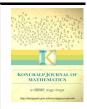


Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X



A Note About the Trace Functions on Mantaci–Reutenauer Algebra

Hasan Arslan^{1*}

¹Erciyes University, Faculty of Science, Department of Mathematics, Kayseri-TURKEY *Corresponding author E-mail: hasanarslan@erciyes.edu.tr

Abstract

In this paper, we obtain the trace functions of Mantaci-Reutenauer algebra $\mathscr{MR}(W_n)$, where (W_n, S_n) is a Coxeter system of type B_n . We also show for every $\lambda \in \mathscr{DP}(n)$ that each characteristic class function e_{λ} of the group W_n is a trace function of Mantaci-Reutenauer algebra, where $\mathscr{DP}(n)$ stands for the set of all double partitions of n. Since the dimension of the trace function space on the Mantaci-Reutenauer algebra is $|\mathscr{DP}(n)|$, it exactly coincides with the algebra $\mathbb{Q}IrrW_n$ generated by the irreducible characters of the group W_n . Although the multiplication of basis elements d_A and $d_{A'}$ is not commutative in Mantaci-Reutenauer algebra, the images of $d_A d_{A'}$ and $d_{A'} d_A$ under e_{λ} are equal to each other.

Keywords: Mantaci-Reutenauer algebra, Orthogonal primitive idempotent, Trace function. 2010 Mathematics Subject Classification: 20F55

1. Introduction

Mantaci-Reutenauer algebra $\mathscr{MR}(W_n)$ introduced by Mantaci and Reutenauer [6], is a subalgebra of the group algebra $\mathbb{Q}W_n$ and is also a generalization of Solomon's descent algebra for Coxeter group of type B_n . Bonnafé and Hohlweg [2] elegantly reconstructed Mantaci-Reutenauer algebra by using the group structure of W_n . Bonnafé [3] determined the ring multiplication rule and studied the representation theory of this algebra, more explicitly. In [1], we found all characteristic class function of the group W_n and gave a formula to calculate the size of each conjugacy class \mathscr{C}_{λ} of W_n , $\lambda \in \mathscr{DP}(n)$. In this article, at first we show for every double partition λ of *n* that every characteristic class function e_{λ} of Coxeter group W_n of type B_n is a trace function on Mantaci-Reutenauer algebra $\mathscr{MR}(W_n)$ and then give an explicit construction of the commutator subspace of Mantaci-Reutenauer algebra $\mathscr{MR}(W_n)$. The following theorem is the main result of this paper:

Theorem 1.1. The space of trace functions on $\mathscr{MR}(W_n)$ is $\mathbb{Q}IrrW_n$, where $\mathbb{Q}IrrW_n$ denotes the algebra generated by all irreducible characters of the group W_n .

The trace functions on Iwahori-Hecke algebra obtained by Geck [4]. Iwahori-Hecke algebra is defined as a deformation of the group algebra of the corresponding Coxeter group W. There are some different properties between Iwahori-Hecke algebra of Coxeter group W_n and Mantaci-Reutenauer algebra. For instance, though all the basis elements of Iwahori-Hecke algebra of Coxeter group W_n are invertible, this is not the case in the Mantaci-Reutenauer algebra.

2. Preliminaries

Let (W_n, S_n) denote a Coxeter system of type B_n and write its generating set as $S_n = \{t, s_1, \dots, s_{n-1}\}$. Any *w* element of W_n acts by the permutation on the set $I_n = \{-n, \dots, -1, 1, \dots, n\}$ such that for every $i \in I_n$, w(-i) = -w(i). The Dynkin diagram for (W_n, S_n) is as follows:

$$B_n$$
: $\overset{t}{\circ} \Leftarrow \overset{s_1}{\circ} - \overset{s_2}{\circ} - \cdots - \overset{s_{n-1}}{\circ}$.

For $J \subset S_n$, if W_J is generated by J, then it is called a *standard parabolic subgroup* of W_n . A *parabolic subgroup* P of W_n is a subgroup conjugate to W_J for some $J \subset S_n$. Put $t_1 := t$ and $t_{i+1} := s_i t_i s_i$ for each i, $1 \le i \le n-1$. Thus all elements t_i conjugate to t_1 . Setting $T_n := \{t_1, t_2, \dots, t_n\}$, then the defining relations between the elements of S_n and T_n are stated as follows:

1. $t_i^2 = 1, s_j^2 = 1$ for all $i, j, 1 \le i \le n, 1 \le j \le n - 1$; 2. $(s_1 t_1)^4 = 1$; 3. $(s_i s_{i+1})^3 = 1$ for all $i, 1 \le i \le n-2$;

4.
$$(s_i t_1)^2 = 1$$
, for all $i, 2 \le i \le n - 1$;

5. $(s_i s_j)^2 = 1$ for all i, j, $|i - j| \ge 2$; 6. $(t_i t_j)^2 = 1$ for all i, j, $1 \le i, j \le n$.

