) of opposite sign as follows (Chapra and Canale, 2014; Hamming, 1987; Hoffman,
2001):

Theorem 1 (IVT): Assume f: IR — IR is a continuous function and there are two real numbers a and b
such that f(a) X f(b) < 0. Then f(p) has at least one zero between a and b.

The Intermediate Value Theorem implies that a number c exists in (a,b) with f(c) = 0. Although
the procedure will work in most of the cases when there is more than one root in the interval (a, b), we
assume for simplicity that the root in this interval is unique for now. The method calls for a repeated
halving (or bisecting) of sub-intervals of [a, b] and, at each step, locating the half containing ¢ until the
desired precision (=prec) is attained. To begin, set a; = a and b; = b, and let p; be the midpoint of [a, b];
that is,

bi—a; _ a;+by (16)

GG=a +——=
1 1 2 2
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Then the calculation involves the following procedures:

i) If |f(c1)| < prec, then ¢ = ¢;, and we are done, root=c.

ii) If f(p;) # 0, then f(p;) has the same sign as either f(a,) or f(b,).

iii) If f(p1) and f(a;) have the same sign, p(p;, b;). Set a, = c¢; and b, = b,.

iv) If f(p1) and f(a;) have opposite signs, p(a;,p;). Set a, = a; and b, = ¢;.

v) Continue the same process to interval [a,, b,] and reapply with r iterations until |f (¢ « ¢,)| <
prec, root=c.

Flowchart of the Bisection algorithm used here is given in Figure 2. The dashed rectangle is our
addition here to reject the roots found but out of the guide radius R. This modified Bisection module is
used in our suggested algorithm whose flowchart is given in Figure 3 to find the root (which is
guaranteed to exist by the IVT given above) in the determined [a, b] interval instantaneously.

Start Bisection module
(to find the root in [a, b))

l

[ get iteration #: r =0 \

(End ( Bisection m:}dulnD

Figure 2. Flowchart of the Bisection algorithm to calculate the root of f(x) between a&b by r iterations.
Our Suggestion

The flowchart of our suggestion is given in figure 3. User enters the following parameters: Guide
radius (R), frequency (freq), medium permittivity and permeability (e, u), Bisection precision (prec)
and, count step (Ap). Bisection method discussed above operates in the determination of one zero
between the end points [a, b] where f(a)&f(b) are in opposite signs satisfying the IVT as discussed.
Since we study the functions with more than one zero, we suggest first to determine such critical points
[a,, b,] as follows:

lan, by] = [k, a, + Am] (17a)

where Ap is the count step selected by the user (default value is set to 0.01) and k scans the domain
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of the guide radius [0, R] in Ap steps. Here we determine the critical point pairs {a,, b,} obeying the IVT
as follows:
Signlf (an)] x Sign[f (bp)] < 0 (17b)

By this suggestion, the application of the Bisection method can be started within very close critical
point pairs {a,, b,}. So, less iteration steps are needed in the application of the Bisection method. Since
the nth zeros of J;, (x)&/,,(x) are searched to determine the modes ¥, &¥mn, in each application of the
Bisection method, the user initially enters the maximum value of m (=m;,,,), hence we have: m =
0,1,2, ..., Mpq,. Once all the parameters are been entered and activated by the update button by the user,
Xm 5 matrix for the roots of J;,,(p) and similarly, x,,,,, matrix for the roots of J,,(p) are defined in order
that final results for the roots can be assigned to these matrices. So, starting from k =0 and f(p) =
Jm=0(p), all the roots are found and assigned to the related elements of matrix y;,,.,- When k reaches R, it
is complete and it repeats for f(p) = J;u=o(p) from k =0 up to k = R and all the roots are found and
assigned to the related elements of matrix y,,, ,. Then the same procedure continues for the next m value
with m = 1 and repeats up to m = m;,,4, to find and assign all the roots to the related matrices in the
following order:

