
Grup Altkross Modüller Üzerine Bir Ara tirma I   

C.B.Ü. Fen Bilimleri Dergisi                          ISSN 1305-1385                                 C.B.U. Journal of  Science 
1.1 (2005) 53  59                                                                                                        1.1 (2005) 53  59   

GRUP ALTKROSS MODÜLLER ÜZER NE B R ARA TIRMA I  

Ali MUTLU1*  Berrin MUTLU  Emine USLU  Emel ÜNVER 

1   University of  Celal Bayar, Faculty of  Science, Department of  Mathematics, Muradiye Campus 45035 
Manisa, Turkey.    

Özet: Grup kross modüllerinin altkross modüllerinde  baz örnekleri ve sonuçlar bu makalede verildi.   

A SURVEY ON SUBCROSSED MODULES OF GROUPS I  

Abstract: In this paper some examples and results of subcrossed of crossed modules of group are given.   

Keywords: crossed module, subcrossed of crossed modules.  

A.M.S. Classification:18D35, 18G30,18G50, 18G55, 55Q20, 55Q05.                        

----------------------------------------------------------------------------------------------------------------------------------- 

* Sorumlu yazar  
ali.mutlu@bayar.edu.tr    



C.B.Ü. Fen Bil. Dergisi (2005) 53 

 
59, 2005 / AliMUTLU/Berrin MUTLU/...   

54

 
INTRODUCTION 

Crossed modules were introduced by J.H.C. 
Whitehead in his study on combinatorial 
homotopy theory [9]. They have found 
important roles in many areas of mathematics 
(including homotopy theory, homology and 
cohomology of groups, algebraic K-theory, 
cyclic homology, combinatorial group 
theory, and differential geometry). Possible 
crossed modules should now be considered 
one of the fundamental algebraic structures.    

Crossed modules of groups are 
generalization of both normal and subgroups. 
Any subgroup is a crossed module, so it is of 
interest to see generalization of group 
theoretic concepts and structures to crossed 
modules.   

Also areas in which crossed modules have 
been applied include the theory presentations 
(see the survey [2]), algebraic K-theory 
(Loday [5]) and homological algebra ([4]). 
Now crossed modules can be viewed as 2-
dimensional groups (see [1]) and it is 
therefore of interest to consider counterparts 
for crossed modules of contents from group 
theory. K. Norrie in [7] presented the 
automorphisms of a group N

 

fit into a 
crossed module AutN N . She explored 
the corresponding more elaborate structures, 
for example crossed squares, into which fits 
the automorphism group of a crossed module.  
       

We will look at the substructures and normal 
subgroup of crossed modules. To form factor 
crossed modules we need to work that out 
with some conditions on normal subgroup. 
This paper also contains the factorization 
theorem of morphism between crossed 
modules.        

1. CROSSED MODULES AND 
EXAMPLES 

J.H.C. Whitehead (1949) [9] described 
crossed modules in various context especially 
in his investigations the algebraic structures 
relative homotopy groups. In this section, we 
recall the definitions and elementary theory 
of crossed modules of group given by 
Whitehead [9].   

A crossed module ( )C G

 

[9] consists of 
groups C

 

and G

 

an operation of G

 

on the 

left of C

 

written ( , ) gg c c

 

and a 
homomorphism C G

 

of G -groups 
where G

 

acts on the left of itself by 
conjugation. The map 

 

must satisfy the 
rules  

1

1

CM1 ( ) ( )

CM2

g

c

c g c g g G c C

c cc c

 

The last condition is called the Peiffer 
identity.   

If a group G

 

acts on C

 

and C G

 

satisfies CM1

 

then it is sometimes 
convenient to refer to ( )C G

 

as a 
precrossed module. For example making 

0G NG

 

acts on 1C NG

 

via conjugation 

using 0s  so 1

0 0( ) ( )mc m c ms s  we get that  

1 1 0NG NG

 

is a precrossed module. In such a context the 
element  

1 1( )c c cc c

 

be called the Peiffer commutator of m

 

and 
m

 

or more briefly a Peiffer element. Of 
course the vanishing of these Peiffer 
elements is equivalent to ( )C G

 

being a 
crossed module. The subgroup generated by 
such elements is known as the Peiffer 
subgroup of C

 

for the given precrossed 
module structure on ( )C G .   

