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INTRODUCTION

Crossed modules were introduced by J.H.C.
Whitehead in his study on combinatorial
homotopy theory [9]. They have found
important roles in many areas of mathematics
(including homotopy theory, homology and
cohomology of groups, algebraic K-theory,
cyclic homology, combinatorial group
theory, and differential geometry). Possible
crossed modules should now be considered
one of the fundamental algebraic structures.

Crossed modules of groups are
generalization of both normal and subgroups.
Any subgroup is a crossed module, so it is of
interest to see generaization of group
theoretic concepts and structures to crossed
modules.

Also areas in which crossed modules have
been applied include the theory presentations
(see the survey [2]), algebraic K-theory
(Loday [5]) and homological agebra ([4]).
Now crossed modules can be viewed as 2-
dimensional groups (see [1]) and it is
therefore of interest to consider counterparts
for crossed modules of contents from group
theory. K. Norrie in [7] presented the
automorphisms of a group N fit into a
crossed module N — AUtN . She explored
the corresponding more elaborate structures,
for example crossed sguares, into which fits
the automorphism group of a crossed module.

We will look at the substructures and normal
subgroup of crossed modules. To form factor
crossed modules we need to work that out
with some conditions on normal subgroup.
This paper also contains the factorization
theorem of morphism between crossed
modules.
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1. CROSSED MODULESAND
EXAMPLES

JH.C. Whitehead (1949) [9] described
crossed modules in various context especially
in his investigations the algebraic structures
relative homotopy groups. In this section, we
recall the definitions and elementary theory
of crossed modules of group given by
Whitehead [9].

A crossed module (C,G,0) [9] consists of
groups C and G, an operation of G, on the

left of C, written (g,c)—~ Y% and a
homomorphism ¢:C—»>G of G-groups
where G acts on the left of itself by
conjugation. The map & must satisfy the
rules

CM1:9(%c)=go(c)g ™t geG,ceC

cMm2: *o'=ccch

The last condition is caled the Peiffer
identity.

If agoup G actson C and 6:C—>G
satisfies CM1 then it is sometimes
convenient to refer to (C,G,0) as a
precrossed module. For example making
G=NG, acts on C=NG, via conjugation
using §, so "c =S, (m)cs,(m) !, we get that

81 : NG;— NG,
is a precrossed module. In such a context the
element

e (ccchyt

be called the Peiffer commutator of m and
m, or more briefly a Peiffer element. Of
course the vanishing of these Peiffer
eements is equivaent to (C,G,0) being a
crossed module. The subgroup generated by
such elements is known as the Peiffer
subgroup of C for the given precrossed
module structure on (C,G,0) .

Given any precrossed module 6: C — G, one
can form an interna directed graph in the
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category of groups simply by forming the
semidirect product CaA G and taking the
source, s, and target, t, to send an element
(c,g) to g or dc.g respectively. The Peiffer

subgroup of M measures the obstruction to
the directed graph having an interna
category structure. It can easily be seen to be
[Kers, Kert] . A morphism

(o, B): (C,G,0) > (C',G",0") of crossed
modules consists of  homomorphisms
a:C—>C, B:G—>G' of groups such that
po=da and a(%c)=*9 4(c), ceC,geG.
If (C,G,0) is a crossed module, then C is
called acrossed G-module.

A crossed module generalizes the concepts of
both an ordinary module and that of a normal
subgroup. For if Q isagroupand A isa Q-
(left) module, then (A, Q,l) is a crossed
module  with | the trivid map
l(a)=1cQ,ac A If Gisagroupand N
is a norma subgroup, then (N,G,i) is a
crossed module, with the inclusion i and G
actingon N by conjugation.

1.1 Examples

We note once certain consequence of the
definition of acrossed module:

(i) theimage oC is a norma subgroup of
G,
(it) the kernel Ker(0) liesin the center Z of
c,
(iii) the operation of G on C induces a
natural (G/oC)-module structure on Z and

Ker(0) isasubmodule Z,

(iv) the action of Gon C induces a natural
(G/aC) -module structure on the commutator

factor group chAb_ C/[C,C],
(v) the quotient (G/oC) is denoted by 7, (9).

Also it is easily checked that the action of G
on C induces an action of 7,(0) on Ker(d)

and that Ker(d) is abeian; we denote the
7,(0) -module of Ker(0) by 7,(9) .

It is clear that the crossed modules constitute
acategory XMod : if G isafixed group, the
crossed modules constitute a full subcategory
G - XMod.

Furthermore the inner automorphism map
7:N—>AutN adready mentioned, other
standard examples of crossed modules are:

- a G-module M with the zero
homomorphism M — G ;

- theinclusion of anormal subgroup N — G ;
-and any epimorphism E —» G with centra
kernel.

