
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, DOI: 10.17694/bajece.04890

Copyright © BAJECE ISSN: 2147-284X December 2015 Vol.3 No.3 http://www.bajece.com

135

Abstract— This paper presents an algorithm for sorting by

using of LIT (left inversions table). The algorithm is named LR.

The time complexity of the proposed algorithm analytically

evaluated. Two approaches for acceleration of LR are presented.

The proposed algorithm and its two improvements are

implemented in C++. Experimental comparisons are done between

LR and some known algorithms, and between LR and its two

modifications. The experiments show that LR is faster than

“bubble sort” and “LtoRA” algorithms but it is slower than the

algorithms “insertion sort” and “selection sort”. The experiments

also show that for rows in which there is a large number of the

repetitions, the modification “LR – repeat” is faster than the

original algorithm, “Bubble sort”, “Selection sort” and the

modification “LRA – minimax”. The algorithm “LR minimax” is

faster than algorithm LR in all cases (when the row has large or

small number of repetitions).

Index Terms— Sorting algorithm, Left Inversions Table,

Insertion sort, Selection sort

I. INTRODUCTION AND AIMS

HIS paper is a continuation of the work in article [7]. The

two papers are part of a research on some sorting methods

and the possibility for their improvement.

It is considered that near 25% of the work of the computer

systems is used for sorting of information [1]. This shows how

important it is to find good sorting methods and algorithms.

There are many methods and algorithms for sorting and they are

studied widely [1,2,3,4,5,6]. This doesn’t mean that everything

in this area is finished and nothing new and better could be

found, especially considering the characteristics of the given

row.

The aim of this paper is:

 to propose and investigate a method for sorting of rows by

a left inversions table (LIT) with left and right filling

which is an improvement of the sorting methods proposed

in [7];

 to evaluate the complexity of the proposed method;

 to make a program for the proposed method (algorithm)

for row sorting by LIT with right and left filling;

Naiden Borisov Vasilev was head of department of Computer Systems and

Technologies in Technical University Sofia, branch in Plovdiv, Bulgaria. (e-
mail: mnvasilev@yahoo.com).

Atanaska Dimitrova Bosakova-Ardenska works in University of Food

Technologies, Plovdiv in Bulgaria. She is associated professor in department of
Computer Systems and Technologies (e-mail:a_bosakova@uft-plovdiv.bg).

 to evaluate and compare experimentally the proposed

method: sorting by LIT with right and left filling.

The methods for row sorting considered in [7] are:

 sorting by LIT with filling from left to right;

 sorting by LIT with filling from right to left.

They are based on the proven assertion: the table of the left

inversions by positions of a given row aj (j = 1,2,…,n) uniquely

defines the sorted ascending or descending row.

LIT of a given row is the sequence of numbers in the j-th

position in which the number of the elements dj is written, left

from aj (j-th element, j = 1,2,...,n) and lager than it.

The steps for sorting by LIT are the following:

1) constructing the LIT of the given row by counting the

larger elements from the left of every element in the row;

2) constructing the searching row.

Constructing the searching row begins with the element in the

first position of the given row, continues with the second

element and so on, until the element in the n-th position. The

position for recording of the elements and the number of moved

elements depending on the desired sorting, and the direction of

moving are shown in Table 1.

TABLE 1. POSITION FOR RECORD OF AJ, J = 1,2,...,N, AND NUMBER OF MOVED

ELEMENTS FOR SORTING WITH FILLING FROM LEFT TO RIGHT AND FROM RIGHT

TO LEFT

Filling

Position for record of aj
Number of the moved

elements

Row Row

Ascending Descending Ascending Descending

To the

right
j – dj dj + 1 dj j – dj – 1

To the

left
n – dj n – (j – dj) + 1 j – dj – 1 dj

TABLE 2. TABLE OF LEFT INVERSIONS OF THE GIVEN ROW

A New Sorting Algorithm with filling to the left

and right

N. Vasilev and A. Bosakova-Ardenska

T

Position j in the

given row
1 2 3 4 5 6 7 8 9

Value of the

element aj
6 0 4 0 7 0 2 0 5 0 3 0 1 0 9 0 8 0

dj – num. of the

elements from the

left bigger then aj

0 1 0 3 2 4 6 0 1

mailto:mnvasilev@yahoo.com

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, DOI: 10.17694/bajece.04890