’ 1 ’ ’ ’ T m = 0,1,2, ., m
{X‘m = (Xml Xm2 - Xmn - Xmmaxl) » Xm = (Xml Xm2 - Xmn ---Xmmaxl)T}: n=123 .. Tlnax (18)

Note that [ is a relatively big number (typically 50 or more) regarding the maximum root number in
0 < p <R and 0 £ m < my,,,, which is not known at the beginning and the blocks marked by (*) are not
necessary if any matrix predefinition is not required by the programming language in use or by the
preference of the programmer. Deletion of the non-assigned elements to reduce the matrices at the end
of this module is also optional. The outputs at the end of this module for a relatively small guide radius
(R =7 cm,my,,, = 10) is given as an example as follows:

( m=0=x;=(383188),x, = (2405 5.52031)"
[m=1= y =(1.84125 5.33125)7, x, = (3.83188)
m=2=y, = (3.05438 6.70625)7, y, = (5.13562)
m =3 = y; = (420125), x5 = (6.38031)
l m=4= y,=(53175),x, = ¢
m=>5= y; =(6415),x, = ¢

R=7cmmpy,, =10= ! (19)

Note that for 5 < m < my,q, = 10, x,, OF ¥y, exceeds R = 7 cm.
Sorting Module

Flow chart algorithm for our sorting module is given in figure 4. We prefer the conventional Bubble
sorting given in (Arora et al, 2012; Astrachan, 2003; Cormen et al, 2009; Khairullah, 2013; Rohil and
Manisha, 2014). For small guide radius value given above we have the following operations:

X =UnZ8* Um VU Xm) (20a)
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3.83188 1.84125
2.405 2.405
5.52031 3.05438
1.84125 3.83188
5.33125 4.20125
ReTomma, =107 = | G || 15
5.13562 5.33125
4.20125 5.52031
6.38031 6.38031
5.3175 6.415
6.415 6.70625

Bamlmdm: |'|':.,.,,.,,f 3
Bisection precision: f
Prmmm:mﬂp f

["];l}:ﬁneixlmn-

trices for roots of Y o
"rl.'i‘frn-fﬂu.n.&“rﬂ"-'rﬂ'i-.u: m =0 ]_[j{ﬂ‘} _ -Fn{ﬂ‘,.']—

{xem i1 B[ om 11 ]

I

[rt_ﬂ.i.'_—ﬂ.p}

of the root matrices

o n=mn+l;

=Fa a=kb=a+Ap Run sorting module
- | (to sort the modes

o+ in cormect order)
- Run Bisection

L module {to Snd

= the root in |a, bj) m

|

| S

nth zero of Ju:
Xmn 4+ €

C. DENiz

(20b)

Figure 3. Flowchart of the suggested algorithm to calculate and sort the zeros of J;,(p) and ], (p) in the

given interval: pyin < p < Pax, (*): optional.
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Unsorted roots (both for y;, and x,,) are assigned to column matrix ¥ and they are sorted in the
column matrix M. Indice i scans from 0 up to dim(M) and each time indice m scans from 0 up to m;,,y
and M; € x;, is checked. If it is true, row number of element M; in y;, is assigned as indice n of the yy,,.
If it is false, M; € x,, is checked and if it is true, row number of element M; in x,, is assigned as indice n
of the x,,,. Note that o, = x11 = 3.83188 in our simplified illustration. It is due to the fact that (Balanis,
1989; Beattie, 1958; Cheng, 1989; Deniz, 2016; Deniz, 2017; Kushwaha et al, 2014; Sekeljic, 2010):

X(,Jn = Xin (21)

where the related TM and TE modes are common. Such common modes are also detected by the
sequential checking in our design.