Let $l: W_n \to \mathbb{N}$ is the length function on (W_n, S_n) and let \mathscr{T}_n be the reflection subgroup of W_n generated by the reflection set T_n . It is well-known that \mathscr{T}_n is a normal subgroup of W_n . Now let $S_{-n} = \{s_1, \dots, s_{n-1}\}$. The reflection subgroup of W_n generated by S_{-n} is denoted by W_{-n} and isomorphic to the symmetric group Ξ_n of degree *n*. Thus W_n is a split group extension of \mathscr{T}_n by W_{-n} . In other words, $W_n = W_{-n} \ltimes \mathscr{T}_n$. Therefore, the order of W_n is $2^n . n!$. For further information about Coxeter groups of type B_n , one may apply [5]. Let K be any commutative ring and let H be an associative free K-algebra with finite generators. If a K-linear map $\tau: H \to K$ satisfies the relation

$$\tau(hh') = \tau(h'h)$$

for every $h, h' \in H$, then τ is called a *trace function* on H and the set of all trace functions defined on H is a K-module [4].

For any finite Coxeter group W, Solomon introduced a remarkable subalgebra ΣW of the group algebra $\mathbb{Q}W$, called the *Solomon's descent* algebra [7]. In [2], Bonnafé and Hohlweg reconstructed Mantaci-Reutenauer algebra $\mathcal{MR}(W_n)$ by using the methods which depend more on the group structure of W_n .

Now, we mention the structure of Mantaci-Reutenauer algebra due to [2]:

For a positive integer n, a signed composition of n is an expression of n as a finite sequence $A = (a_1, \dots, a_k)$ whose each part consists of non-zero integers such that the summation of the absolute value of all parts equals n. It is denoted by $\mathscr{SC}(n)$ the set of all signed compositions of *n*. Note here that the size of $\mathscr{SC}(n)$ is 2.3^{n-1} . Now let $\mathscr{DP}(n)$ be the set of double partitions of *n*. A *double partition* $\lambda = (\lambda^+; \lambda^-)$ of *n* consists of a pair of partitions λ^+ and λ^- such that $|\lambda| = |\lambda^+| + |\lambda^-| = n$. If the length of λ^+ (resp. the length of λ^-) is equal to zero, then we write \emptyset instead of λ^+ (resp. λ^-). For a $\lambda = (\lambda^+; \lambda^-)$ double partition of n, $\hat{\lambda}$ denotes the signed composition of n obtained by concatenating λ^+ and $-\lambda^-$, that is, $\hat{\lambda} = \lambda^+ \sqcup -\lambda^-$ is a signed composition obtained by appending the sequence of components of λ^+ to that of $-\lambda^-$. Let S'_n be the set $\{s_1 \cdots s_{n-1}, t_1, t_2, \cdots, t_n\}$.

In [2], Bonnafé and Hohlweg introduced some reflection subgroup of W_n for any signed composition of n as follows: For $A = (a_1, \dots, a_k) \in$ $\mathscr{SC}(n)$, the set S_A is defined as

$$S_A = \{s_p \in S_{-n} : |a_1| + \dots + |a_{i-1}| + 1 \le p \le |a_1| + \dots + |a_i| - 1\}$$
$$\cup \{t_{|a_1| + \dots + |a_{j-1}| + 1} \in T_n \mid a_j > 0\} \subset S'_n.$$

The reflection subgroup W_A of W_n is generated by S_A and (W_A, S_A) is a Coxeter system [2]. For any $A \in \mathscr{SC}(n)$, the set of all distinguished coset representatives of W_A in W_n is defined in the following way:

$$D_A = \{x \in W_n : \forall s \in S_A, \ l(xs) > l(x)\}.$$

For $A, B \in \mathscr{SC}(n)$, the set $D_{AB} = D_A^{-1} \cap D_B$ stands for the collection of elements with minimal length in (W_A, W_B) -double cosets. For $A \in \mathscr{SC}(n)$, set

$$d_A = \sum_{w \in D_A} w \in \mathbb{Q}W_n.$$

Then by [2], Mantaci-Reutenauer algebra is described explicitly as follows:

