Musical Isomorphisms on the Semi-Tensor Bundles

Semra Yurttançıkmaz ${ }^{1 *}$ and Furkan Yıldırım ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sci., Atatürk University, 25240, Erzurum, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Sci., Atatürk University, Narman Vocational Training School, 25530, Erzurum, Turkey
*Corresponding author E-mail: semrakaya@atauni.edu.tr

Abstract

We transfer vertical lifts and complete lifts of some tensor fields from the semi-tangent bundle $t M$ to the semi-cotangent bundle $t^{*} M$ using a musical isomorphism between these bundles. In this article, we also analyze complete lift of vector and affinor (tensor of type (1,1)) fields for semi-tangent (pull-back) bundle $t M$. Finally, we study compatibility of transferring lifts with complete lifts in the semi-cotangent bundle $t^{*} M$.

Keywords: Semi-tensor bundle, complete lift, musical isomorphism, vector field, pull-back bundle.
2010 Mathematics Subject Classification: 53A45, 55R10, 57R25.

1. Introduction

Let $\left(B_{m}, g\right)$ be a smooth pseudo-Riemannian manifold of dimension m. We denote by $t\left(B_{m}\right)$ and $t^{*}\left(B_{m}\right)$ the semi-tangent [9], [10], [1] and semi-cotangent bundles [3], [4] over B_{m} with local coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{a}, x^{\alpha}, y^{\alpha}\right)$ and ($\left.x^{a}, x^{\alpha}, \widetilde{x}^{\bar{\alpha}}\right)=\left(x^{a}, x^{\alpha}, p_{\alpha}\right), a, b, \ldots=$ $1, \ldots, n-m ; \alpha, \beta, \ldots=n-m+1, \ldots, n ; \bar{\alpha}, \bar{\beta}, \ldots=n+1, \ldots, n+m$, respectively, where $y^{x}=y^{\alpha} \frac{\partial}{\partial x^{i}} \in t_{x}\left(B_{m}\right)$ and $p_{x}=p_{i} d x^{i} \in t_{x}^{*}\left(B_{m}\right), \forall x \in B_{m}$. We know that the mappings $g^{b}: t\left(B_{m}\right) \rightarrow t^{*}\left(B_{m}\right)$ and $g^{\#}: t^{*}\left(B_{m}\right) \rightarrow t\left(B_{m}\right)$ between the semi-tangent and semi-cotangent bundles determine the musical (natural) isomorphisms of any pseudo-Riemannian metric g.
The musical isomorphisms g^{b} and $g^{\#}$ have respectively components

$$
\begin{aligned}
g^{b}: x^{I}=\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{a}, x^{\alpha}, y^{\alpha}\right) \rightarrow \widetilde{x}^{J} & =\left(x^{b}, x^{\beta}, \widetilde{x}^{\bar{\beta}}\right) \\
& =\left(\delta_{a}^{b} x^{a}, \delta_{\alpha}^{\beta} x^{\alpha}, p_{\beta}=g_{\beta \alpha} y^{\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g^{\#}: \widetilde{x}^{J}=\left(x^{b}, x^{\beta}, \widetilde{x}^{\bar{\beta}}\right)=\left(x^{b}, x^{\beta}, p_{\beta}\right) \rightarrow x^{I} & =\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \\
& =\left(\delta_{b}^{a} x^{b}, \delta_{\beta}^{\alpha} x^{\beta}, y^{\alpha}=g^{\alpha \beta} p_{\beta}\right)
\end{aligned}
$$

with respect to the local coordinates, where δ is the Kronecker delta. The Jacobian of g^{b} and $g^{\#}$ are given by

$$
\left(g_{*}^{b}\right)=\left(\bar{A}_{I}^{J}\right)=\left(\frac{\partial \widetilde{x}^{J}}{\partial x^{I}}\right)=\left(\begin{array}{ccc}
\delta_{a}^{b} & 0 & 0 \tag{1.1}\\
0 & \delta_{\alpha}^{\beta} & 0 \\
0 & y^{\varepsilon} \partial_{\alpha} g_{\beta \varepsilon} & g_{\beta \alpha}
\end{array}\right)
$$

