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ABSTRACT 

The translocation of iodine (I) from soil to food chain is largely 

determined by its adsorption/desorption reaction in soils. In this 

study, the effects of commercial humates (HA) applied on an Aridisol 

and indigenous soil organic matter (SOM) on the adsorption and 

desorption of iodide were investigated. For this reason, 1% and 3% 

HA (w/w) were incorporated into the whole soil (WS) and organic 

matter free (OMF) soil samples. Then soil samples were equilibrated 

with 0, 2, 4, 6, 8 and 10 mg L-1 iodide solution prepared in 0.01 molar 

CaCl2 for 40 h. The sorption data were better described by Langmuir 

isotherm (R2= 0.938) than Freundlich isotherm (R2= 0.763). The 

Langmuir sorption maximum of WS was 19.8 mg kg-1. Freundlich 

isotherm parameters were n= 0.89 and Kf= 2.165. Sorption maximum 

of OMF soil significantly increased up to 35.5 mg kg-1. HA 

applications reduced iodide sorption maximum of both WS and 

organic OMF soil samples. Desorption rate of the WS ranged between 

0-15.3% whereas it decreased 0-0.65% upon removal OM. HA 

treatments, in general, reduced the desorption rates. However,

increasing HA application resulted in higher desorption ratio in both

WS and OMF soils. Consequently, either SOM or HA has preeminent

role in the adsorption-desorption chemistry in soils.
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1. Introduction

Iodine (I) is an essential nutrient element for mankind and animals, despite a limited number of researches about its 

essentiality for plants, animal and plant-origin foods should contain sufficient amounts of I. Approximately one-third of 

the world's population is suffering inadequate I intake (Andersson et al 2012). Iodine is an important micro element for 

all mammals’ health, and an adult human being is required to have 100-150 μg day-1 in the diet (Johnson 2003). Despite 

average I concentration in soils (2.8 mg kg-1) are generally higher than those in parent materials (0.5 mg kg-1) (Kabata-

Pendias 2011), plants suffer very low I concentration (0.005-10.4 mg kg-1) (Shacklette & Cuthbert 1967) leading I 

deficiency-induced diseases such as goiter, cretinism, low IQ, abortions, birth anomalies and higher neonatal death 

(Laurberg et al 2010) in animal and/or human being. Traditionally extracts of kelp and seaweeds had long been used to 

treat goitre (Alejandro et al 2017) because of their very high I concentration; currently cabbage (leaves) and onion (bulb) 

are of terrestrial plants contain relatively higher I (Shacklette & Cuthbert 1967) can alternatively be included in dietary 

intake at larger portions. Therefore, it is essential to understand the ability of a soil, which is the main source of the food  

chain, to bind I and meet the requirement of plants. Since supplemental intake of I salts to correct its deficiency can be 
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problematic, the occurrence of sufficient soil-I should be main goal to maintain well-being ecology of the soil-plant-

animal-mankind food chain. On the other hand, the mechanisms controlling I transfer to the food chain in terrestrial   

environments and the components of the global I cycles have not yet been clearly elucidated (Johnson 2003). For this 

reason, there is a need to understand the I-soil interactions, plant uptake and metabolisms. The researchers have proved 

that OM is critical in the partition of I in the soil environment. The investigations revealed the relation between SOM 

content and I concentrations and humus is the primary reservoir of I in the soil (Dai et al 2009; Smyth & Johnson 2011; 

Xu et al 2011). 

 

Humates (HA) is a colloidal fraction of humus containing both aliphatic and aromatic compounds. It has been shown 

that HA has a large surface area and is highly effective in determining I dynamics in the soil due to its occurrence in the 

soil organic matter, SOM (Francois 1987; Hansen et al 2011; Xu et al 2011). Although there are some structural 

differences between HA used in agriculture and indigenous soil humic substances, it is clear that the existing functional 

groups are similar. For this reason, the relationship between HA and I is critical to understand the dynamics of the I-HA 

complexes in the soil. Best of our knowledge, there are limited number of works in the literature elucidating I and HA 

relation in the soil environment (Christiansen & Carlsen 1991; Reiller et al 2006; Choung et al 2013). In general, the 

reaction between I and HA has not been clearly demonstrated since most of the studies had used complex aerosols-like 

environments consisting of other I-reactive components. These complexities can be explained as follows: the HA-I 

complex is mainly reduced towards reactive intermediates such as I2 or HOI; followed by electrophilic substitution 

reactions with electron donor groups on HA (Francois 1987). Whitehead (1974) reported that phenolic and amino acid 

groups with a weak acid character on HA are the potential binding sites for I.  

