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Abstract 

Considering uncertainty in engineering design is computationally more expensive than solving 

traditional deterministic problems. This challenge force researches to search for more efficient 

methods. For that purpose, in this work, the superiority of the LHS over MCS in the process of 

reliability analysis and RBDO of a mechanical system is investigated. Accordingly, the reliability 

analysis and RBDO process with both LHS and MCS is implemented separately on the tension-

compression spring design problem. According to these results, in both reliability analysis and 

RBDO process, LHS was more stable in convergence compared to MCS. Moreover, LHS can be 

considered to be more efficient than MCS in RBDO of the spring problem.  
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1. INTRODUCTION 

 

Most of engineered structures or systems include uncertainties stemming from human factors, accuracies 

of instruments, working environments, manufacturing and production. In case of low level of uncertainty, 

the deterministic design approaches are more reasonable for an efficient analysis and design optimization 

process [1,2]. However, the stochastic approaches, such as reliability analysis, are required to deal with the 

high level of uncertainty in a system [3-5]. Reliability analysis relies on examining the probability that 

failures occur in a state where a system is unable to perform its function as required. For that purpose, many 

reliability analysis methods have been developed, including sampling methods (Monte Carlo Simulation 

(MCS), Importance Sampling, Latin Hypercube Sampling (LHS), etc.) and structural methods (First-order 

reliability methods, Second-order reliability methods, etc.). Among these methods, LHS and MCS has been 

used for both reliability analysis and reliability-based design optimization (RBDO). Furthermore, LHS is 

known to be much less computationally expensive, compared with MCS [4]. In this work, it is aimed to 

investigate the superiority of the LHS over MCS in the process of reliability analysis and RBDO of 

mechanical systems. For that purpose, first, the reliability analysis with both LHS and MCS is implemented 

on a well-known benchmark design problem, which is the tension-compression spring design problem. 

Second, the RBDO of the spring problem is carried out by using both LHS and MCS. The comparison 

results obtained in terms of probability of failure, elapsed time and the objective minimum value are 

discussed for each process.         

 

The rest of the work is organized as follow: in Section 2, the background information of the MCS and LHS 

are briefly introduced. In Section 3, the formulation of the design optimization problems is expressed under 

deterministic and stochastic case. In Section 4, how to implement the reliability analysis and the RBDO of 

the spring problem along with both LHS and MCS is illustrated, and also the comparison results and their 

discussion are given. In Section 5, a conclusion about all of these analysis and optimization efforts is drawn.   
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2. MONTE CARLO SIMULATION AND LATIN HYPERCUBE SAMPLING  

 

MCS is a method to generate randomly a large number of values from uncertain variables with known 

distributions in order to reach the most probable point to be searched. MCS herein is used to find the 

probability of failure of a mechanical structure in respect to specified limit-state functions that determine 

the failure margin of the structure. The probability of failure is found approximately by using the following 

formula: 
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where, Nf denotes the number of failures of a design case in which the limit-state violations are observed. 

N𝑠 
 represents the total number of samples being generated for the design case.  

 

Similar to MCS, LHS is a sampling method that guarantees non-overlapping designs, and also has been 

effectively utilized to generate multivariate samples for given distribution types. LHS has four basic steps 

to simply be applied as [4];  

 

1) Divide the relevant distribution for each variable into n non-overlapping intervals (usually five intervals) 

having equal probability. 

2) Select randomly one value from each interval with respect to its probability density. 

3) The desired number of random values are generated for each variable. 

4) Associate the values of the variables with each other according to a specified criterion such as 

concentrating midpoints of the intervals or reducing the correlation between these variables. 

 

3. DEFINITION OF DESIGN OPTIMIZATION  

 

A generic deterministic design problem, which has been commonly used in the literature, can be defined as 
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where, f represents an objective function. X is the vector of deterministic variables. h and g are constraint 

functions. L

iX and U

iX  are the lower and upper limits of ith design variable,  respectively.  

 

A generic definition of the RBDO can be expressed as follows [4]: 
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where f stands for the objective function. B is the vector of random design variables or parameters. B

represents the mean value of the random variable. mL represents a limit-state function or a specified 

probabilistic constraint. Rm and Pf  are the levels of target reliability and the allowed probability of failure, 

respectively.  

 

 

 



 Murat MAYDA / GU J Sci, Part A, 5(1):31-36 (2018) 33 

 

4. RELIABILITY-BASED DESIGN OPTIMIZATION OF THE SPRING PROBLEM 

 

There are a lot of benchmark test optimization problems to assess the performance of an optimization 

method. In this work, the design optimization problem of a tension/compression spring, which has often 

been used, is considered as a benchmark design problem. The spring design problem consists of minimizing 

the weight of the spring depending on the constraints on minimum deflection, shear stress, surge frequency, 

limits on outside diameter and design variables [6]. The design variables which are the mean coil diameter 

(D), the wire diameter (d) and the number of active coils (N), are assumed to be continuous, and the design 

variable vector is given as 𝑋 = (𝐷, 𝑑, 𝑁) (Figure 1).  