Copyright © BAJECE ISSN: 2147-284X December 2015 Vol.3 No.3 http://www.bajece.com

136

Example

Sort in an ascending and a descending order the following row:

60, 40, 70, 20, 50, 30, 10, 90, 80.

We construct the LIT of the row (Table 2).

Fig.1. Ascending (a) and descending (b) rows of the given row sorted from left

to right

Figure 1a shows the ascending row and figure 1b – the

descending row with filling from left to right. The moved

elements are underlined.

The number of the moves for constructing the ascending row is

17. The number of the moves for constructing the descending

row is 19.

If t11 is the time for execution of the comparison operation on

the computer, t21 – the time for execution of the increment and

record operations, t22 – the time for execution of the record

operation (move to the right), then:

 the time for constructing the ascending row by sorting

with right filling and the descending row by sorting with

left filling, without record operations in temporary

positions of the array and intermediate saving of the

elements will be:

 the time for constructing the descending row by sorting

with right filling and the ascending row by sorting with

left filling, without record operations in temporary

positions of the array and intermediate saving of the

elements will be:

As seen above, the complexity of the proposed algorithms is

quadratic. We will look for ways to reduce the number of

comparisons and moves.

II. REDUCING THE NUMBER OF COMPARISONS

We will consider two ways for reducing the number of

comparisons proposed in [7]. These methods decrease the value

of the first addend in the equations above for some rows with

certain properties. In other words, the efficiency of the proposed

methods depends on the characteristics of the given row and

sometimes they do not reduce the number of comparisons.

Approach 1. Comparisons with the current minimal and current

maximal elements

When comparing the elements for constructing the LIT, two

fields are used. In these fields the minimal (amin) and the

maximal (amax) values are written among the elements with

which the current element is compared. When we count the left

elements larger than aj, first we compare it with the minimal and

the maximal values.

If aj < amin= ai, i=1,2,...,j-1 the value dj will be j-1 because all

elements to the left of aj are larger than it. The comparisons of

aj with the left elements are not done.

If aj amax= ai, i=1,2,...,j-1 the value dj will be 0 because to the

left of aj there are not elements larger than it. The comparisons

of aj with the left elements are not done.

This approach is effective for rows in which the small and the

large elements are in the end of the rows. It is most effective (0

comparisons) for the rows, which can be split from left to right

into two rows – an ascending one and a descending one, for

which the smallest element of the ascending row is larger than

the largest element of the descending row. The ascending and

the descending rows are also such rows. The number of these

rows is 2n-1. (The values in LIT for such rows are: 0 in the first

position and 0 or j-1 in the other positions.)

If the minimal and the maximal elements are in the first two

position of the given row, the number of the comparisons will

not be reduced.

This approach adds at most 2n comparisons. First, the element

aj is compared to element aj-1. If aj>aj-1 then aj will be compared

to amax only. If aj<aj-1 then aj will be compared to amin only. If aj

≥ amin or aj < amax there will be only one more comparison.

Otherwise the added comparisons will be 2. If aj=aj-1 then

comparisons to amin and amax are not done. For avoiding repeated

comparisons, the approach 2 is used.

Approach 2. Avoid repeated comparisons

If the row has repeated elements, it is desirable to avoid

repeated comparisons.

If ai = aj, i<j, i=1,2,...,n-1, j=2,3,...,n, then the value di+dt is

assigned to dj, where dt is the current value of dj. Thus, one

comparison and one summation are added, but (i-1) repeated

comparisons are avoided for determination of dj.