There are two canonical ways in which a
group may be regarded as a crossed module:
via the identity map G—>G or via the
inclusion of trivial map subgroup.

Now we can give definition of subcrossed
module from [7].

Definition: It sad that (L' K'’,9") is
subcrossed module of the crossed module
(L,K,0) if

(i) L' is a subgroup of L and K’ is a
subgroup of K,

(ii) o' isrestrictionof ¢ to L' and

(iii) the action of K'on L’ isinduced by the
actionof K on L.

1. Let N beany norma subgroup of a group
K. Consider  an incluson  map
(homomorphism on N) inc: N — K together

with the action of *n=knk*. Then
(N,K,inc) is a crossed module. Conversely
given any crossed K -module 6:L — K, one
can easily verify that oL=N is a normal
subgroup in K .

2. Let M be any K-module. It can be

considered as a K -group with identity map,
and then the trividd homomorphism
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1:M —>K is a crossed K-group by

My —mmm =1 foradl mmeM .

Conversely, given any crossed module
0:L—>K, then Kero is a K -module. For
this, see Proposition2.1. We state without
proof of the following results (see T. Porter

[8]).

3. A simplicia group G consists of afamily
of groups {G,} together with face and
degeneracy maps

d =d":G, >G4, 0<n<n (nz0) and
§=95:G,>G,y, 0<n<n (n=0),
satisfying the usual simplicial identities given
in [6]. For example it can be completely
described as a functor G: A% — Grp, where
A is the category of finite ordinas
[N]={0<1<..<n} and increasing maps.
Assume that a simplicid G and simplicia
subgroup N aregiven. Theinclusion

inc:N =G
induces amap
7y(inc) : 7y (N) = 7,(G) .

The action by conjugation of G on N
induces an action of z,(G) on z,(N) Then
(7o(N), 7,(G), 7, (inc)) is a crossed module.
Any crossed module can be obtained as 7, of
a simplicia normal subgroup inclusion,
N — G as above but we will not include a
proof here (see [8]).

4. Suppose that K is the group Aut(L) of
automorphism of some group L. Then the
homomorphism L — K which sends an
eglement xeL to the inner automorphism

L L, | - xix ! isacrossed module.

Each of these examples consists of a group
homomorphism with an action of the target
group on the source group. Before stating the
precise algebraic properties we need by such
a homomorphism for it to be a crossed
module, let us consider some more
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substantial examples.

5. Let X be atopologica space in which a
point x, has been chosen. Recal that the
fundamental group =,(X,%) consists of
homoatopy classes is a crossed module in the
category of crossed modules. Thus it consists
of a morphism of crossed modules together
with an “action” of the target crossed module
on the source crossed module and certain
algebraic conditions are satisfied.

6. If

—>C
S — 0

is an interna category within the category of
groupsthen C; actson Kers by conjugation:

9(c) =i(g)ci(g)
for geC,,ceC, .

The target map t restricts to Kers to give a
crossed module t:Kers— C,. Conversely

any crossed module §:C—> G yieds an
internal category by taking C,=CaG the
semidirect product of C and G, and C, =G;
the source map S is given by s(c,g)=g
whilst target t is t(c,g) = 5c.g .

7. The origina class of example studied by
Whitehead [9], come from topology. Let
(X,A) be a pair of pointed topologica
spaces. The second relative homotopy group
(X, A) of z,(X,A) isobtained asthe group

of homotopy class of maps from a square 12,

into X such that the boundary of 12, maps
into A and Ix{0}, {O}x] and {}x| are
mapped to base point. The homotopies must
respect this filtration; full details can be
found in any standard text on homotopy
theory. The restriction of each homotopy
class to | x{1} gives a class of loops within
A and this boundary homomorphism
0:7,(X,A) > 1 (A) .
There is a natural action of z,(A) on
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7,(X,A) s0 that (z,(X,A),z,(A),d) is a
crossed module.

8. Let M and N be normal subgroups of
G. A non-abelian tensor product M ® N has
been introduced by R. Brown and J-L. Loday
[3]. It is the group generated by the symbols
m®n (meM and neN) subjects the
relations

mm ®n=("m @M n)(m®n),

m®nn' = (M n)("me" n),
for mm eM,n,n"eN. Ingeneral M®N is
a non-abelian group. If however conjugation
in G by an element of M (resp. N) leaves
al the lementsof N (resp. M) fixed, then
M ®N is precisely the usual abelian tensor
product of abeliasined groups M/M'® N/N'.
For any normal subgroup M and N thereis
a homomorphism 6: M ® N - G defined on
generators by

I(m@n)=gmg ' ®gng .
This homomorphism and action is a crossed
module.