 
 

Figure 1. The design variables of the spring design problem 

 

The deterministic optimization formulation for the spring problem is defined as follows [7, 8]: 
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There are a lot of optimum design results for that problem in the literature. One of the best optimum 

deterministic results for this problem are d=0.0517 mm; D=0.357 mm and N=11.287 given in the reference 

[6], and this deterministic point is accepted as a starting point in searching for the best reliable design under 

uncertainty. Although this design points are known to be the best safe points for the spring design, because 

the optimum deterministic design does not account for the uncertainty in the design variables, it may not 

possible to conclude that this is absolutely a reliable and robust design under real conditions. To compensate 

for the realistic safety problem, the design variables are considered having a coefficient of variance (COV) 

of 0.01, and a probability of failure of 0.01 (it can be also referred to a desired reliability level of % 99) in 

the reliability analysis and design optimization under uncertainty. The formulation of the RBDO problem 

is presented by 
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When incorporating these uncertain variables into the process of reliability analysis, the Pf and 

corresponding elapsed time (s) were obtained, as shown in Figure 2a and 2b respectively. From these 

graphs, it can be pointed out that as the number of simulations increases, both MCS and LHS converges 

more to the true Pf value. More specifically, the number of simulations in LHS and MCS that they started 

to converge around the true or acceptable Pf value, were nearly 60000 and 100000 simulations, respectively. 

Accordingly, LHS was observed to be more stable in convergence compared to MCS. In other words, LHS 

can converge an optimum or a true point even with small number of simulations. On the other hand, the 

elapsed time in LHS is much more than that in MCS at the same number of simulations because LHS needs 

additional efforts for generation of samples subjected to a specified criterion. Despite the disadvantage of 

time-consuming of LHS, this method can be considered to be more efficient because the elapsed time in 

LHS with 60000 simulations and in MCS with 100000 simulations (nearly 0.016 s and 0.0105 s) are 

compared, the difference time of 0.0055 s can be trivial for today’s computers.   

 

 

 
   a)                                               b) 

Figure 2. The Pf  (a) and corresponding elapsed time (b) in LHS and MCS for the reliability analysis 

 

After the reliability analysis, to clearly illustrate the performance of LHS over MCS for the RBDO process, 

both two methods were applied to the spring design problem under the same objective and constraint 

conditions given before in Eq. 5.  The obtained objective values (f(X)) and corresponding elapsed time in 

both two methods are presented in Table 1.  
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Table 1. The obtained objective values and corresponding elapsed time in LHS and MCS 

Number of 

simulations 

LHS MCS 

f(X) Elapsed 

time (s) 

f(X) Elapsed 

time (s) 

1000 0.0208 6 0.0393 2 

2000 0.0292 20 0.0301 68 

3000 0.0189 45 0.0250 14 

4000 0.0229 77 0.0257 26 

5000 0.0239 119 0.0286 40 

6000 0.0223 169 0.0232 56 

7000 0.0213 236 0.0262 74 

8000 0.0236 298 0.0234 92 

9000 0.0201 357 0.0215 119 

10000 0.0176 438 0.0194 148 

20000 0.0175 1470 0.0188 540 

 

According to the RBDO process implemented, the best optimum design point, including D=0.7490, 

d=0.0650 and N=3.5381 at f(X)=0.0175, was achieved by LHS with 20000 simulations. Similar to the 

performance history in the reliability analysis, LHS (converged at 10000 simulations) was more stable in 

convergence compared to MCS (converged over 20000 simulations) in the RBDO process, as seen in Figure 

3a and 3b. In terms of the elapsed time, LHS again can be considered to be more efficient than MCS in 

RBDO of the spring problem because the elapsed time in LHS with 10000 simulations and in MCS with 

20000 simulations are around 450 s, and at least 600 s (not converged even at 20000 simulations), 

respectively. 

  

 
a)                                                    b) 

Figure 3. The Pf  (a) and corresponding elapsed time (b) in LHS and MCS for the RBDO process 

 

5. CONCLUSION AND FUTURE WORKS 

 

In this work, the superiority of the LHS over MCS in the process of reliability analysis and RBDO of a 

mechanical system was investigated. Accordingly, the reliability analysis and RBDO process with both 

LHS and MCS is implemented separately on the tension-compression spring design problem. In both 

reliability analysis and RBDO process, LHS was more stable in convergence compared to MCS. Moreover, 

LHS can be considered to be more efficient than MCS in RBDO of the spring problem because the elapsed 

time in LHS with 10000 simulations and in MCS with 20000 simulations are around 450 s, and at least 600 

s (not converged even at 20000 simulations), respectively. For the future work, the comparison of LHS and 

first-order/second-order reliability methods can be investigated towards computational efficiency and 

effectiveness.   
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