This approach adds n(n-1)/2 comparisons. It is efficient when

the number of the repeated elements is large, the same elements

are near and they are to the right in the given row.

III. REDUCING THE NUMBER OF THE MOVES

To reduce the number of the moves we will unite both methods

(algorithms): filling from left to right and filling from right to

left [7]. In this case, the record of each element aj (j = 1,2, .., n)

will be done to the left or right of the row depending on the

result of the comparison of the values dj and j-dj-1.

If dj ≤ j-dj-1 the moves for ascending row will be done to the

right and for descending row will be done to the left.

If dj > j-dj-1 the moves for ascending row will be done to the

left and for descending` row will be done to the right.

Thus, the number of the moves for sorting the row will be

minimal. The size of the array for saving the sorted row must

be (2n-1). The first element will be written in position n. By

filling of the array we must keep current indices of nearest left

(L) and nearest right (R) vacant positions in the array.

Position for record pj of the current element aj is:

pj = R-dj when dj ≤ j-dj-1 and pj = L+j-dj-1 when dj > j-dj-1 for

ascending row;

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, DOI: 10.17694/bajece.04890

Copyright © BAJECE ISSN: 2147-284X December 2015 Vol.3 No.3 http://www.bajece.com

137

pj = L+dj when dj ≤ j-dj-1 and pj = R-(j-dj-1) when dj > j-dj-1

for descending row.

We will construct the ascending row of the row in the example

above.

j=1; the first element a1 is written in position p1 = n = 9.

j=2; L=8, R=10; d2 = 1 > 2-1-1 = 0 = 2-d2-1; a2 is written to the

left; p2 = 8+2-1-1 = 8.

j=3; L=7, R=10; d3 = 0 < 3-0-1 = 2 = 3-d3-1; a3 is written to the

right; p3 = 10-0 = 10.

j=4; L=7, R=11; d4 = 3 > 4-3-1 = 0 = 4-d4-1; a4 is written to the

left; p4 = 7+4-3-1 = 7.

j=5; L=6, R=11; d5 = 2 = 5-2-1 = 2 = 5-d5-1; a5 is written to the

right; p5 = 11-2 = 9.

The elements with indices 1 (60) and 3 (70) are moved to the

right. They are written in positions 10 and 11.

j=6; L=6, R=12; d6 = 4 > 6-4-1 = 1 = 6-d6-1; a6 is written to the

left; p6 = 6+6-4-1 = 7.

The element with index 4 (20) is moved to the left. It is written

in position 6.

j=7; L=5, R=12; d7 = 6 > 7-6-1 = 0 = 7-d7-1; a7 is written to the

left; p7 = 5+7-6-1 = 5.

j=8; L=4, R=12; d8 = 0 < 8-0-1 = 7 = 8-d8-1; a8 is written to the

right; p8 = 12-0 = 12.

j=9; L=4, R=13; d9 = 1 < 9-1-1 = 7 = 9-d9-1; a9 is written to the

right; p9 = 13-1 = 12.

The element with index 8 is moved to the right. It is written in

position 13.

Figures 2a and 2b present the construction of the ascending and

the descending rows sorted by LIT with filling to the left and

right. The moved elements are underlined.

Fig.2. Ascending (а) and descending (б) orders of the given row sorted by LIT

with filling to the left and right

We will note that:

 if dj = 0, aj is written to the right after the last element in the

row;

 if dj = j-1, aj is written to the left before the first element in

the row.

In both cases, moves of elements are not executed.

The number of the moves for constructing the ascending and

the descending rows is the same and its value is 4.

The results are summarized in Table 3.