$$\mathscr{MR}(W_n) = \bigoplus_{A \in \mathscr{SC}(n)} \mathbb{Q}d_A.$$

Moreover, dim_{\mathbb{Q}} $\mathscr{M}\mathscr{R}(W_n) = |2.3^{n-1}|$. Let the map $\Phi_n : \mathscr{M}\mathscr{R}(W_n) \to \mathbb{Q}$ Irr W_n be the unique \mathbb{Q} -linear map such that $\Phi_n(d_A) = \operatorname{Ind}_{W_n}^{W_n} \mathbb{1}_A$ for every $A \in \mathscr{FC}(n)$, where 1_A stands for the trivial character of W_A . This map is a surjective algebra morphism as well. Furthermore, it is well-known from [2] that the radical of $\mathscr{MR}(W_n)$ is $\operatorname{Ker}\Phi_n = \sum_{A \equiv_n A'} \mathbb{Q}(d_A - d_{A'})$, where $A \equiv_n A'$ means that W_A is W_n -conjugate to $W_{A'}$. The multiplication structure in $\mathcal{MR}(W_n)$ is given in the following proposition due to [3]:

Proposition 2.1. ([3, Proposition C]) Let A and B be any two signed composition of n.

- (a) Then, there is a map $f_{AB}: D_{AB} \to \mathscr{SC}(n)$ satisfying the following conditions:
 - For every $x \in D_{AB}$, $f_{AB}(x) \subset B$ and $f_{AB}(x) \equiv_B x^{-1}A \cap B$.
 - $d_A d_B \sum_{x \in D_{AB}} d_{f_{AB}(x)} \in \mathscr{MR}_{\subseteq_{\lambda} A}(W_n) \cap \mathscr{MR}_{\prec B}(W_n) \cap Ker\Phi_n.$

(b) If A parabolic or B semi-positive, then $f_{AB}(d) = d^{-1}A \cap B$ and $d_A d_B = \sum_{d \in D_{AB}} d_{d^{-1}A \cap B}$ for every $d \in D_{AB}$.

In the Proposition 2.1, the inclusion $f_{AB}(x) \subset B$ means that $W_{f_{AB}(x)}$ is a subgroup of W_B . By [3], the symbols \subset_{λ} and \prec are a pre-order and an ordering defined on $\mathscr{SC}(n)$, respectively.

3. Trace functions on Mantaci–Reutenauer algebra

Let $\phi_{\lambda} = \operatorname{Ind}_{W_{\lambda}}^{W_{n}} 1_{\hat{\lambda}}$ for each $\lambda \in \mathscr{DP}(n)$. For a double partition μ of n, let denote by \cos_{μ} a Coxeter element of $W_{\hat{\mu}}$ in terms of generating set $S_{\hat{\mu}}$. Since the matrix $(\phi_{\lambda}(\cos_{\mu}))_{\lambda,\mu}$ is upper diagonal and has positive diagonal entries, then $(\phi_{\lambda}(\cos_{\mu}))_{\lambda,\mu}$ is invertible in \mathbb{Q} . Thus the inverse of $(\phi_{\lambda}(\cos \mu))_{\lambda,\mu}$ will be denoted by $(u_{\lambda\mu})_{\lambda,\mu}$. We have obtained in [1] that for each $\lambda \in \mathscr{DP}(n)$, orthogonal primitive idempotent of \mathbb{Q} Irr W_n

$$e_{\lambda} = \sum_{\mu \in \mathscr{DP}(n)} u_{\lambda\mu} \phi_{\mu}$$

is also the characteristic class function on W_n corresponding to the conjugate class \mathscr{C}_{λ} . More explicitly, we have $e_{\lambda}(\cos_{\mu}) = \delta_{\lambda,\mu}$ for any $\lambda, \mu \in \mathscr{DP}(n)$. For every $\lambda \in \mathscr{DP}(n)$ and $A \in \mathscr{SC}(n)$, if e_{λ} is extended by linearity to group algebra $\mathbb{Q}W_n$, then we have

$$e_{\lambda}(d_A) = \sum_{x \in D_A} e_{\lambda}(x) = |\mathscr{C}_{\lambda} \cap D_A|$$

Lemma 3.1. For every $\lambda \in \mathscr{DP}(n)$, the orthogonal primitive idempotent e_{λ} is not an irreducible character of $\mathbb{Q}IrrW_n$.

Proof. We first note that for every $\lambda \in \mathscr{DP}(n)$, the cardinalities of \mathscr{C}_{λ} and W_n are different. By definition of the inner product of characters, we have

$$egin{aligned} \langle e_{\lambda}, e_{\gamma}
angle &= rac{1}{|W_n|} \sum_{w \in W_n} e_{\lambda}(w) e_{\gamma}(w^{-1}) \ &= rac{|\mathscr{C}_{\lambda}|}{|W_n|} \delta_{\lambda, \gamma}
eq 1. \end{aligned}$$

Thus, the proof is completed.