Given any precrossed module C G , one 
can form an internal directed graph in the 
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category of groups simply by forming the 
semidirect product C Gã

 
and taking the 

source, s , and target, t , to send an element 
( )c g

 
to g

 
or c g

 
respectively. The Peiffer 

subgroup of M

 

measures the obstruction to 
the directed graph having an internal 
category structure. It can easily be seen to be 
[Ker Ker ]s t . A morphism 
( ) ( ) ( )C G C G

 

of crossed 
modules consists of homomorphisms 

C C G G

 

of groups such that 

 

and ( )( ) ( )g gc c c C g G

 

If ( )C G

 

is a crossed module, then C

 

is 
called a crossed G -module.   

A crossed module generalizes the concepts of 
both an ordinary module and that of a normal 
subgroup. For if Q

 

is a group and A

 

is a Q -
(left) module, then ( , , )A Q I

 

is a crossed 

module with I

 

the trivial map 
( ) 1I a Q a A

 

If  G

 

is a group and  N

 

is a normal subgroup, then ( )N G i

 

is a 
crossed module, with the inclusion i and G

 

acting on N  by conjugation.  

1.1 Examples 

We note once certain consequence of the 
definition of a crossed module:   

(i)  the image C

  

is a normal subgroup of 
G ,  
(ii) the kernel Ker( )

 

lies in the center Z

 

of 
C ,  
(iii) the operation of G

 

on C

 

induces a 
natural ( )G C -module structure on Z

 

and 
Ker( )  is a submodule Z ,  
(iv) the action of G on C

 

induces a natural 
( )G C -module structure on the commutator 

factor group [ ],AbC C C C    
(v) the quotient ( )G C

 

is denoted by 1( )

 

Also it is easily checked that the action of G

 

on C

 

induces an action of 1( )

 

on Ker( )

 
and that Ker( )

 
is abelian; we denote the                        

1( ) -module  of Ker( )  by 1( ) .   

It is clear that the crossed modules constitute 
a category XMod

 

if G

 

is a fixed group, the 
crossed modules constitute a full subcategory 
G XMod

   

Furthermore the inner automorphism map 
AutN N

 

already mentioned, other 
standard examples of crossed modules are:   
- a G -module M

 

with the zero 
homomorphism M G ; 
- the inclusion of a normal subgroup N G ; 
-and any epimorphism E G

 

with central 
kernel.   

There are two canonical ways in which a 
group may be regarded as a crossed module: 
via the identity map G G

 

or via the 
inclusion of trivial map subgroup.   

Now we can give definition of subcrossed 
module from [7].  

Definition: It said that ( )L K

 

is 
subcrossed module of the crossed module 
( )L K  if  
(i)  L

 

is a subgroup of L

 

and K

 

is a 
subgroup of ,K

  

(ii)   is restriction of  to L  and  
(iii)  the action of K on L

 

is induced by the 
action of K  on L

   

1. Let N

 

be any normal subgroup of a group 
K . Consider an inclusion map 
(homomorphism on N ) inc : N K

 

together 

with the action  of 1k n knk . Then  
( , , inc)N K is a crossed module. Conversely 
given any crossed K -module : L K , one 
can easily verify that L N

  

is a normal 
subgroup in K .  

2. Let M

 

be any K -module. It can be 
considered as a K -group with identity map, 
and then the trivial homomorphism  
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1: M K

 
is a crossed K -group by 

1 1 1m m mm m  for all ,m m M .   

Conversely, given any crossed module 
: L K , then Ker

 

is a K -module. For 
this, see Proposition 2.1. We state without 
proof of the following results (see T. Porter 
[8]).   

3. A simplicial group G

 

consists of a family 
of groups { }nG

 

together with face and 
degeneracy maps  

1 0 ( 0)n
i i n nd d G G n n n

 

and 

1 0 ( 0)n
i i n ns s G G n n n

 

satisfying the usual simplicial identities given 
in [6]. For example it can be completely 

described as a functor op
kGrpG where 

 

is the category of finite ordinals 
[ ] {0 1 }n n

 

and increasing maps.  
Assume that a simplicial G

 

and simplicial 
subgroup N  are given.  The inclusion  

Ninc G

 

induces a map  
0 0 0( ) ( ) ( )N Ginc . 