TABLE 3. POSITIONS FOR RECORDING AND DIRECTION OF FILLING BY SORTING

TO THE LEFT AND RIGHT

Row
Direction of filling Position for record of aj

dj ≤ j-dj-1 dj > j-dj-1 dj ≤ j-dj-1 dj > j-dj-1

Asc. To the right To the left R-dj L+j-dj-1

Desc. To the left To the right L+dj R-(j-dj-1)

IV. EVALUATION OF THE COMPLEXITY OF THE ALGORITHM

FOR SORTING BY LIT WITH FILLING TO THE LEFT AND RIGHT

The operations which are used in the proposed algorithm are:

1) compare for constructing of the LIT (for counting of the

larger elements); the elements of the array are compared;

2) record (increment) for counting of the larger elements;

3) compare to determine the direction of the minimal move

(left or right); the first operand is number and the second

one is an expression which contains subtraction (see table

3);

4) record (move one position to the left or to the right) of the

elements of the array to construct the current sorted row;

5) record (move) of the elements in temporary positions in

the array for constructing the current sorted row; the

record position is a result of addition/subtraction (see table

3);

6) record (increment) of nearest vacant left (L) and right (R)

positions in the array for sorted row.

Number of the compares for count the bigger elements (left

inversions) by position is:

C = n(n-1)/2.

Number of the records (increments) by counting the bigger

elements is:

His values [7] are:

- minimal– 0 (the row is ascending);

- average– n(n-1)/4;

- maximal– n(n-1)/2 (the row is descending).

The number of compares to determine the direction of minimal

move (left or right) is equal to n-1.

The number of records (moves one position to left or right) is:

The minimal number of the moves is 0. For rows which has dj=

0 or j-1, j = 1,2,..,n, operations move aren’t done. Every such

row can be divided (from left to right) in two rows: one

increasing row and one decreasing row like the smallest

element in the increasing row is bigger than the biggest element

in the decreasing row. Ascending and descending rows are such

rows. When sort increasing row the fill up are to the right only.

When sort decreasing row the fill up are to the left only. The

number of these rows is 2n-1. For n=4, the number of these rows

is 24-1=8. These rows have LIT: 0000, 0100, 0020, 0003, 0120,

0103, 0023 and 0123. (See table 4.)

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, DOI: 10.17694/bajece.04890

Copyright © BAJECE ISSN: 2147-284X December 2015 Vol.3 No.3 http://www.bajece.com

138

The maximal number of the moves is: (n2-2n)/4 when n is even

and (n2-2n+1)/4 when n is odd. This value is obtained when the

LIT are: 0, 0 or 1, 1, 1 or 2, 2, 2 or 3,..., n/2-1 , n/2-1 or n/2 if n

is even and 0, 0 or 1, 1, 1 or 2, 2, 2 or 3,..., (n-1)/2-1 or (n-1)/2,

(n-1)/2 if n is odd. The number of these rows is 2n/2 if n is even

and 2(n-1)/2 if n is odd. When n = 4, the number of these rows is

4. The LIT of these rows are: 0011, 0012, 0111 and 0112. The

maximal number of the moves is 2. (See table 4.)

The number of records (moves) of the elements in temporary

positions in the array for constructing of the current sorted row

is always n (a new array).

The number of records (increments) of the nearest left (L)

vacant position and nearest right (R) vacant position in the array

is n.

We note that the number of the operations (including the

moves) for constructing the ascending and the descending row

is the same.

The time for constructing the sorted row with filling to the left

and right will be:

t11 is the time for comparing two elements of the array;

t21 is the time for incrementing and recording;

t12 is the time for comparing with the first operand being an

number, and the second one being a value of the operation

subtraction;

t22 is the time for recording (moving to the left or right) of a

element of the array;

t23 is the time for additions/subtractions and recording of the

result.