 

In this study, the effects of SOM and HA, both of which can regulate to some extent I cycle in soil environment, on 

adsorption/desorption properties of iodide on an Aridisol were investigated. For this purpose, adsorption isotherms and 

desorption ratio of iodide by WS and OMF soil treated with two doses of HA were obtained. 

  

2. Material and Methods 
  

2.1. Sampling location and treatments 

 

Soil sampling site, Polatlı Agricultural Estate Farms, situates in Polatlı, Ankara (39° N 32° E). The soil, Yüzükbaşı soil 

series, is classified as a typical Aridisol. The composite surface soil samples (0-30 cm) were sieved through 2 mm for 

physical and chemical soil analyses. SOM was oxidised by analytical reagent grade 30% H2O2 (Hartge 1971) and dried 

at 40 °C till constant weight. Then both whole soil (WS) and organic matter free (OMF) soils were incorporated in 1% 

and 3% HA on weight bases and left incubation at 28 °C constant temperature and 70% of field capacity in dark for 60 

days. Then the soil samples were subjected to the adsorption/desorption experiments.  

 

2.2. Soil analyses  

 

The descriptive soil properties were analysed according to common methods given by Sparks et al (1996). Analysed 

parameters were: both soil pH and electrical conductivity in saturation paste, cation exchange capacity (CEC) by Na 

acetate saturation, calcium carbonate equivalent by Scheibler calcimeter, OM by K2Cr2O7 wet oxidation, available 

potassium (K) extracted by neutral ammonium acetate, and available phosphorus extracted by 0.5 M NaHCO3 at pH 8.5. 

Soil texture was measured by Bouyoucous hydrometer method (Gee & Bauder 1986). 

 

2.3. Descriptive analysis of commercial humate  

 

The HA was kindly supplied by “Biyotar Corporation”. The following properties of HA were determined: total humic 

acid + fulvic acid (TS 5869 ISO 5073), total nitrogen (Kjeldahl method), pH and EC (in 1:10 HA: distilled water) and 

total concentrations of P, K, Fe, Cu, Zn, Mn, Cr, Ni, Pb, and Cd in wet digests (HNO3/HClO4) were determined by ICP-

OES. The properties of HA were given in Table 1. 
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Table 1- Chemical properties of the commercial humate used in the experiment 
 

Parameters Results Parameters Results 

Total humic acid+fulvic acid (%) 66.4 Total copper (mg kg-1) 24.6 

Total N (%) 0.73 Total zinc (mg kg-1) 92.7 

Moisture (%) 7.94 Total manganese (mg kg-1) 131.2 

pHH2O (1/10) 8.65 Total nickel (mg kg-1) 89.3 

EC (1/10, mS cm-1) 6.38 Total chromium (mg kg-1) 30.2 

Total phosphorus (%) 0.54 Total lead (mg kg-1) 23.0 

Total potassium (%) 9.89 Total cadmium (mg kg-1) 3.00 

Total iron (%) 1.14   

 

2.4. Adsorption-desorption experiments 

 

2.4.1. Adsorption 

 

Prior to sorption experiment, soil samples were passed through 0.5 mm sieve. Then 2.5 g of WS, OMF soil, and HA-

treated WS and OMF soil samples were put into 50 mL polypropylene centrifuge tubes with three-fold. Soils were then 

equilibrated with 25 mL of 0, 2, 4, 6, 8, and 10 mg I L-1 (KI) solution prepared in the 0.01 M CaCl2 background solution 

at 25 °C for 40 h. The supernatant solutions were obtained by centrifugation at 10000 rpm for 5 min and subsequently 

filtered through 0.22 mm filter paper. Then iodide equilibrium concentrations of the filtrates were determined by an ion 

meter (Proline Plus, Iodine Comb. ISE/BNC).  The deviation (RSD) was always less than 5% between the replicates.  

 

2.4.2. Desorption 

 

In order to desorb the adsorbed iodide 25 mL of background solution was added and the suspensions were then shaken 

on a reciprocal shaker at 25 °C for 40 h. The supernatants were separated as described in the adsorption study.  