9. Let A be an associative ring with
identity, let GL(A) be the genera linear

group, and let E(A) be the subgroup of
GL(A) generated by the elementary matrices
g(4) with i=j and 1eA (recal that
gj (1) has 1’s on the diagona, 4 in (i, j)
position, and 0 elsewhere). The group E(A)
is a normal subgroup of GL(A) and the non-
abelian tensor square E(A) ® E(A) is known
as the Steinberg group and denoted S(A).
The definition of the Steinberg group is
equivalent to the usual definition (see Brown-
Loday [3]). As a specia case of Example 8
we have a crossed module 6: S(A) — GL(A).
It can be shown that 6((A)) = E(A). The
group K, (A)=Coker(d) and K,(A)=Kerd
are known as first and second algebraic K -
theory groupsof 1.

2. SOME BASIC GROUP
PROPERTIES OF CROSSED
MODULES

The following results prove consequences of
the definitions of crossed modules and state
some properties of those groups.

Proposition 2.1 If (L,K,0) isa crossed K -
module, then

1) Kerd isacentral subgroup of L,

ii) both L/L,L] and Kerd have natural
K /oL -module structures.

Proof: (i) Sincefor | e L, a<Kero,
ala Y =la@Ht=11"1=1 (3@t =1

asrequired.
(i) Itisenough to show that oL actstrivialy
on Kero and L/[L,L]. For aeKerd, ol e oL,
by a(a)=18(a) ‘=1 oL acts trivialy on
Kero. For ol edl, I'LeL/[L,L] we abtain
the following

o"L=a(")=1a017) =1
so oL acts trivialy on L/[L,L]. Hence we

can unambiguously define maps
K/oLxKero — Kerd

(kdl,a) -k,

K/oLx L/[L,L] — L/[L,L]

(kal, I[L,L]) - K [L, L]
and it is routine to check that the turns the
abelian groups Keré and L/[L,L] into K/oL -
modules. Kero and L/[L,L] have K/oL -
module structure, where [L,L] is a

commutator. n
Recall that definition of the exact sequence of
groups.

A sequence of two homomorphisms of
groups A— B9 5C is exact a B if
imf = Kerg. A sequence of abelian groups
and homomorphisms

O
Sl s,

0

— S
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is exact if it is exact a each S, that is

Imo,,,, =Kerg,, foral nel . It is clear that

every exact sequence is a complex equality
(Im=Ker) impliesinclusion (ImcKer). Asa
result of previous result we have two exact
sequences

1— Kere L Imé 1

1 Ime K K/Im¢ 1.

Proposition 2.2 The exact sequence
1 Kerg L Imé 1

induced the following exact sequence
O i 1—1

Kero—> L/[L, L]
where | = Im.

Proof: To prove that the above sequence is
exact we need to show that:

(i) the morphism &: L/[L,L]—> 1/[1,1], is
onto

(i) Kerd mapsonto the kernel of 3 i.e. each
element I[L,L] in kernel & is of the form
I'TL, L], for some I’ € Kero. We know that the
diagram

1> Ked— L L)l -1

J J
L/AL L] ——— 1 /[1,1]
0
is commutative, and 6 is onto, then o is

onto, and the image of Kero— L/[L,L] is
contained in Kerd.

(ii) if | e[L,L] e Kerd, then
2U[L, L) =o()[1,11=[1,17 and ad)e[l,1].
Thus  a(1) =o(l) = 6(b)o(b") for some
b,b’ e L. Thisimpliesthat I(bb")* e Kers, i.e
(I(bb) ™Yy = 1" e Kerd, but then I[L, L] =I'[L, L],
S0 Kerd mapped ontoKerd . .

Proposition 2.3 Let v : (L,K,d) = (B,K, )
be a morphism of crossed K -modules. Then
(L,B,y) isa crossed B-modules where B

actson L, via 8.
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Proof: We have the following commutative

diagram
K
where y isamorphism of K -group and B
actson L, via p.i.e.forleL and be B we
have
"= (D).
Now we need to check that w isamorphism

of B -group and satisfies the conditions CM1
and CM2. Let | e L and b e B, then we have

(o) = (a ) = YDy = ¥ Op,
Alsofor I,I’eC

l//(l)l! — ﬂ‘/’(')lf — a(l)l! — ||r.
Similarly Iz,//(l’) ! I’. Thus the axioms of a
crossed module are satisfied. n

Thus by Proposition2.1 w(L) is a normal
subgroup in B.

Proposition 2.4 Let (L,B,0) be a crossed
B -module and (B,K, ) be a crossed K -
module such that K acts on L, where the
action is compatible with B-action on L,
then (L, K, 50) isacrossed K -module.

Proof: The only thing we need to check that
isthe Peiffer identity. If 1,1'e L, then

po('1)=1p0171) = p1n =1
Thus ¢ isacrossed module. "
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