The minimal and maximal time for constructing the sorted row

by LIT with filling to the left and right will be:

𝐓𝐥𝐫_𝐦𝐢𝐧 = 𝐭𝟏𝟏𝐧(𝐧 − 𝟏)/𝟐 + 𝐭𝟏𝟐(𝐧 − 𝟏) + 𝐭𝟐𝟑𝐧 + 𝐭𝟐𝟏𝐧 = 𝐊

𝐓𝐥𝐫_𝐦𝐚𝐱 = 𝐊 + 𝐦𝐚𝐱(𝐭𝟐𝟏𝐧(𝐧 − 𝟏)/𝟐, 𝐭𝟐𝟏𝐧𝟐 𝟒⁄

+ 𝐭𝟐𝟐 (𝐧𝟐 − 𝟐𝐧) 𝟒⁄)

𝐓𝐥𝐫_𝐦𝐚𝐱 = 𝐊 + 𝐦𝐚𝐱(𝐭𝟐𝟏𝐧(𝐧 − 𝟏)/𝟐, 𝐭𝟐𝟏(𝐧𝟐 − 𝟏) 𝟒⁄

+ 𝐭𝟐𝟐 (𝐧𝟐 − 𝟐𝐧 + 𝟏) 𝟒)⁄

The first expression for Tlr_max is for n even and the second

expression is for n odd.

n2/4 is maximal number of recordings (increments) for the rows

with maximal number of moves for n even. (n2 – 1)/4 is

maximal number of recordings (increments) for the rows with

maximal number of moves for n odd.

The time Tlr_min is for the ascending row.

The time Tlr_max is for the rows with LIT: 0,1,1,2,2,3,......,n/2-

1,n/2-1, n/2 when n is even and 0, 1, 1, 2, 2, 3,......,(n-1)/2-1, (n-

1)/2-1, (n-1)/2, (n-1)/2 when n is odd or for the descending row.

The number of operations in the second operand of the addend

“max” is equal to the number of operations in the first operand:

n(n-1)/2. So, the value of max will be determined by the ratio

of the values of t21 and t22.

Table 4 shows the relationship between operations “move” in

the discussed methods for sorting for n = 4.

The first column contains all rows (permutations) of the

elements of the set {1,2,3,4}.

In the second column the tables of the left inversions (LIT) for

every row are constructed.

In each cell of the third column the moves to the right are

sequentially written and summed for the first, second, third and

fourth elements of the row (in the cell of the first column) for

constructing the ascending row with filling to the right. It can

be seen that the numbers (digits) in the second and third column

are the same.

In each cell of the fourth column the moves to the left are

sequentially written and summed for the first, second, third and

fourth elements of the row (in the cell of the first column) for

constructing the ascending row with filling to the left. It is seen

that the sum of the corresponding digits in the third and fourth

columns is equal to the position number of digits minus one.

TABLE 4. MOVES IN THE THREE METHODS FOR SORTING BY LIT FOR N=4.