Morever, in [1], we obtained that for any $\lambda \in \mathscr{DP}(n)$ the size of the conjugacy class \mathscr{C}_{λ} is equal to $|W_n| \cdot \sum_{\mu \in \mathscr{DP}(n)} u_{\lambda,\mu}$. For any $\lambda \in \mathscr{DP}(n)$, by [2] the algebra homomorphism $\pi_{\lambda} : \mathscr{MR}(W_n) \to \mathbb{Q}, x \mapsto \Phi_n(x)(\cos_{\lambda})$ is an irreducible character of $\mathscr{MR}(W_n)$, where \cos_{λ} denotes a Coxeter element of $W_{\hat{\lambda}}$.

If *H* is a *K*-algebra, the commutator of any two elements h, h' of *H* is defined as [h, h'] = hh' - h'h and commutator subspace [H, H] of *H* is a *K*-subspace generated by all commutators [4]. The commutator subspace [H, H] lies in the kernel of every trace function on *H* and conversely, if $\tau : H \to K$ is any *K*-linear map which is identically zero on the subspace [H, H], then τ is a trace function on *H* [4]. Thus, from [4], there is one to one corresponding between the space of all trace functions on *H* and Hom_{*K*}(*H*/[*H*,*H*],*K*) dual space of quotient module H/[H, H]. Therefore, we can now give the following proposition without proof.

Proposition 3.1. As the set of all irreducible characters of $\mathscr{MR}(W_n)$ is $\{\pi_{\lambda} : \lambda \in \mathscr{DP}(n)\}$, the dimension of the space of trace functions on $\mathscr{MR}(W_n)$

$$\dim_{\mathbb{O}}\mathcal{MR}(W_n)/[\mathcal{MR}(W_n),\mathcal{MR}(W_n)] = |\mathcal{DP}(n)|.$$

Since all elements of Ker(Φ_n) are nilpotent and e_{λ} is a characteristic class function of W_n , then e_{λ} vanishes on the Ker(Φ_n).

Lemma 3.2. For any two signed compositions A and A' of n, we have $e_{\lambda}(d_A d_{A'}) = e_{\lambda}(d_{A'} d_A)$.

Proof. Taking into consideration Proposition 2.1, since the expression $d_A d_{A'} - \sum_{x \in D_{AA'}} d_{f_{AA'}(x)}$ belongs to Ker (Φ_n) and $f_{AA'}(x) \equiv_{A'} x^{-1} A \cap A'$, then we get

$$e_{\lambda}(d_A d_{A'}) = \sum_{x \in D_{AA'}} e_{\lambda}(d_{f_{AA'}(x)})$$

Because of $f_{AA'}(x) \equiv_n f_{A'A}(x^{-1})$ for every $x \in D_{AA'}$, we obtain that $e_{\lambda}(d_{f_{AA'}(x)}) = e_{\lambda}(d_{f_{A'A}(x^{-1})})$. Hence it is immediately seen the equality $e_{\lambda}(d_A d_{A'}) = e_{\lambda}(d_{A'} d_A)$.

Lemma 3.3. The commutator subspace of Mantaci-Reutenauer algebra $\mathcal{MR}(W_n)$ is $[\mathcal{MR}(W_n), \mathcal{MR}(W_n)] = Ker\Phi_n$.

Proof. Since every $x \in \mathcal{MR}(W_n)$ can be uniquely written as an expression of basis elements $d_A, A \in \mathcal{SC}(n)$, for every $x, y \in \mathcal{MR}(W_n)$ we immediately obtain from the proof of Lemma 3.2 that

$$xy - yx \in \text{Ker}\Phi_n$$
.

Therefore, we get the inclusion $[\mathcal{MR}(W_n), \mathcal{MR}(W_n)] \subset \text{Ker}\Phi_n$. If we take into account the fact that $\mathcal{MR}(W_n)/\text{Ker}\Phi_n \cong \mathbb{Q}\text{Irr}W_n$ (since Φ_n is a surjective algebra morphism) and Proposition 3.1, then we obtain

$$[\mathscr{MR}(W_n), \mathscr{MR}(W_n)] = \operatorname{Ker} \Phi_n.$$

It is clear that the quotient space $\mathscr{MR}(W_n)/[\mathscr{MR}(W_n), \mathscr{MR}(W_n)] = \mathscr{MR}(W_n)/\text{Ker}\Phi_n$ is also a free \mathbb{Q} -module.