and
$\left(g_{*}^{\#}\right)=\left(A_{J}^{I}\right)=\left(\frac{\partial x^{I}}{\partial \widetilde{x}^{I}}\right)=\left(\begin{array}{ccc}\delta_{b}^{a} & 0 & 0 \\ 0 & \delta_{\beta}^{\alpha} & 0 \\ 0 & p_{\varepsilon} \partial_{\beta} g^{\alpha \varepsilon} & g^{\alpha \beta}\end{array}\right)$
respectively. Where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta})$.
We denote by $\mathfrak{I}_{q}^{p}\left(t\left(\boldsymbol{B}_{m}\right)\right)$ and $\mathfrak{I}_{q}^{p}\left(t^{*}\left(\boldsymbol{B}_{m}\right)\right)$ the modules over $F\left(t\left(\boldsymbol{B}_{m}\right)\right)$ and $F\left(t^{*}\left(\boldsymbol{B}_{m}\right)\right)$ of all tensor fields of type (p, q) on $t\left(\boldsymbol{B}_{m}\right)$ and $t^{*}\left(\boldsymbol{B}_{m}\right)$, respectively, where $F\left(t\left(B_{m}\right)\right)$ and $F\left(t^{*}\left(B_{m}\right)\right)$ denote the rings of real-valued C^{∞}-functions on $t\left(B_{m}\right)$ and $t^{*}\left(B_{m}\right)$, respectively. On the
other hand, if $x^{i^{\prime}}=\left(x^{a^{\prime}}, x^{\alpha^{\prime}}, x^{\bar{\alpha}^{\prime}}\right)$ is another system of local adapted coordinates in the semi-tangent bundle $t\left(B_{m}\right)$, then we have (see, for details [1])
$\left\{\begin{array}{l}x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right), \\ x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right), \\ x^{\overline{\alpha^{\prime}}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}} y^{\beta} .\end{array}\right.$
The Jacobian of (1.3) has components [1]
$\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} & 0 \\ 0 & A_{\beta}^{\alpha^{\prime}} & 0 \\ 0 & A_{\beta \varepsilon}^{\alpha^{\prime}} y^{\varepsilon} & A_{\beta}^{\alpha^{\prime}}\end{array}\right)$,
where
$A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}, A_{\beta \varepsilon}^{\alpha^{\prime}}=\frac{\partial^{2} x^{\alpha^{\prime}}}{\partial x^{\beta} \partial x^{\varepsilon}}$.
Let ${ }^{c c} \widetilde{X}_{t} \in \mathfrak{I}_{0}^{1}\left(t\left(B_{m}\right)\right)$ and ${ }^{c c} \widetilde{F}_{t} \in \mathfrak{I}_{1}^{1}\left(t\left(B_{m}\right)\right)$ be complete lifts of tensor fields $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ and $\widetilde{F} \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$ to the semi-tangent bundle $t\left(B_{m}\right)$, where M_{n} denotes the fiber bundle [9], [11], [1] over a manifold B_{m}. In this paper we transfer via the differential (g_{*}^{b}) the complete lifts (${ }^{c c} \widetilde{X}_{t} \in \mathfrak{I}_{0}^{1}\left(t\left(B_{m}\right)\right),{ }^{c c} \widetilde{F}_{t} \in \mathfrak{I}_{1}^{1}\left(t\left(B_{m}\right)\right)$) and some tensor fields that the γ-operator is applied from the semi-tangent bundle $t\left(B_{m}\right)$ to semi-cotangent bundle $t^{*}\left(B_{m}\right)$. On the other hand, we know that the semi-tangent $t\left(B_{m}\right)$ and semi-cotangent bundles $t^{*}\left(B_{m}\right)$ are a pull-back (induced) bundle of $T\left(B_{m}\right)$ and $T^{*}\left(B_{m}\right)$, respectively [2], [5], [7], [4]. We note that musical isomorphism and its applications were studied in [8]. The main purpose of this paper is to study musical isomorphism between semi-tangent bundles and semi-cotangent bundles. Where $T\left(B_{m}\right)=\bigcup_{x \in B_{m}} T_{x}\left(B_{m}\right)$ and $T^{*}\left(B_{m}\right)=\bigcup_{x \in B_{m}} T_{x}^{*}\left(B_{m}\right)$ respectively denote the tangent and cotangent bundles over B_{m} [6].

2. Transfer of vertical lifts of vector fields

Let $X \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. On putting
${ }^{v v} X_{t}=\left({ }^{v v} X^{\alpha}\right)_{t}=\left(\begin{array}{l}0 \\ 0 \\ X^{\alpha}\end{array}\right)$,
from (1.4), we easily see that $\left({ }^{v v} X_{t}\right)^{\prime}=\bar{A}\left({ }^{v v} X_{t}\right)$. The vector field ${ }^{v v} X$ is called the vertical lift of X to the semi-tangent bundle $t\left(B_{m}\right)$. Then, using (1.1) and (2.1)

$$
\begin{aligned}
g_{*}^{b}{ }^{v v} X_{t} & =\left(\begin{array}{ccc}
\delta_{a}^{b} & 0 & 0 \\
0 & \delta_{\alpha}^{\beta} & 0 \\
0 & y^{\varepsilon} \frac{\partial g_{\beta \varepsilon}}{\partial x^{\alpha}} & g_{\beta \alpha}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
X^{\alpha}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
g_{\beta \alpha} X^{\alpha}
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
p_{\alpha}
\end{array}\right)=\left({ }^{v v} p_{\alpha}\right)_{t^{*}},
\end{aligned}
$$

where $\left({ }^{v v} p_{\alpha}\right)_{t^{*}}$ is a Liouville covector field [4] on the semi-cotangent bundle $t^{*}\left(B_{m}\right)$.