Row

(n=4)
LIT

Moves

To the right To the left
Left and

right

1234 0000 0+0+0+0=0 0+1+2+3=6 0+0+0+0=0

1243 0001 0+0+0+1=1 0+1+2+2=5 0+0+0+1=1

1342 0002 0+0+0+2=2 0+1+2+1=4 0+0+0+1=1

2341 0003 0+0+0+3=3 0+1+2+0=3 0+0+0+0=0

1324 0010 0+0+1+0=1 0+1+1+3=5 0+0+1+0=1

1423 0011 0+0+1+1=2 0+1+1+2=4 0+0+1+1=2

1432 0012 0+0+1+2=3 0+1+1+1=3 0+0+1+1=2

2431 0013 0+0+1+3=4 0+1+1+0=2 0+0+1+0=1

2314 0020 0+0+2+0=2 0+1+0+3=4 0+0+0+0=0

2413 0021 0+0+2+1=3 0+1+0+2=3 0+0+0+1=1

3412 0022 0+0+2+2=4 0+1+0+1=2 0+0+0+1=1

3421 0023 0+0+2+3=5 0+1+0+0=1 0+0+0+0=0

2134 0100 0+1+0+0=1 0+0+2+3=5 0+0+0+0=0

2143 0101 0+1+0+1=2 0+0+2+2=4 0+0+0+1=1

3142 0102 0+1+0+2=3 0+0+2+1=3 0+0+0+1=1

3241 0103 0+1+0+3=4 0+0+2+0=2 0+0+0+0=0

3124 0110 0+1+1+0=2 0+0+1+3=4 0+0+1+0=1

4123 0111 0+1+1+1=3 0+0+1+2=3 0+0+1+1=2

4132 0112 0+1+1+2=4 0+0+1+1=2 0+0+1+1=2

4231 0113 0+1+1+3=5 0+0+1+0=1 0+0+1+0=1

3214 0120 0+1+2+0=3 0+0+0+3=3 0+0+0+0=0

4213 0121 0+1+2+1=4 0+0+0+2=2 0+0+0+1=1

4312 0122 0+1+2+2=5 0+0+0+1=1 0+0+0+1=1

4321 0123 0+1+2+3=6 0+0+0+0=0 0+0+0+0=0

In each cell of the fifth column the moves to the left and right

are sequentially written and summed for the first, second, third

and fourth elements of the row (in the cell of the first column)

for constructing the ascending row with filling to the left and

right. It is seen that the value of each digit is equal to the value

of the smaller of the corresponding digits in the third and fourth

columns. The smaller digit determines the direction of the

filling.

The maximal number of moves for sorting with filling to the

left and right is more than two times smaller than the sorting

with filling from left to right.

For example, when n=1000, the maximal number of the moves

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, DOI: 10.17694/bajece.04890

Copyright © BAJECE ISSN: 2147-284X December 2015 Vol.3 No.3 http://www.bajece.com

139

for constructing the ascending row with filling from left to right

is 499500, and the average is 249750. When the filling is to the

left and right the maximal number of the moves is 249500. This

can be seen in table 4. When n = 4, these values are respectively

6, 3 and 2.

In comparison with sorting by LIT with filling from left to right

[7] sorting by LIT with filling to the left and right use twice

more memory and has additional operations: n-1 comparisons

to determine the minimal number of moves; n recordings of the

nearest left (L) or nearest right (R) vacant positions.

V. EXPERIMENTAL RESULTS

The proposed methods for sorting which use LIT are:

 filling to the left and right;

 filling to the left and right and comparisons with the current

minimal and current maximal elements;

 filling to the left and right with avoiding repeated

comparisons.

These methods are implemented in C++. We will name them

LR, LR minimax, and LR repeat, respectively.

The aims of the experimental work is the following:

1. To compare the execution times of the proposed algorithms

with some known algorithms. We use the algorithms: Bubble,

Insertion sort, Selection sort and LtoRA [7].

2. To verify the influence of the proposed improvements (LR

minimax, LR repeat) on the execution time of the investigated

algorithm (LR).

For experiments a computer system is used with processor Intel

Celeron E3300 2,5GHz, RAM 2,96 GB. The elements of the

rows are generated by the functions rand() and srand().

The number of the elements of the rows for these experiments

is from 2000 to 8000. The elements are integer numbers. Each

algorithm sorts 10 times 4 different rows with number of the

elements 2000, 3000, 4000, 5000, 6000, 7000 and 8000. The

execution time is obtained after averaging the corresponding

execution times.

Experiment 1. Sorting by the algorithms: LtoRA, LR, LR

minimax, LR repeat, Bubble, Insertion sort and Selection sort

integer numbers from 0 to 32767 (a low repetition rate for the

elements).

The average times (ms) are shown in Table 5 and Fig.3.

In parentheses is shown the number of operations for sorting the

row with algorithms LR, LR minimax and LR repeat. The

number of operations is counted with a program.

Working time of the program cannot be considered as a reliable

estimation because computers work in a multiprogramming

mode and there is no guarantee that the tested program is not

interrupted, which could increase its execution time. Also, the

execution time is influenced by the memory organization.

Аs a result, the time for sorting of the same rows can be

different. This is why, experimenting with the algorithms LR,

LR repeat, LR minimax, first the number of operations for

sorting the rows is counted and the obtained values are used as

criteria for correct time results. Fig.5 shows result of counting

the operations for sorting the row with 4000 elements with

algorithm LR repeat (low repetition rate for the elements).