 

2.4.3. Adsorption isotherms 

 

The amount of adsorbed iodide concentration was calculated from the difference between the initial and equilibrium 

concentrations. The obtained sorption data were subjected to the Langmuir and Freundlich adsorption models given 

below:  

 

Linear Langmuir Isotherm: Ce/Si = Ce/b+1/kb    

Freundlich isotherm, Si= Kf Cen, can be linearized as Log (Si) = Log Kf+ n log Ce  

  

Where; Si, the amount of iodide adsorbed (mg kg-1); Ce equilibrium concentration (mg L-1); k and b are coefficients 

related to bounding energy and maximum adsorption; Kf and n are coefficients.  

 

2.5. Statistical analysis 

 

The confirmation of the sorption data to the adsorption isotherms was tested by regression analysis. The isotherm 

adsorption parameters were subjected to one-way ANOVA to reveal the effect of SOM and the added HA. Mean 

separation of the treatments was performed by Duncan test in MSTAT-C environment. 

 

3. Results and Discussion 
 

The experimental soil was clay textured, slightly alkaline reaction, non-saline, very rich calcium carbonate equivalent; 

poor in OM, total nitrogen content and available P concentration and sufficient available K concentration (Table 2).  
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Table 2- Descriptive physicochemical properties of the experimental soil 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Isotherm parameters 

 

3.1.1. Adsorption parameters of WS 

 

Iodide sorption parameters of WS and OMF were given in Table 3. Sorption data were better described by Langmuir 

isotherm because the determination coefficient of Langmuir isotherm (R2= 0.9376) was higher than the one belonging to 

Freundlich isotherm (R2= 0.7626). However, determination coefficients of Langmuir isotherm were even improved upon 

HA treatment to 0.9991 and 0.9999 for 1% and 3% HA-treated WS (HATWS) respectively. In contrast, Freundlich 

isotherm described sorption data progressively poorer for HATWS. Calculated Langmuir maximum sorptions of HATWS 

were 19.8, 17.1 and 15.0 mg kg-1 for 0, 1 and 3% HA treatments, respectively. Whereas bounding energy coefficient 

significantly increased upon HA treatment as 0.753, 6.95, and 37.0 mL g-1 for 0, 1, and 3% HA treatments, respectively.   

 
Table 3- Multiple comparison of sorption isotherm parameters 

 
 
 

 

 
 

 

 
 

 

 
 

 

 
WS, whole soil; OMF, organic matter free soil; HAT, humic acid treatment; b, adsorption maximum; k, bonding energy coefficients of Langmuir 

isotherm; n, a measure of intensity of adsorption and; Kf, indicator of maximum adsorption of Freundlich isotherm. Different letters in the same column 

indicate significant differences among the treatments 

 

HA-induced Freundlich adsorption intensity coefficients (n) were 0.89, 1.93 and 1.06 for 0, 1, and 3% HA treatments, 

respectively (Table 3). The respective Kf coefficients were calculated as 2.10, 3.71, and 3.30 mg kg-1. HA incorporation 

increased the Kf constant when compared with the original soil.  

 

3.1.2. Adsorption isotherm parameters of organic matter free soil  

 

Freundlich isotherm (R2= 0.9109) slightly better described sorption data of OMF soil whereas sorption data of HA-treated 

organic matter free (HATOMF) soils clearly conformed Langmuir isotherm to a determination coefficient above 0.9998. 

Freundlich isotherm, on the other hand, failed to describe sorption data showing a determination coefficient below 0.4489. 

Langmuir sorption maximum progressively decreased by HA application in the OMF soil as 35.5, 17.7 and 15.8 mg kg-1 

Soil Properties Unit Results 

Textural class (C) 

% Clay 39.81 

% Silt 38.25 

% Sand 21.94 

pH (Saturation paste) - 7.86 

Electrical conductivity (EC) dS m­1 0.252 

Calcium carbonate equivalent (CaCO3) g kg-¹ 169 

Organic matter g kg-¹ 7.00 

Aggregate stability % 51.40 

Total nitrogen % 0.035 

Available potassium mg kg-¹ 347 

Available phosphorus mg kg-¹ 2.40 

Iodine  mg kg-¹ 0.0047 

Soil Treatments 

Langmuir isotherm Freundlich isotherm 

b 

mg kg-1
 

k 

mL g-1 
R2 n Kf R2 

WS 

WS 19.8 b 0.753 e 0.9376 0.89b 2.10 d 0.7626 

1% HATWS 17.1 cd 6.95 d 0.9991 1.193ab 3.71 c 0.4557 

3% HATWS 15.0 e 37.0 a 0.9999 1.06ab 3.30 c 0.4556 

OMF 

OMF 35.5 a 0.58 e 0.8831 0.74ab 2.69 a 0.9109 

1% HATOMF 17.7 c 28.4 b 0.9999 1.27a 4.30 b 0.3935 

3% HATOMF 15.8 de 15.4 c 0.9998 1.22ab 3.61 c 0.4489 
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for OMF, 1 and 3% HA, respectively. As small as 1% HA addition to soil resulted in 50.1% reduction in the sorption 

maximum. The calculated bonding energy coefficients did not show consistent increases that were 0.58, 28.4, and 15.4 

for 0, 1, and 3% HA treatments.  