The action by conjugation of G

 

on N

 

induces an action of 0 ( )G

 

on 0 ( )N

 

Then 

0 0 0( ( ), ( ), ( ))N G inc

 

is a crossed module. 
Any crossed module can be obtained as 0  of 
a simplicial normal subgroup inclusion, 
N G

 

as above but we will not include a 
proof here (see [8]).   

4. Suppose that K

 

is the group Aut( )L

 

of 
automorphism of some group L . Then the 
homomorphism L K

 

which sends an 
element x L

 

to the inner automorphism 
1L L l xlx  is a crossed module.   

Each of these examples consists of a group 
homomorphism with an action of the target 
group on the source group. Before stating the 
precise algebraic properties we need by such 
a homomorphism for it to be a crossed 
module, let us consider some more 

substantial examples.  
5. Let X

 
be a topological space in which a 

point 0x

 
has been chosen. Recall that the 

fundamental group 1 0( )X x

 
consists of 

homotopy classes is a crossed module in the 
category of crossed modules. Thus it consists 
of a morphism of crossed modules together 
with an action of the target crossed module 
on the source crossed module and certain 
algebraic conditions are satisfied.    

6. If  

1 0
,

s

t i
C C

 

is an internal category within the category of 
groups then 0C  acts on Kers  by conjugation:  

1( ) ( ) ( )g c i g ci g

 

for 0 1g C c C

 

.  

The target map t

 

restricts to Kers

 

to give a 
crossed module t Kers 0C

 

Conversely 
any crossed module C G

 

yields an 
internal category by taking 1C C Gã

 

the 
semidirect product of C

 

and G

 

and 0C G

 

the source map s

 

is given by ( , )s c g g

 

whilst target t  is ( )t c g c g .  

7.  The original class of example studied by 
Whitehead [9], come from topology. Let 
( )X A

 

be a pair of pointed topological 
spaces. The second relative homotopy group 

2 ( )X A  of 1( )X A  is obtained as the group 

of homotopy class of maps from a square 2I

 

into X

 

such that the boundary of 2I

 

maps 
into A

 

and {0} {0}I I

 

and {1} I

 

are 
mapped to base point. The homotopies must 
respect this filtration; full details can be 
found in any standard text on homotopy 
theory.  The restriction of each homotopy 
class to {1}I

 

gives a class of loops within 
A  and this boundary homomorphism  

2 1( ) ( )X A A . 
There is a natural action of 1( )A

 

on 
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2 ( )X A

 
so that 2 1( ( ) ( ) )X A A

 
is a 

crossed module.    

8.   Let M

 
and N

 
be normal subgroups of 

G

 

A non-abelian tensor product M N

 

has 
been introduced by R. Brown and J-L. Loday 
[3]. It is the group generated by the symbols 
m n

 

( m M

 

and n N ) subjects the 
relations  

( )( )m mmm n m n m n

 

( )( )n nm nn m n m n

 

for m m M n n N

 

In general M N

 

is 
a non-abelian group. If however conjugation 
in G

 

by an element of M

 

(resp. N ) leaves 
all the elements of N

 

(resp.  M ) fixed, then 
M N

 

is precisely the usual abelian tensor 
product of abeliasined groups M M N N

 

For any normal subgroup M

 

and N

 

there is 
a homomorphism M N G

 

defined on 
generators by  

1 1( )g m n gmg gng

 

This homomorphism and action is a crossed 
module.    

9.   Let 

 

be an associative ring with 
identity, let ( )GL

 

be the general linear 
group, and let ( )E

 

be the subgroup of 
( )GL

 

generated by the elementary matrices 
( )ije

 

with i j

 

and 

 

(recall that 

( )ije

 

has 1 s on the diagonal, 

 

in ( )i j

 

position, and 0

 

elsewhere). The group ( )E

 

is a normal subgroup of ( )GL

 

and the non-
abelian tensor square ( ) ( )E E

 

is known 
as the Steinberg group and denoted ( )St

 

The definition of the Steinberg group is 
equivalent to the usual definition (see Brown-
Loday [3]). As a special case of Example 8 
we have a crossed module ( ) ( )St GL

 

It can be shown that ( ( )) ( )St E

 

The 
group 1( ) Coker( )K

 

and 2 ( ) KerK

 

are known as first and second algebraic K -
theory groups of .  