(Sta.rt (Sorting moduleD

Treat matrices as sets Run bubble sorting,

and umey them all: —| sorted modc-matrix;
M « ¥ =" (3 U Xm) M+ sorting result

End (sorting mndu]cD

/ ”IM 1{rn 3} h‘}?ﬂ?m i , j = i
.ff M e . usilhg iﬂ’, Pos(xm, M)

Evaluate f

H‘s k = / 'TE :", (m,k),
Mt €Xm > Pos(x! , M) u:,{nsgf‘rf" P "M, f,m }e —

no

.!'l .'chn .;
A

Figure 4. Flowchart of the sorting module
RESULTS AND CONCLUSION

Results for relatively large parameters are given in Table 1. They are in agreement with the results
given in (Balanis, 1989; Beattie, 1958; Cheng, 1989; Deniz, 2016; Deniz, 2017; Kushwaha et al, 2014;
Sekeljic, 2010) and in the correct order as in (Beattie, 1958), where the first 700 zeros are listed in the
correct order as a reference table. Note that results in (Beattie, 1958) with as much as first 700 modes are
sorted by the inspection of the author, obviously requiring a great effort without using any sorting
algorithm for quick access for practical applications. Although we use here a slow and impractical
Bubble sorting as discussed in (Arora et al, 2012; Astrachan, 2003; Cormen et al, 2009; Khairullah, 2013;
Rohil and Manisha, 2014), we have very fast and accurate results in the correct mode orders as aimed
here. It is enabled by the use of the suggested algorithm running under the free Mathematica CDF player
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which offers a real time computation with the user console. Our simplified illustration for selected
parameters R = 7 cm, My, = 10 given in Section 3.3 can be followed and verified from Table 1 between
the index numbers i = 1 and i = 12.

It is obvious that as the selected parameter m,,,, increases, the maximum m value of ¥, and ¥, to
be found and sorted increases and similarly, as the parameter R increases maximum n value of y,,, and
Xmn to be found and sorted increases, too. However, as seen in our algorithm in Figure 3, both
parameters are checked and Bisection method is applied provided that k < R and m < my;,,, holds. All
the first n’ - nth roots of J;,,(p) are first determined until k = R is reached then k — 0 and all the first nth
roots of J,,(p) are then obtained until k = R is reached again by the Bisection method. When both are
completed, m is increased by one and it repeats again. Then it sequentially continues until m = m,,,, is
reached (m = My, is included). So, our design finds the roots in the following orders:

m = 0: Xo1, Xo2> X03» ---X(’]n':)(01r)(02:)(03: - Xons
m = 1: X11, X12) X13» = Xin» X110 X120 X130 - X1n
m = 2: X31, X22, X23» ---X;n':)(21»)(22:)(23' - Xan (22)

— ! ’ 1 ’
m = Mpmax' Xmpaxl) Xmmax2r Xmmax3’ "'Xmmaxn" Xmimax1? Xmmax2r Xmmax3r = Xmpmaxn

Each root is assigned to the related matrix as given in (18). Note that maximum root number of J;,(p)
is denoted by n’ but maximum root number of J,,,(p) by n here since they may not be equal, though both
are counted by the same dummy index n and when k = R is reached for either one (for J,,,(p) or J,,(p) in
the related loop), corresponding n value for that loop determines the maximum root numbers (say,
n - n' for J;,(p) and n for J,,(p)). Also note that predefined dimensions of matrices (x;, and x,,) are
large when compared to n and n’ values, namely: n < land n' < [.

As the radius (R) increases, zeros of Bessel functions and their derivatives get closer so, choosing
small count step values (Ap) prohibits a missing root. On the other hand, too small count step values
cause great iteration numbers to scan, which means a decrease in the calculation speed, for small R
values. For this reason, parameter: “count step values (Ap)” is introduced in the user console as seen in
Figure 1. For large R values, greater Ap parameter to scan can be chosen to avoid a missing root by the
user. Similarly, the “Bisection precision” parameter is essential as seen in Figure 1 and in Figure 2.
Bisection method sequentially repeats until prec < f(c) and this means that smaller prec parameters
cause greater iteration numbers and hence a reduction in speed. Note that, in order to detect and find a
root (whatever the precision parameter is), Ap parameter should not cause a missing root by the IVT
given in Theorem 1 above. Moreover, as the radius increases, choosing lower precision values are
advantageous since then the higher order roots get closer. Optimum values of Ap and prec values for
user selections are introduced in the user console.