 

The adsorption intensity of OMF soil (0.74) was significantly smaller than those obtained for HATOMF (Table 3). 

There were no differences between the HA treatments. Kf coefficients which are indicators of adsorption capacity ranged 

between 2.69 and 4.30. The highest Kf value was obtained for 1% HA treatment. Typically slope of Freundlich isotherm 

is smaller than “1” as observed in the OMF soil. However, HA application increased slope above “1” suggesting a 

different mechanism.  

 

As shown in Table 3, the highest adsorption maximum value was found in OMF. HA treatments had an apparent 

decrease in OMF soil samples comparing to the WS. This could be an indication of interaction between the indigenous 

and commercial HA which significantly decreases sorption sites of HA for I. Commercial humates are salts of humic 

substances, which are more soluble and thus more reactive in soil (Lobartini et al 1992; Lyons & Genc 2016). Humic 

substances can construct random manner linkages (Garcia et al 2016) with even SOM or clay minerals resulting in 

extraordinarily complex materials. Newly formed organo-mineral complexes in the soil, in fact, block a significant portion 

of I sorption sites in OMF soil sample. On the other hand, anionic nature of commercial HA which generally preferentially 

adsorbed on the clay surfaces over anions such as phosphates (Uygur & Karabatak 2009). Dai et al (2009) pointed out the 

significance of the OM in soil environments in controlling I geochemistry. Adsorption studies with dissolved humic acids 

indicated that the contribution of clay fraction was over 90% (Pan et al 2010) which suggest clay fraction in this study 

can be responsible for very high sorption maximum in the OMF. 

 

3.2. Effects of treatments on desorption ratio  

 

3.2.1. Desorption in whole soil 

 

The desorption ratio (DR) dependent on the initial concentration and treatments of the soil are summarized in Table 4. 

The highest value for WS without HA was found to be 15.08% at 4 mg L-1 initial concentration. Further increase in the 

initial concentration did not improve the desorbability of iodide. Despite DRs in 1% HATWS were smaller than the ones 

obtained from WS there was a gradual continuous increase in DR upon 1% HA treatment. The maximum value (6.28%) 

was therefore recorded for 10 mg I L-1 (Table 4). The higher HA treatment (3% HA) resulted in the higher DR for each 

respective initial concentration. The maximum desorption was obtained at maximum initial concentration. The 

equilibrium pH at desorption remained relatively very narrow range between 7.76-7.91.  

 
Table 4- The effects of initial iodine concentration on the desorbability ratio of iodine-adsorbed and equilibrium pH 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
IC, initial concentration; HAT, humic acid treatment; DR, desorption ratio of the adsorbed-iodine; *, equilibrium pH for desorption study 

 

3.2.2. Desorption in organic matter-free soil  

 

The DRs of iodide drastically reduced down 0.44-0.65% range upon removal of SOM (Table 4). The equilibrium pH 

varied relatively larger range between 7.52-7.79. The higher rate of HA addition-induced increases in the desorption rate 

IC 

(mg kg-1) 

Whole soil Organic matter-free soil 

0% HAT 1% HAT 3% HAT 0% HAT 1% HAT 3% HAT 

DR (%) pH* DR (%) pH DR (%) pH DR (%) pH DR (%) pH DR (%) pH 

0 0.00 7.77 0.00 7.76 0.00 7.78 0.00 7.52 0.00 7.75 0.00 7.76 

2 8.35 7.79 1.08 7.77 4.14 7.79 0.44 7.65 0.90 7.76 2.60 7.77 

4 15.08 7.80 2.21 7.80 5.02 7.82 0.51 7.77 1.64 7.81 4.56 7.78 

6 13.16 7.81 3.08 7.83 5.98 7.83 0.48 7.77 2.36 7.81 4.80 7.81 

8 13.57 7.83 4.27 7.88 8.88 7.85 0.51 7.78 3.57 7.86 6.48 7.84 

10 15.31 7.83 6.28 7.91 9.81 7.92 0.65 7.79 4.78 7.87 7.94 7.90 
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that 3% HA treatment was more effective below initial concentrations of 4 mg L-1. The maximum desorption ratios for 

both HA treatments were obtained at 10 mg I L-1 initial concentration that was 4.78% for 1% HA and 7.94% for 3% HA. 