Theorem 3.1. (*Main Theorem*) The space of trace functions on $\mathcal{MR}(W_n)$ is $\mathbb{Q}IrrW_n$.

Proof. For each $\lambda \in \mathscr{DP}(n)$, the characteristic class function e_{λ} is also a trace function on $\mathscr{MR}(W_n)$ from Lemma 3.2. Moreover, by Proposition 3.1 the space of trace functions on $\mathscr{MR}(W_n)$ and $\mathbb{Q}\operatorname{Irr} W_n$ have the same dimension, that is $|\mathscr{DP}(n)|$. So we have obtained that the trace function space of $\mathscr{MR}(W_n)$ exactly coincides with the algebra $\mathbb{Q}\operatorname{Irr} W_n$.

As Φ_n is an algebra morphism, the π_{λ} corresponding to $\lambda \in \mathscr{DP}(n)$ is another trace function on $\mathscr{MR}(W_n)$.

Example 3.1. We consider the Coxeter group W_2 . For all $\lambda, \mu \in \mathscr{DP}(2) = \{(2; \emptyset), (1, 1; \emptyset), (1; 1), (\emptyset; 2), (\emptyset; 1, 1)\}$, the values $\varphi_{\lambda}(\cos \mu)$ are given in the following way:

$$(\varphi_{\lambda}(\cos\mu))_{\lambda,\mu} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 & 2 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & 8 \end{pmatrix}, \ (u_{\lambda\mu})_{\lambda,\mu} = \begin{pmatrix} 1 & \frac{-1}{2} & 0 & \frac{-1}{2} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{-1}{2} & 0 & \frac{1}{8} \\ 0 & 0 & \frac{1}{2} & 0 & \frac{-1}{4} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{-1}{4} \\ 0 & 0 & 0 & 0 & \frac{1}{8} \end{pmatrix}$$

Thus, a basis of the space of trace functions on $\mathcal{MR}(W_n)$ is stated as follows:

$$\begin{split} e_{(2;\emptyset)} &= \phi_{(2;\emptyset)} - \frac{1}{2}\phi_{(1,1;\emptyset)} - \frac{1}{2}\phi_{(\emptyset;2)} + \frac{1}{4}\phi_{(\emptyset;1,1)} \\ e_{(1,1;\emptyset)} &= \frac{1}{2}\phi_{(1,1;\emptyset)} - \frac{1}{2}\phi_{(1;1)} + \frac{1}{8}\phi_{(\emptyset;1,1)} \\ e_{(1;1)} &= \frac{1}{2}\phi_{(1;1)} - \frac{1}{4}\phi_{(\emptyset;1,1)} \\ e_{(\emptyset;2)} &= \frac{1}{2}\phi_{(\emptyset;2)} - \frac{1}{4}\phi_{(\emptyset;1,1)} \\ e_{(\emptyset;1,1)} &= \frac{1}{8}\phi_{(\emptyset;1,1)}. \end{split}$$

References

- Arslan, H., Descent Algebras of B_n-type Coxeter Groups, PhD Thesis, Erciyes University, 2015.
 C. Bonnafé and C. Hohlweg, Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups, Ann. Inst. Fourier
- [2] C. Bonnate and C. Honweg, Generalized descent algebra and construction of infeduciole characters of hyperoclahedral groups, Ahn. Inst. Fourier (Grenoble) Volume:56 No.1 (2006), 131-181.
 [3] C. Bonnaté, Representation theory of Mantaci-Reutenauer algebras, Algebr. Represent. Theory Volume: 11, No.4 (2008), 307-346.
 [4] M. Geck, Trace functions on Iwahori-Hecke algebras, Knot theory (Warsaw, 1995), Banach Center Publ., Polish Acad. Sci., Warsaw Volume:42 (1998), 87-109.
 [5] Geck, M. and Pfeiffer, G., *Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras*, London Mathematical Society Monographs, New Series, vel. 21. The Guerarden Boese, Overal Linux Printer Boese, New York, 2000.
- vol. 21, The Clarendon Press, Oxford University Press, New York, 2000.
 [6] R. Mantaci and C. Reutenauer A generalization of Solomon's algebra for hyperoctahedral groups and other wreath products, Comm. Algebra Volume:23, No.1 (1995), 27-56.
 [7] L. Shendard and C. Berleman and the press of a Constant of Algebra Volume:41. No.2 (1077), 255-264.
- [7] L. Solomon, A Mackey formula in the group ring of a Coxeter group, Journal of Algebra Volume:41, No.2 (1976), 255-264.