TABLE 5. AVERAGE TIMES (MS) FOR SORTING ROWS WITH LOW REPETITION

RATE FOR THE ELEMENTS

Elem.

nmber

Algorithm

2000 3000 4000 5000 6000 7000 8000

LtoRA 19,9 38,6 78 123,5 177,8 236 311,1

LR
15,2

(85274

36)

35,5

(19113

969)

68,8

(34150

391)

104,7

(53386

151)

154,5

(76723

619)

207,5

(10428

6373)

273,4

(13615

8382)

LR mini

max

15,1

(85124

21)

35,5

(19091

956)

67,3

(34118

041)

104,6

(53353

315)

153

(76674

177)

206

(10423

6432)

271,9

(13610

7945)

LR repeat
21,5

(93226

87)

45,8

(20867

827)

81

(36877

231)

120,5

(56958

461)

174,7

(81033

635)

239,3

(10985

6137)

304,9

(14248

2171)

Bubble 46,2 106,1 182,5 285,6 415,1 562,6 742,5

Insert. sort 7,5 9,1 15,5 31,1 43,3 56,3 78

Select. sort 9,1 12,2 25,2 43,1 59,1 78 104,6

Fig.3 Average times for sorting the rows with low repetition rate for the

elements

The experiments show that:

1) algorithm LR is faster than algorithms LtoRA and Bubble

sort but it is slower than algorithms Insertion sort and

Selection sort;

2) algorithm “LR minimax” reduced the number of

operations (the time) compared with the operations (the

time) of the algorithm LR;

3) algorithm “LR repeat” increases the number of operations

(the time) compared with the operations (the time) of

algorithm LR; the number of added operations “compare”

is equal to the not inversed and equal pairs of elements in

the row; if there are no equal elements, no comparisons

are avoided.

Experiment 2. Sorting by the algorithms: LtoRA, LR, Bubble,

Insertion sort and Selection sort for integer numbers with high

repetition rate for the elements – 10 repetitions on average.

The average times (ms) are shown in Table 6 and Fig.4.

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, DOI: 10.17694/bajece.04890

Copyright © BAJECE ISSN: 2147-284X December 2015 Vol.3 No.3 http://www.bajece.com

140

TABLE 6. AVERAGE TIMES (MS) FOR SORTING ROWS WITH HIGH REPETITION OF

THE ELEMENTS

Elem.

no

Algorithm

2000 3000 4000 5000 6000 7000 8000

LtoRA 20 43,3 76,5 122 177,7 239,2 308

LR

15,3

(8521

897)

32,5

(1918

3809)

63,8

(3392

7700)

106,2

(5314

1336)

154,5

(7660

5673)

209,1

(10403

4350)

272

(13638

8051)

LR

minimax

15,3

(8481

391)

32,5

(1907

2369)

63,7

(3379

7053)

106,1

(5293

6231)

153

(7638

5661)

209

(10374

3277)

270,5

(13609

9578)

LR repeat

6

(2969

425)

7,5

(6665

277)

20,2

(1171

2696)

32,5

(1843

2564)

51,4

(2657

8738)

70,4

(3615

8709)

90,2

(4738

2641)

Bubble 44,7 106 181 285,5 415,3 554,8 747

Insertion

sort
4,5 12 18,6 31 43,3 60,9 78

Selection

sort
7,5 13,9 25 37 49,8 79,5 101,6

Fig.4 Average times for sorting the rows with a high repetition rate for the

elements

The experiments show that:

1) algorithm LR is faster than algorithms LtoRA and Bubble

sort but it is slower than algorithms Insertion sort and

Selection sort;

2) algorithm “LR minimax” reduces the number of

operations (the time) compared to the operations (the

time) of the algorithm LR;

3) algorithm “LR repeat” is faster than algorithms LtoRA,

LR minimax, Bubble and Selection sort but it is slower

than Insertion sort; when the number of the repeated

elements is large, the algorithm “LR repeat” is very

effective. The number of operations (the time) compared

to those of algorithm LR is reduced considerably.