3. Transfer of complete lifts of vector fields

Let $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ be a projectable vector field [11] with projection $X=X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$ i.e. $\widetilde{X}=\widetilde{X}^{a}\left(x^{a}, x^{\alpha}\right) \partial_{a}+X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$. Then the complete lift ${ }^{c c} \widetilde{X}_{t}$ of \widetilde{X} to the semi-tangent bundle $t\left(B_{m}\right)$ is given by [1]
${ }^{c c} \widetilde{X}_{t}=\left(\begin{array}{l}\widetilde{X}^{a} \\ X^{\alpha} \\ y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}\end{array}\right)$
with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.
Using (1.1) and (3.1), we have

$$
\begin{aligned}
g_{*}^{b c c} \widetilde{X}_{t} & =\left(\begin{array}{ccc}
\delta_{a}^{b} & 0 & 0 \\
0 & \delta_{\alpha}^{\beta} & 0 \\
0 & y^{\varepsilon} \frac{\partial g_{\beta \varepsilon}}{\partial x^{\alpha}} & g_{\beta \alpha}
\end{array}\right)\left(\begin{array}{l}
\widetilde{X}^{a} \\
X^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right) \\
& =\left(\begin{array}{l}
\widetilde{X}^{b} \\
X^{\beta} \\
X^{\alpha} y^{\varepsilon} \partial_{\alpha} g_{\beta \varepsilon}+g_{\beta \alpha} y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right) \\
& =\left(\begin{array}{l}
\widetilde{X}^{b} \\
X^{\beta} \\
y^{\varepsilon}\left(\left(L_{X} g\right)_{\varepsilon \beta}-\left(\partial_{\beta} X^{\alpha}\right) g_{\alpha \varepsilon}-\left(\partial_{\varepsilon} X^{\alpha}\right) g_{\beta \alpha}\right)+g_{\alpha \beta} y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right)
\end{aligned}
$$

$=\left(\begin{array}{l}\widetilde{X}^{b} \\ X^{\beta} \\ y^{\varepsilon}\left(L_{X} g\right)_{\varepsilon \beta}-p_{\alpha}\left(\partial_{\beta} X^{\alpha}\right)\end{array}\right)$,
where L_{X} is the Lie derivation of g with respect to X :
$\left(L_{X} g\right)_{\varepsilon \beta}=X^{\alpha} \partial_{\alpha} g_{\varepsilon \beta}+\left(\partial_{\varepsilon} X^{\alpha}\right) g_{\alpha \beta}+\left(\partial_{\beta} X^{\alpha}\right) g_{\varepsilon \alpha}$.
In a manifold $\left(B_{m}, g\right)$, a vector field X is called a Killing vector field if $L_{X} g=0$. It is well known that the complete lift ${ }^{c c} \widetilde{X^{*}}$ of \widetilde{X} to the semi-cotangent bundle $t^{*}\left(B_{m}\right)$ is given by [4]
${ }^{c c} \widetilde{X_{t^{*}}}=\left(\begin{array}{l}\widetilde{X}^{a} \\ X^{\alpha} \\ -p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right)\end{array}\right)$
with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.
We have from (3.2)
$g_{*}^{b c} \widetilde{X}_{t}={ }^{c c} \widetilde{X_{t^{*}}}+\gamma\left(L_{X} g\right)$,
where $\gamma\left(L_{X} g\right)$ is defined by
$\gamma\left(L_{X} g\right)=\left(\begin{array}{l}0 \\ 0 \\ y^{\varepsilon}\left(L_{X} g\right)_{\varepsilon \beta}\end{array}\right)$.
Thus, we have:

Theorem 1. Let $\left(B_{m}, g\right)$ be a pseudo-Riemannian manifold, and let ${ }^{c c} \widetilde{X}_{t}$ and ${ }^{c c} \widetilde{X_{t} *}$ be complete lifts of a vector field $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ to the semi-tangent and semi-cotangent bundles, respectively. Then the differential (pushforward) of ${ }^{c c} \widetilde{X}_{t}$ by g^{b} coincides with ${ }^{c c} \widetilde{X_{t}}{ }^{*}$, i.e. $g_{*}^{b c c} \widetilde{X}_{t}={ }^{c c} \widetilde{X}_{t^{*}}$ if and only if \widetilde{X} is a Killing vector field.

Theorem 2. Let $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$. For the Lie product, we have
$\left[{ }^{c c} \widetilde{X}_{t}{ }^{c c} \widetilde{Y}_{t}\right]={ }^{c c}[\widetilde{X, Y}]_{t}$
in the semi-tangent bundle $t\left(B_{m}\right)$.
Proof. If $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ and $\left(\begin{array}{c}{\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]^{b}} \\ {\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]^{\beta}} \\ {\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]^{\beta}}\end{array}\right)$ are components of $\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\beta}\right)$ on $t\left(M_{n}\right)$, then we have

$$
\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]^{J}=\left({ }^{c c} \widetilde{X}_{t}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}_{t}\right)^{J}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}_{t}\right)^{J}
$$

Firstly, if $J=b$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X}_{t}{ }^{c c} \widetilde{Y}_{t}\right]^{b}=} & \left({ }^{c c} \widetilde{X}_{t}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}_{t}\right)^{b}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}_{t}\right)^{b} \\
= & \left({ }^{c c} \widetilde{X}_{t}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{Y}_{t}\right)^{b}+\left({ }^{c c} \widetilde{X}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}_{t}\right)^{b}+\left({ }^{c c} \widetilde{X}_{t}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}_{t}\right)^{b} \\
& -\left({ }^{c c} \widetilde{Y}_{t}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}_{t}\right)^{b}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}_{t}\right)^{b}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}_{t}\right)^{b} \\
= & \left({ }^{c c} \widetilde{X}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}_{t}\right)^{b}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}_{t}\right)^{b} \\
= & X^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}_{t}\right)^{b}-Y^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}_{t}\right)^{b} \\
= & X^{\alpha} \partial_{\alpha} \widetilde{Y}^{b}-Y^{\alpha} \partial_{\alpha} \widetilde{X}^{b} \\
= & {[\widetilde{X, Y}]^{b} }
\end{aligned}
$$