Neither initial concentrations of iodide nor HA application rate affected equilibrium pH (7.76-7.90) of desorption 

supernatants.  

 

3.3. Comparison of adsorption/desorption isotherms 

 

Very low desorption ratios of iodide indicated that there is likely to be apparent hysteresis between adsorption-desorption 

isotherms which can be caused by strong binding energy of iodide to surfaces that can be attributed to chemisorption 

reactions. Commercial humate incorporation into either WS or OMF soils caused an increase in DR. This suggests that 

humate can be preferentially adsorbed on the surface which would inhibit specific adsorption of iodide. As a result, 

desorption ratios increased as higher amounts of HA incorporation. Despite some reduction in the specific sorption sites 

they are not fully occupied by HA. On the other hand, HA may have some non-specific sorption sites as indicated by rate-

induced increases in the desorption ratios.  

 

An apparent increase in the sorption maximum from 19.8 to 35.5 mg kg-1 upon removal of SOM put forward the 

significance of the OM in sorption mechanism of iodide. SOM is to form organo-mineral complexes with clay minerals 

which could be critical for partitioning of external iodide. Substantial decreases in the desorbability of iodide in OMF soil 

and increases after HA incorporation indicated that well-humified organic substances are to block specific sorption sites 

on the colloidal mineral surfaces. Dai et al (2004) also found that SOM had a significant negative effect on iodate 

adsorption and that they found iodate adsorption capacities of 9-34 mg kg-1 in the soil studied.  

 

A variety of soil minerals such as calcite, chlorite, epidote, goethite, gypsum, hematite, kaolinite, bentonite, muscovite, 

and quartz showed little iodide or iodate adsorption at alkaline pH range of 7.5 and 8 due to the existence of little pH 

dependent positive charges (Ticknor & Cho 1990) and negative charges on clay minerals repel iodide anion. Similarly, 

alluvial soils retained as little as 1.4-4% of the I added whereas only 1.35-4.1% of the I-adsorbed was desorbable (Nath 

et al 2010).  

 

The OM present in the soil appears to have an adverse effect on iodide adsorption. In such situation, the reaction of 

iodide with soluble HA should also be regarded. In contrast, Merzweiler et al (1987) reported I contents of 220 soil 

samples were highly correlated with the SOM. In a similar manner, the sorption of I- and IO3 on humic acid was found 

substantially higher than those of clay minerals indicating a specific role of SOM in I retention in soils (Muramatsu et al 

1990). This controversial situation may be explained by the preferences of soil positive charges for OM over I in time, 

and added I can only react with positive charges of OM. At this point, the affinity of humate surfaces and soluble humate 

to iodide is a matter of fact in our case. The data suggested that HA used in this study can have relatively smaller amounts 

of physisorption sites than the indigenous soil organic matter as indicated lower desorbability in HATWS. On the other 

hand, the added HA can be a structural component of SOM during the incubation period of the soil as indicated similar 

desorption ratio in HA treated both WS and OMF soil samples (Table 4). HA can fix significant amounts of iodide by 

inner-sphere complexes as well.  Dai et al (2004) reported that SOM is an adverse and significant effect on I adsorption 

and that they found iodate adsorption capacities in soil between 9-34 mg kg-1. In contrast, McNally (2011) reported that 

clay minerals and iron oxides were more effective than SOM in I adsorption. Whitehead (1978) related very high sorption 

capacity of soils to clay and OM forming under weathering conditions especially in a very high precipitation induced 

environment. This strong binding, in turn, could be the reason for geochemical I deficiency and goiter disease. There are 

however many reports pointing out a specific role in I adsorption in soils (Whitehead 1973; Lieser & Steinkopff 1989; 

Akca et al 2014).  

 

4. Conclusions 
 

The results of this study indicated that the effect of SOM on the adsorption and desorption of I was critical. Either 

indigenous SOM or incorporated HA reduced the sorption sites on the sesquioxides and clay minerals whereas the 

formation such organo-mineral complexes are to increase the bioavailability of I in soils. Despite HA applications 

increased the bioavailability of added I in the studied soil, different soil properties can have different impacts on the 

adsorption processes. Therefore further researches may be needed by using soils with different physicochemical 

properties and even in the model soil component systems. 
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