The experiments show that the algorithm “LR repeat”

outperforms the algorithm LR when the average number of

repetitions in the row is greater than or equal to 2.

Fig.5. Number of operations for sorting the row with 4000 elements with
algorithm “LR repeat” (a low repetition rate for the elements)

VI. CONCLUSION

This paper proposes the algorithm for sorting by LIT (Left

Inversions Table) with filling to the left and right. The

complexity of the proposed algorithm is evaluated. Its minimal

and maximal complexities are derived. An experimental

comparison of the proposed algorithm LR with algorithm

LtoRA and some known algorithms (Bubble sort, Insertion sort,

Selection sort) is also done. Two modifications of the algorithm

LR are proposed and realized: “LR – comparisons with the

current minimal and maximal values” and “LR with avoiding

repeated comparisons”.

The experiments show that:

a) algorithm LR is faster than algorithms “Bubble sort” and

LtoRA but it is slower than algorithms “Insertion sort” and

“Selection sort”;

b) algorithm “LR repeat” is faster than algorithms LR for

rows with number of repetitions larger than 2;

c) obviously there is an average number of repetition for

which the algorithm “LR repeat” will be faster than

algorithm “Insertion sort”;

d) algorithm “LR minimax” is faster than algorithms LR;

Finally, algorithm “LR minimax” can be used to sort any row,

while using the algorithm “LR repeat” needs a preliminary

estimate of the average number of repetitions in the given row.

The future work will continue with:

1) developing methods for quick estimation of the average

number of repetitions in the row;

2) unification and applying both the improvements;

3) developing methods (algorithms) with smaller number of

the comparisons and moves;

4) development and implementation of good parallel

algorithms for sorting.

REFERENCES

[1] Knuth D., The art of computer programming, V3. Sorting and Searching,
Addison Wesley Publishing Company, 1973.

[2] Stoichev St., Synthesis and analysis of algorithms, BPS, Sofia, 2003 (in

Bulgarian).
[3] Nakov P., P. Dobrikov, Programming=++Algorithms, TopTeam Co, 2003

Наков (in Bulgarian).

[4] Sedgewick R, Algorithms in C, Addison-Wesley, 1990.
[5] Harris S., J. Ross, Beginning Algorithms, 2005.

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, DOI: 10.17694/bajece.04890

Copyright © BAJECE ISSN: 2147-284X December 2015 Vol.3 No.3 http://www.bajece.com

141

[6] Wirth N., Algorithms+data structures=programs, Prentice-Hall, 1976.

[7] N. Vasilev, A. Bosakova-Ardenska, Algorithms for sorting by left
inversions table, International Review on Computers and Software

(IReCoS), vol 7 n2 – Part A, 2012, ISSN 1828-6003, pp 642-650.

BIOGRAPHIES

NAIDEN B. VASILEV is associate professor in

department of “Computer Systems and Technologies”

at Technical University of Plovdiv. He is receives
Ph.D. in 1976. His research interests include: parallel

algorithms, discrete mathematics and music.

ATANASKA D. BOSAKOVA-ARDENSKA was

born in 1980. She received the M.Sc. degree of

Computer Systems and Technologies at Technical
University of Sofia, Plovdiv branch 2004. She receives

Ph.D. in 2009 with thesis “Parallel information

processing in image processing systems”. From 2010
she is assistant in department of Computer Systems and

Technologies in University of Food Technologies.

From 2014 she is associated professor by “Synthesis
and Analysis of Algorithms” in department of

Computer Systems and Technologies in University of Food Technologies in

Plovdiv, Bulgaria. She is member of USB (Union of Scientist in Bulgaria) and
head of Club of Young Scientists in Plovdiv (USB – Plovdiv in Bulgaria). Her

research interests include: parallel algorithms, sorting algorithms, image

processing, MPI (Message Passing Interface), C++ programming.