by virtue of (3.1). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]^{\beta}=} & \left({ }^{c c} \widetilde{X}_{t}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}_{t}\right)^{\beta}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}_{t}\right)^{\beta} \\
= & \left({ }^{c c} \widetilde{X}_{t}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{Y}_{t}\right)^{\beta}+\left({ }^{c c} \widetilde{X}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}_{t}\right)^{\beta}+\left({ }^{c c} \widetilde{X}_{t}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}_{t}\right)^{\beta} \\
& -\left({ }^{c c} \widetilde{Y}_{t}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}_{t}\right)^{\beta}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}_{t}\right)^{\beta}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}_{t}\right)^{\beta} \\
= & \left({ }^{c c} \widetilde{X}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}_{t}\right)^{\beta}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}_{t}\right)^{\beta} \\
= & X^{\alpha} \partial_{\alpha} Y^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\beta} \\
= & {[X, Y]^{\beta} }
\end{aligned}
$$

by virtue of (3.1). Thirdly, if $J=\bar{\beta}$, then we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X}_{t}{ }^{c c} \widetilde{Y}_{t}\right]^{\bar{\beta}}=} & \left({ }^{c c} \widetilde{X}_{t}\right)^{I} \partial_{I}\left({ }^{(c c} \widetilde{Y}_{t}\right)^{\bar{\beta}}-\left({ }^{c} \widetilde{Y}_{t}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}_{t}\right)^{\bar{\beta}} \\
= & \left.\left({ }^{c c} \widetilde{X}_{t}\right)^{a} \partial_{a}{ }^{c c} \widetilde{Y}_{t}\right)^{\bar{\beta}}+\left({ }^{\left.c{ }^{c} \widetilde{X}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}_{t}\right)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}_{t}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}_{t}\right)^{\bar{\beta}}}\right. \\
& -\left({ }^{c c} \widetilde{Y}_{t}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}_{t}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\alpha} \partial_{\alpha}\left({ }^{c{ }_{X}} \widetilde{X}_{t}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}_{t}\right)^{\alpha} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}_{t}\right)^{\bar{\beta}} \\
= & X^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \partial_{\varepsilon} Y^{\beta}\right)+y^{\varepsilon} \partial_{\varepsilon} X^{\alpha} \partial_{\alpha} y^{\sigma} \partial_{\sigma} Y^{\beta} \\
& -Y^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \partial_{\varepsilon} X^{\beta}\right)-y^{\varepsilon} \partial_{\varepsilon} Y^{\alpha} \partial_{\bar{\alpha}} y^{\sigma} \partial_{\sigma} X^{\beta} \\
= & y^{\varepsilon} X^{\alpha} \partial_{\alpha} \partial_{\varepsilon} Y^{\beta}+y^{\varepsilon}\left(\partial_{\varepsilon} X^{\sigma}\right)\left(\partial_{\sigma} Y^{\beta}\right) \\
& -y^{\varepsilon} Y^{\alpha} \partial_{\alpha} \partial_{\varepsilon} X^{\beta}-y^{\varepsilon}\left(\partial_{\varepsilon} Y^{\sigma}\right)\left(\partial_{\sigma} X^{\beta}\right) \\
= & y^{\varepsilon} \partial_{\varepsilon}[X, Y]^{\beta}
\end{aligned}
$$

by virtue of (3.1). On the other hand, we know that ${ }^{c c}[\widetilde{X, Y}]$ have components
${ }^{c c}[\widetilde{X, Y}]_{t}=\left(\begin{array}{l}{[\widetilde{X, Y}]^{b}} \\ {[X, Y]^{\beta}} \\ y^{\varepsilon} \partial_{\varepsilon}[X, Y]^{\beta}\end{array}\right)$
with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(M_{n}\right)$.
Thus, we have $\left[{ }^{c c} \widetilde{X}_{t}{ }^{c c} \widetilde{Y}_{t}\right]={ }^{c c}[\widetilde{X, Y}]_{t}$ in $t\left(B_{m}\right)$.
Let \widetilde{X} and \widetilde{Y} be a Killing vector fields on M_{n}. Then we have
$L_{[\widetilde{X, Y}]_{t}} g=\left[L_{\widetilde{X}}, L_{\widetilde{Y}}\right] g=L_{\widetilde{X}^{\circ}} \circ L_{\widetilde{Y}} g-L_{\widetilde{Y}} \circ L_{\widetilde{X}} g=0$,
i.e. $[\widetilde{X, Y}]_{t}$ is a Killing vector field. Since ${ }^{c c}[\widetilde{X, Y}]_{t}=\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]$ and ${ }^{c c}[\widetilde{X, Y}]_{t^{*}}=\left[{ }^{c c} \widetilde{X}_{t^{*}}{ }^{c c} \widetilde{Y}_{t^{*}}\right]$ (see [4]), from Theorem 1. and Theorem 2. we have

Theorem 3. If \widetilde{X} and \widetilde{Y} be a Killing vector fields on M_{n}, then
$g_{*}^{b}\left[{ }^{c c} \widetilde{X}_{t},{ }^{c c} \widetilde{Y}_{t}\right]=\left[{ }^{c c} \widetilde{X}_{t^{*}},{ }^{c c} \widetilde{Y}_{t^{*}}\right]$,
where g_{*}^{b} is a differential (pushforward) of musical isomorphism g^{b}.