2. SOME BASIC GROUP 
PROPERTIES OF CROSSED 
MODULES 

The following results prove consequences of 
the definitions of crossed modules and state 
some properties of those groups.   

Proposition 2.1  If ( )L K

 

is a  crossed K -

module, then  
i)  Ker  is a central subgroup of L

  

ii)  both [ ]L L L

 

and Ker

 

have natural 

K L -module structures.   

Proof: (i)  Since for Kerl L a

  

1 1 1 1 1( ) ( ) 1 ( ( ) 1)l a l a l ll a

 

as required.  
(ii)  It is enough to show that L  acts trivially 
on Ker

 

and [ ]L L L

 

For Kera l L

 

by 1( ) ( ) 1l a l a l L

 

acts trivially on 
Ker . For [ ]l L l L L L L

 

we obtain 
the following  

1( ( ) ( )) 1l lL l l l

 

so L

 

acts trivially on [ ]L L L

 

Hence we 
can unambiguously define maps  

Ker Ker

( )

[ ] [ ]

( [ ]) [ ]

a

l

K L

k l a k

K L L L L L L L

k l l L L k L L

 

and it is routine to check that the turns the 
abelian groups Ker  and [ ]L L L  into K L -
modules. Ker

 

and [ ]L L L

 

have K L -
module structure, where [ ]L L

 

is a 

commutator.                                                                                        
Recall that definition of the exact sequence of 
groups.   

A sequence of two homomorphisms of 

groups f gA B C

 

is exact at B

 

if 
im Kerf g

 

A sequence of abelian groups 
and homomorphisms  

1

1 1
n n

n n nS S S
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is exact if it is exact at each nS

 
that is 

1Im Ker for alln n n . It is clear that 

every exact sequence is a complex equality 
(Im Ker) implies inclusion (Im Ker). As a 
result of previous result we have two exact 
sequences  

1 Ker Im 1L

 

1 Im Im 1K K .  

Proposition 2.2 The exact sequence  
1 Ker Im 1L

 

induced the following exact sequence  

Ker [ ] [ ] 1L L L I I I

 

where ImI

   

Proof: To prove that the above sequence is 
exact we need to show that:  
(i)  the morphism [ ] [ ]L L L I I I

 

is 
onto  
(ii)  Ker  maps onto the kernel of  i.e. each 
element [ ]l L L

 

in kernel 

 

is of the form 
[ ]l L L  for some Kerl  We know that the 

diagram  

1 Ker 1

/[ , ] /[ , ]

L I

L L L I I I

 

is commutative, and 

 

is onto, then 

 

is 
onto, and the image of Ker [ ]L L L

 

is 

contained in Ker

  

(ii) if [ ] Kerl L L

 

then 

( [ ]) ( )[ ] [ ]l L L l I I I I

 

and ( ) [ ]l I I

 

Thus ( ) ( ) ( ) ( )l l b b

 

for some 

b b L

 

This implies that 1( ) Kerl bb

 

i.e 
1( ( ) ) Kerl bb l

 

but then [ ] [ ]l L L l L L

 

so Ker  mapped onto Ker .                         

   

Proposition 2.3 Let ( ) ( )L K B K

 

be a morphism of crossed K -modules. Then 
( )L B

 

is a crossed B -modules where B

 

acts on L  via 

  
Proof: We have the following commutative 
diagram  

 

where  is a morphism of K -group and B

 

acts on L  via  i.e. for l L  and b B  we 
have 

( )l lb b

 

Now we need to check that 

 

is a morphism 
of B -group and satisfies the conditions CM1 
and CM2. Let l L  and b B  then we have  

( ) ( )( ) ( ( )) ( )l ll lb b b b

 

Also for l l C

  

( ) ( ) ( )l l l ll l l l . 

Similarly ( )l ll l

 

Thus the axioms of a 

crossed module are satisfied.                         
                         
Thus by Proposition 2.1 ( )L

 

is a normal 
subgroup in B .   

Proposition 2.4 Let ( )L B

 

be a crossed 

B -module and ( )B K

 

be a crossed K -

module such that K

 

acts on L

 

where the 
action is compatible with B -action on L

 

then ( )L K

 

is a crossed K -module.   

Proof: The only thing we need to check that 
is the Peiffer identity. If ,l l L , then  

1( ) ( ) ( ) .l l ll l l l l l l

 

Thus  is a crossed module.                        
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