Our sorting module whose flowchart is given in Figure 4 also increases the calculation speed since
the unified sorted matrix M is used to compare with the related x;, and x,, matrices to determine their
positions (and hence their correct orders). Even though a relatively impractical and slow sorting method
(the Bubble sorting) is used here, in effect, related modes and propagating wave frequencies are found
accurately and in the correct order with a very fast and instantaneous calculation.
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Table 1. Results for the parameters: R=20cm, m,,,, = 20, prec = 0.0001, Ap = 0.01

i ™ (X pn) TE (Xun) i ™ (Xmn) TE (Xinn)

1 (1,1): 1.84125 51 | (4,3):14.3725

2 52 | (10,1): 14.475

3 (2,1): 3.05438 53

4 | (1,1):3.83188 (0,1): 3.83188 54 | (2,4):14.7963

5 (3,1): 4.20125 55 | (7,2):14.8213

6 56 (1,5): 14.8638

7 (4,1):5.3175 57 (13,1): 14.9275

8 (1,2): 533125 58

9 | (0,2):552031 59 (6,3): 15.2681

10 | (3,1):6.38031 60 (9,2): 15.2863

11 (5,1): 6.415 61 | (11,1):15.5894

12 (2,2): 6.70625 62 | (53):15.7006

13 | (1,2):7.01563 (0,2): 7.01563 63 (4,4): 15.9638

14 (6,1): 7.50125 64 (14,1): 15.975

15 65 | (82):16.0375

16 66 | (34):16.2238

17 67 - (2,5): 16.3475

18 (1,3): 8.53625 68 (10,2): 16.4475

19 (7,1): 8.5775 69 | (1,5):16.4706 (0,5): 16.4706

20 | (0,3):8.65375 70 (7,3): 16.5294

21 | (5,1):8.77125 71 | (12,1):16.6988

22 (4,2):9.2825 72 | (6,3):17.0038

23 (8,1):9.6475 73

24 | (32):9.76125 74

25 | (6,1):9.93625 75 (5,4): 17.3125

26 (2,3): 9.96938 76 (11,2): 17.6006

27 | (1,3):10.1738 (0,3):10.1738 77

28 (5,2): 10.5194 78 (8,3): 17.7738

29 (9,1):10.7125 79 (3,5): 17.7888

30 80 | (13,1):17.8013

31 | (7,1):11.0863 81 (2,5): 17.95%

32 82 (1,6): 18.015

33 83 (16,1): 18.065

34 (1,4): 11.7063 84 (0,6): 18.0713

35 (6,2):11.735 85 | (7,3):18.2875

36 (10,1): 11.7712 86 (10,2): 18.4338

37 | (04):11.7913 87 (6,4): 18.6375

38 | (81):12.225 88 (12,2): 18.745

39 | (52):12.3388 89 | (14,1): 18.8994

40 (4,3): 12.6819 90 | (54): 18.9806

41 (11,1): 12.8275 91 (9,3): 19.005

42 (7,2): 12.9325 92 (17,1):19.105

43 | (33):13.015 93 (4,5): 19.1963

4 | - (2,4): 13.1706 94

45 | (1,4):13.3238 (0,4): 13.3238 95

46 | (9,1):13.3544 9% | (83):19.555

(6,2): 13.5894 97 | (1,6):19.6163 (0,6): 19.6163

(12,1):13.8775 98 (13,2): 19.8825
(5,3): 13.9875 99 (7,4): 19.9413
(8,2): 14.115 100 | (15,1):19.995
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