4. Transfer of $(\gamma F)_{t}$ and $(\gamma T)_{t}$

For any $F \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$, if we take account of (1.4), we can prove that $(\gamma F)_{t}^{\prime}=\bar{A}(\gamma F)_{t}$ where $(\gamma F)_{t}$ is a vector field on the semi-tangent bundle $t\left(B_{m}\right)$ defined by
$(\gamma F)_{t}=\left(\gamma F^{I}\right)_{t}=\left(\begin{array}{l}0 \\ 0 \\ y^{\varepsilon} F_{\varepsilon}^{\alpha}\end{array}\right)$
with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$. On the other hand, vector field $(\gamma F)_{t^{*}}$ on the semi-cotangent bundle $t^{*}\left(B_{m}\right)$ is defined by [4]:
$(\gamma F)_{t^{*}}=\left(\gamma F^{I}\right)_{t^{*}}=\left(\begin{array}{l}0 \\ 0 \\ p_{\alpha} F_{\varepsilon}^{\alpha}\end{array}\right)$.
Let $T \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$. On putting
$(\gamma T)_{t}=\left(\gamma T_{J}^{I}\right)_{t}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & y^{\varepsilon} T_{\varepsilon}^{\alpha}{ }_{\beta} & 0\end{array}\right)$,
from (1.4), we easily see that $\left(\gamma T_{J^{\prime}}^{I^{\prime}}\right)_{t}=A_{I}^{I^{\prime}} A_{J^{\prime}}^{J}\left(\gamma T_{J}^{I}\right)_{t}$, where $(\bar{A})^{-1}=\left(A_{J^{\prime}}^{J}\right)$ is the inverse matrix of \bar{A}.
Theorem 4. If $F \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$ and $T \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$, then
(i) $g_{*}^{b}(\gamma F)_{t}=(\gamma F)_{t^{*}}$,
(ii) $g_{*}^{b}(\gamma T)_{t}=(\gamma T)_{t^{*}}$.

Proof. (i) From (1.1) and (4.1), we have:

$$
\begin{aligned}
g_{*}^{b}(\gamma F)_{t} & =\left(\begin{array}{ccc}
\delta_{a}^{b} & 0 & 0 \\
0 & \delta_{\alpha}^{\beta} & 0 \\
0 & y^{\varepsilon} \frac{\partial g_{\beta \varepsilon}}{\partial x^{\alpha}} & g_{\beta \alpha}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
y^{\varepsilon} F_{\varepsilon}^{\alpha}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
g_{\beta \alpha} y^{\varepsilon} F_{\varepsilon}^{\alpha}
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
p_{\alpha} F_{\varepsilon}^{\alpha}
\end{array}\right)=(\gamma F)_{t^{*}} .
\end{aligned}
$$

It is well known that $(\gamma F)_{t^{*}}$ have components [4]:
$(\gamma F)_{t^{*}}=\left(\gamma F^{I}\right)_{t^{*}}=\left(\begin{array}{l}0 \\ 0 \\ p_{\alpha} F_{\varepsilon}^{\alpha}\end{array}\right)$
with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on the semi-cotangent bundle $t^{*}\left(B_{m}\right)$. Thus, we have (i) of Theorem 4.
(ii) For simplicity we take $g_{*}^{b}(\gamma T)_{t}=\left(\gamma T_{J}^{I}\right)_{t^{*}}$. In fact,

$$
\begin{aligned}
\left(\gamma T_{\beta}^{\bar{\alpha}}\right)_{t^{*}} & =g_{\alpha \sigma} \delta_{\beta}^{\theta} y^{\varepsilon} T_{\varepsilon}^{\sigma}=g_{\alpha \sigma} y^{\varepsilon} T_{\varepsilon}^{\sigma}=g_{\alpha \sigma} \delta_{\alpha}^{\varepsilon} \delta_{\varepsilon}^{\alpha} y^{\varepsilon} T_{\varepsilon}^{\sigma}=g_{\alpha \sigma} \delta_{\alpha}^{\varepsilon} \delta_{\varepsilon}^{\alpha} y^{\varepsilon} T_{\varepsilon}^{\sigma}{ }^{\alpha} \\
& =g_{\alpha \sigma} \delta_{\varepsilon}^{\alpha} y^{\varepsilon} T_{\alpha \beta}^{\sigma}=g_{\alpha \sigma} y^{\alpha} T_{\alpha \beta}^{\sigma}=g_{\alpha \sigma} y^{\alpha} T_{\alpha \beta}^{\sigma}=g_{\alpha \sigma} \delta_{\sigma}^{\varepsilon} \delta_{\varepsilon}^{\sigma} y^{\alpha} T_{\alpha \beta}^{\sigma} \\
& =g_{\alpha \sigma} \delta_{\varepsilon}^{\sigma} y^{\alpha} T_{\alpha \beta}^{\varepsilon}=g_{\alpha \varepsilon} y^{\alpha} T_{\alpha \beta}^{\varepsilon}=p_{\varepsilon} T_{\alpha \beta}^{\varepsilon}=p_{\varepsilon} \delta_{\beta}^{\alpha} \delta_{\alpha}^{\beta} T_{\alpha \beta}^{\varepsilon}=p_{\varepsilon} T_{\beta \alpha}^{\varepsilon}
\end{aligned}
$$

Thus, we have $\left(\gamma T_{\beta}^{\bar{\alpha}}\right)_{t^{*}}=p_{\varepsilon} T_{\beta \alpha}^{\varepsilon}$. Similarly, from (1.1) and (4.2), we can easily find all other components of $\left(\gamma T_{J}^{I}\right)_{t^{*}}$ equal to zero, where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta})$. We know that $(\gamma T)_{t^{*}}$ have components on $t^{*}\left(B_{m}\right)$ [4]:
$(\gamma T)_{t^{*}}=\left(\gamma T_{J}^{I}\right)_{t^{*}}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & p_{\varepsilon} T_{\beta \alpha}^{\varepsilon} & 0\end{array}\right)$
with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$. Thus, we have $g_{*}^{b}(\gamma T)_{t}=(\gamma T)_{t^{*}}$.

5. Complete lift of affinor fields

Let $\widetilde{F} \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$ be a projectable affinor field [10] with projection $F=F_{\beta}^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha} \otimes d x^{\beta}$, i.e. \widetilde{F} has components
$\widetilde{F}=\left(\widetilde{F}_{j}^{i}\right)=\left(\begin{array}{cc}\widetilde{F}_{b}^{a}\left(x^{\alpha}, x^{\alpha}\right) & \widetilde{F}_{\beta}^{a}\left(x^{\alpha}, x^{\alpha}\right) \\ 0 & F_{\beta}^{\alpha}\left(x^{\alpha}\right)\end{array}\right)$
with respect to the coordinates $\left(x^{a}, x^{\alpha}\right)$. On putting

$$
\left({ }^{c c} \widetilde{F}\right)_{t}=\left({ }^{c c} \widetilde{F_{B}^{A}}\right)_{t}=\left(\begin{array}{ccc}
\widetilde{F_{b}^{a}} & \widetilde{F_{\beta}^{a}} & 0 \tag{5.1}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right)
$$

we easily see that $\left({ }^{c c} \widetilde{F_{J^{\prime}}{ }^{\prime}}\right)_{t}=A_{J}^{I^{\prime}} A_{J^{\prime}}^{I}\left({ }^{c c} \widetilde{F_{J}^{I}}\right)_{t}$.
We call $\left({ }^{c c} \widetilde{F_{J^{\prime}}^{\prime}}\right)_{t}$ the complete lift of the tensor field \widetilde{F} of type $(1,1)$ to the semi-tangent bundle $t\left(B_{m}\right)$.
Proof. For simplicity, we put $I^{\prime}=\bar{\alpha}^{\prime}, J^{\prime}=\beta^{\prime}$ in ${ }^{c c} F_{J^{\prime}}^{I^{\prime}}$ and take account of (1.4) and (5.1), we obtain

$$
\begin{aligned}
\left({ }^{c c} \widetilde{F_{\beta^{\prime}}^{\bar{\alpha}^{\prime}}}\right)_{t}= & A_{\bar{\alpha}}^{\overline{\alpha^{\prime}}} A_{\beta^{\prime}}^{\bar{\beta}}{ }^{c c} F_{\bar{\beta}}^{\bar{\alpha}}+A_{\bar{\alpha}}^{\overline{\alpha^{\prime}}} A_{\beta^{\prime}}^{\beta c c} F_{\beta}^{\bar{\alpha}}+A_{\alpha}^{\overline{\alpha^{\prime}}} A_{\beta^{\prime}}^{\beta c c} F_{\beta}^{\alpha} \\
= & A_{\alpha}^{\alpha^{\prime}} A_{\beta^{\prime} \sigma^{\prime}}^{\beta} y^{\sigma^{\prime}} F_{\beta}^{\alpha}+A_{\alpha}^{\alpha^{\prime}} A_{\beta^{\prime}}^{\beta} y^{\sigma^{\prime}} \partial_{\sigma^{\prime}} F_{\beta}^{\alpha}+A_{\alpha}^{\alpha^{\prime}} \sigma^{\prime} y^{\sigma^{\prime}} A_{\beta^{\prime}}^{\beta} F_{\beta}^{\alpha} \\
= & A_{\alpha}^{\alpha^{\prime}} y^{\sigma^{\prime}} \partial_{\sigma^{\prime}} A_{\beta^{\prime}}^{\beta} F_{\beta}^{\alpha}+A_{\alpha}^{\alpha^{\prime}} A_{\beta^{\prime}}^{\beta}{ }^{\sigma^{\prime}}\left(\partial_{\sigma^{\prime}} F_{\beta}^{\alpha}\right)+y^{\sigma^{\prime}}\left(\partial_{\sigma^{\prime}} A_{\alpha}^{\alpha^{\prime}}\right) A_{\beta^{\prime}}^{\beta} F_{\beta}^{\alpha} \\
= & y^{\sigma^{\prime}} A_{\alpha}^{\alpha^{\prime}}\left(\partial_{\sigma^{\prime}} A_{\beta^{\prime}}^{\beta}\right) F_{\beta}^{\alpha}+y^{\sigma^{\prime}} A_{\alpha}^{\alpha^{\prime}} A_{\beta^{\prime}}^{\beta}\left(\partial_{\sigma^{\prime}} F_{\beta}^{\alpha}\right) \\
& +y^{\sigma^{\prime}}\left(\partial_{\sigma^{\prime}} A_{\alpha}^{\alpha^{\prime}}\right) A_{\beta^{\prime}}^{\beta} F_{\beta}^{\alpha} \\
= & y^{\sigma^{\prime}} \partial_{\sigma^{\prime}}\left(A_{\alpha}^{\alpha^{\prime}} A_{\beta^{\prime}}^{\beta} F_{\beta}^{\alpha}\right) \\
= & y^{\varepsilon^{\prime}} \partial_{\varepsilon^{\prime}} F_{\beta^{\prime}}^{\alpha^{\prime}} .
\end{aligned}
$$

Similarly, we can easily find another components of $\left({ }^{c c} \widetilde{F_{J^{\prime}}^{\prime}}\right)_{t}$.

6. Transfer of complete lifts of affinor fields

Let \widetilde{F} be projectable affinor fields [10] on M_{n} with projection F on B_{m}. Using (1.1), (1.2) and (5.1), we have

$$
\begin{align*}
g_{*}^{b}\left({ }^{c c} \widetilde{F_{J}^{I}}\right)_{t} & =A_{K}^{I} A_{J}^{L c c} \widetilde{F_{L}^{K}} \\
& =\left(\begin{array}{ccc}
\widetilde{F_{b}^{a}} & \widetilde{F_{\beta}^{a}} & 0 \\
0 & F_{\alpha}^{\beta} & 0 \\
0 & y^{\varepsilon}\left(\partial_{\theta} g_{\beta \varepsilon}\right) F_{\alpha}^{\theta}+g_{\beta \theta} y^{\varepsilon} \partial_{\varepsilon} F_{\alpha}^{\theta}+g_{\beta \theta} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\sigma}^{\theta} & g_{\beta \theta} g^{\sigma \alpha} F_{\sigma}^{\theta}
\end{array}\right) . \tag{6.1}
\end{align*}
$$

Since $g=\left(g_{\alpha \beta}\right)$ and $g^{-1}=\left(g^{\alpha \beta}\right)$ are pure tensor fields with respect to F, we find
$g_{\beta \theta} g^{\sigma \alpha} F_{\sigma}^{\theta}=g_{\beta \theta} g^{\theta \sigma} F_{\sigma}^{\alpha}=\delta_{\beta}^{\sigma} F_{\sigma}^{\alpha}=F_{\beta}^{\alpha}$
and

$$
\begin{align*}
= & y^{\varepsilon}\left(\partial_{\theta} g_{\beta \varepsilon}\right) F_{\alpha}^{\theta}+g_{\beta \theta} y^{\varepsilon} \partial_{\varepsilon} F_{\alpha}^{\theta}+g_{\beta \theta} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\sigma}^{\theta} \\
= & y^{\varepsilon}\left(\phi_{\alpha} g_{\beta \varepsilon}+\partial_{\alpha}(g \circ F)_{\beta \varepsilon}-g_{\theta \varepsilon} \partial_{\beta} F_{\alpha}^{\theta}\right)+g_{\beta \theta} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\sigma}^{\theta} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}+y^{\varepsilon} \partial_{\alpha}(g \circ F)_{\beta \varepsilon}-p_{\theta} \partial_{\beta} F_{\alpha}^{\theta}+g_{\beta \theta} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\sigma}^{\theta} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}-p_{\theta} \partial_{\beta} F_{\alpha}^{\theta}+y^{\varepsilon} \partial_{\alpha}(g \circ F)_{\beta \varepsilon}+g_{\beta \theta} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\sigma}^{\theta} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}-p_{\theta} \partial_{\beta} F_{\alpha}^{\theta}+y^{\varepsilon} \partial_{\alpha}\left(g_{\varepsilon \gamma} F_{\beta}^{\gamma}\right)+g_{\beta \theta} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\sigma}^{\theta} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}-p_{\theta} \partial_{\beta} F_{\alpha}^{\theta}+y^{\varepsilon}\left(\partial_{\alpha} g_{\varepsilon \gamma}\right) F_{\beta}^{\gamma}+y^{\varepsilon}\left(\partial_{\alpha} F_{\beta}^{\gamma}\right) g_{\varepsilon \gamma} \\
& +g_{\beta \gamma} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\sigma}^{\gamma} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}-p_{\theta} \partial_{\beta} F_{\alpha}^{\theta}+y^{\varepsilon}\left(\partial_{\alpha} g_{\varepsilon \gamma}\right) F_{\beta}^{\gamma}+y^{\varepsilon}\left(\partial_{\alpha} F_{\beta}^{\gamma}\right) g_{\varepsilon \gamma} \\
& +g_{\gamma \sigma} p_{\varepsilon}\left(\partial_{\alpha} g^{\sigma \varepsilon}\right) F_{\beta}^{\gamma} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}-p_{\theta} \partial_{\beta} F_{\alpha}^{\theta}+y^{\varepsilon}\left(\partial_{\alpha} g_{\varepsilon \gamma}\right) F_{\beta}^{\gamma}+y^{\varepsilon}\left(\partial_{\alpha} F_{\beta}^{\gamma}\right) g_{\varepsilon \gamma} \\
& -g^{\sigma \varepsilon} p_{\varepsilon}\left(\partial_{\alpha} g_{\gamma \sigma}\right) F_{\beta}^{\gamma} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}-p_{\theta} \partial_{\beta} F_{\alpha}^{\theta}+y^{\varepsilon}\left(\partial_{\alpha} g_{\varepsilon \gamma}\right) F_{\beta}^{\gamma}+p_{\gamma}\left(\partial_{\alpha} F_{\beta}^{\gamma}\right) \\
& -y^{\sigma}\left(\partial_{\alpha} g_{\gamma \sigma}\right) F_{\beta}^{\gamma} \\
= & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}+p_{\varepsilon}\left(\partial_{\alpha} F_{\beta}^{\varepsilon}-\partial_{\beta} F_{\alpha}^{\varepsilon}\right) . \tag{6.3}
\end{align*}
$$

Where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), K=(c, \theta, \bar{\theta}), L=(d, \sigma, \bar{\sigma})$. Also, the component $\left({ }^{c c} \widetilde{F_{\beta}^{\bar{\alpha}}}\right)_{t}$ of $\left({ }^{c c} \widetilde{F_{J}^{I}}\right)_{t}$ is defined as Tachibana operator $\phi_{F} g$ of F, i.e.,
$\phi_{\sigma} g_{\theta \beta}=F_{\sigma}^{\gamma} \partial_{\gamma} g_{\theta \beta}-\partial_{\sigma}(g \circ F)_{\theta \beta}+g_{\gamma \beta} \partial_{\theta} F_{\sigma}^{\gamma}+g_{\theta \gamma} \partial_{\beta} F_{\sigma}^{\gamma}$.
Substituting (6.2) and (6.3) into (6.1), we obtain

$$
g_{*}^{b}\left({ }^{c c} \widetilde{F_{J}^{I}}\right)_{t}=\left(\begin{array}{ccc}
\widetilde{F_{b}^{a}} & \widetilde{F_{\beta}^{a}} & 0 \tag{6.4}\\
0 & F_{\alpha}^{\beta} & 0 \\
0 & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta}+p_{\varepsilon}\left(\partial_{\alpha} F_{\beta}^{\varepsilon}-\partial_{\beta} F_{\alpha}^{\varepsilon}\right) & F_{\beta}^{\alpha}
\end{array}\right) .
$$

It is well known that the complete lift $\left({ }^{c c} \widetilde{F}\right)_{t^{*}}$ of $\widetilde{F} \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$ to the semi-cotangent bundle $t^{*}\left(B_{m}\right)$ is given by [4]

$$
\left({ }^{c c} \widetilde{F}\right)_{t^{*}}=\left({ }^{c c} \widetilde{F_{J}^{I}}\right)_{t^{*}}=\left(\begin{array}{ccc}
\widetilde{F_{b}^{a}} & \widetilde{F_{\beta}^{a}} & 0 \tag{6.5}\\
0 & F_{\alpha}^{\beta} & 0 \\
0 & p_{\varepsilon}\left(\partial_{\alpha} F_{\beta}^{\varepsilon}-\partial_{\beta} F_{\alpha}^{\varepsilon}\right) & F_{\beta}^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t^{*}\left(B_{m}\right)$. From (6.4) and (6.5), we easily obtain

$$
g_{*}^{b}\left({ }^{c c} \widetilde{F}\right)_{t}=\left({ }^{c c} \widetilde{F}\right)_{t^{*}}+\gamma\left(\phi_{F} g\right),
$$

where
$\gamma\left(\phi_{F} g\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & y^{\varepsilon} \phi_{\alpha} g_{\varepsilon \beta} & 0\end{array}\right)$.
Finally, we can prove
Theorem 5. Let $\left({ }^{c c} \widetilde{F}\right)_{t}$ and $\left({ }^{c c} \widetilde{F}\right)_{t^{*}}$ be complete lifts of $\widetilde{F} \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$ to the semi-tangent and semi-cotangent bundles, respectively. Then the differential of $\left({ }^{c c} \widetilde{F}\right)_{t}$ by g^{b} coincides with $\left({ }^{c c} \widetilde{F}\right)_{t^{*}}$, i.e. $g_{*}^{b}\left({ }^{c c} \widetilde{F}\right)_{t}=\left({ }^{c c} \widetilde{F}\right)_{t^{*}}$ if and only if $\phi_{F} g=0$.

References

[1] A. A. Salimov, E. Kadioglu Lifts of derivations to the semitangent bundle. Turk J Math 2000; 24: 259-266.
[2] D. Husemöller, Fibre Bundles. New York, NY, USA: Springer, 1994.
[3] F. Yildirim, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
[4] F. Yildirim and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
[5] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton University Press., Princeton, 1989
[6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.
[7] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
[8] R. Cakan, K. Akbulut, A. Salimov, Musical isomorphisms and problems of lifts, Chin. Ann. Math. Ser. B. (2016) 37: 323.
[9] T.V. Duc, Structure presque-transverse. J. Diff. Geom., 14(1979), No:2, 215-219.
[10] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations, Geometry, 7.J. Math. Sci., (New York) 108 (2002), no. 2, 151-187.
[11] V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over Algebras. Kazan. Kazan Gos. Univ. 1985 (in Russian).

