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Abstract
We present a new study on the square roots of real 2 x 2 matrices with a special view towards examples,
some of them inspired by geometry.
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a c
b d
that B? = A? Such a matrix B is called square root of A. We point out that the more complicated case of a real matrix
of order 3 is discussed in [4]. Although the case we consider is also well studied (according to the bibliography of
[3]) we add several examples and facts concerning this notion as well as a series of geometrical applications.

We begin with the following general matrix A = < ) € M>(R) and ask: is there a matrix B € M>(R) such

The Euclidean example We recall the n-orthogonal group: O(n) = {A € M, (R) : A* - A = I,,}; is the invariant
group of the Euclidean inner product < -,- > (yielding the usual Euclidean norm || - ||). If A € O(n) then
(det A) - (det A) = detI,, = 1 implies that det A = 1. Hence, the orthogonal group splits into two components:

O(n) =50(n)UO™ (n)

where SO(n) contains the matrices from O(n) having detA = 1 and O~ (n) those with detA = —1; Ll represents the
disjoint reunion of sets. SO(n) is a subgroup in O(n) and is called n-special orthogonal group. O~ (n) is not closed
under product: A;, As € O~ (n) implies that A1 4, € SO(n).

Since M;(R) = R we have that O(1) = {£1} with SO(1) = {1} and O~ (1) = {-1}; we remark that O(1)
contains the integer unit roots! We know O(2) as well:

R(t) = ( cost  —sint > € 50(2), S(t) = < cost  sint > €0 (2), teR.

sint  cost sint —cost
Hence, we have that:
9 [ cost sint cost sint .
5()° = ( sint —cost ) ( sint —cost =1
which means that any S(t) is a root of the unit matrix I;. We recall that from a geometrical point of view a square
root of the unit matrix is called almost product structure, see for example [6].

Geometrical significance: R(t) is the matrix of rotation of angle t in trigonometrical sense (i.e anticlockwise) around
the origin and S(t) is the matrix of axial symmetry with respect to d; />=line from plane R? which contains the origin
O and makes the oriented angle ¢/2 with Oxz. We have that S(t2) - S(t1) = A(ta —t1) # S(t1) - S(t2). O
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We return to the general case of matrix A. We remind that A has two invariants:
TrA:=a+d, detA:=ad-— bc.

Properties:
i) Tr : M3(R) — Ris a linear operator: Tr(aA; + fA2) = oTrA; + TrA,,
ii) det : M2(R) — R is a multiplicative function: det(A; As) = det A; det As,
iii) The characteristic equation of A:
A?—TrA-A+detA-I, = Os.
The multiplicative property of the determinant yields:

The necessary condition for existence of square roots:
3B:B*=A=detA>0.

Hence we assume from now on that det A > 0.

Revised Euclidean example 1: T7S(t) = 0, detS(t) = —1 which says that S(t) does not admit roots. A root of

order 4 of unit matrix is called structure of electromagnetic type according to [7, p. 3807]. O

We also have relationships between the invariants of A and B:
TrA = (TrB)* —2det B, det A = (det B)%.
Proof. It is enough to proof the first identity. We write the characteristic equation of B:
A—TrB-B+detB -1 = 0y

which gives:
A=TrB-B—detB- L.

We square this relation:
A? = (TrB)*-A—2TrB-det B- B + (det B)’I,

or:
A%? — (TrB)*- A+ 2det B[TrB - B] — (det B)*I = O,.

From (1) we have that:
TrB-B=A+detB- I

which is replaced in square brackets from (3):

A? —(TrB)?- A+ 2det B[A +det B - I] — (det B)*I, = A — [(TrB)? — 2det B] - A+ (det B)?I5 = Oy

and by comparing with the characteristic equation of A we obtain the conclusion.

The relation (4) is fundamental for finding B and we have two cases:
Case I): T'rB = 0 implies that: A = —det B - I.
Case II) TrB # 0 implies that:
1

B =
TrB

[A -+ detB . .[2}
From the first relation (0) we have that:

(TrB)? = TrA + 2|Vdet A|

hence, if A # als, we obtain that:
1) TrA + 2v/det A < 0 implies that A does not have roots,
112) TrA+2vdet A > 0but TrA — 2v/det A < 0 implies that A has two roots:

1
By =+ [A+ Vdet AL]
TrA+2vdet A
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1I3) TrA — 2v/det A > 0 (which implies that TrA + 2v/det A > 0) implies that A has four roots:

1
Byi(e) =+ [A+eVdet AL, e==l. (8)
\/TTA + 2ev/det A

Revised Euclidean example 2 For A(t) we have:

t
TrR(t) = 2cost,det R(t) = 1,TrR(t) + 2+/det R(t) = 4 cos® 3 TrR(t) — 2+/det R(t) = 2(cost —1) < 0.  (9)
From Case I12, we get that R(t) has two roots:
- 1 cost+1 —sint B t
Bi(t)iiQCOS% ( sint  cost+1 > =R (2) (10)

The relation (10) can be considered the matrix version of the well-known Moivre’s relation from complex algebra
(C,+,-):

(cost + isint)? = cos(2t) + isin(2t). (11)

The group law of SO(2) is: R(t1) - R(t2) = R(t1 + t2) = R(t2) - R(t1) which gives: R(t)> = R(2t) and the fact that
SO(2) is a group isomorphic to the multiplicative group (S, -) of all unit complex numbers. O

Inspired by characteristic equation of A we introduce the characteristic polynomial of A, namely ps € R[X]:
pa(X)=X?—-TrA X +det A. (12)

We know that the possible real roots of p4 are called eigenvalues of A and are useful in studying the diagonalisation
of A. So, if the eigenvalues exist and are different, we denote them by A\; < A2 and it follows that A admits a diagonal
form:

A = S~ diag(\1, \2)S (13)

with S € GL(2,R)=2-general linear group i.e. the group of all real invertible matrices of order 2. Obviously, the
condition of existence and inequality for A, 2 holds when the discriminant A(p ) is strictly positive:

A(pa) := (TrA)? — 4det A. (14)
The relationship between A(p4) and A(pp) is given by:
Proposition Let B be a square root of A. Then:
A(pa) = (TrB)*A(pp).- (15)

Thus, if TrB # 0 then A has different eigenvalues if and only if B has different eigenvalues.
Proof. The relation (15) is a direct consequence of (0). O

Corollary Suppose the matrix A with det A > 0 has the root B with TrB # 0. Assume that A is diagonalisable with
S € GL(2,R) and different eigenvalues A\1 < Aa. Then, 0 < Ay < A\ and B is diagonalisable with the same matrix S having

the eigenvalues {\/A1, v A2} or {—v/A1, =V A2} or {—v/A1, vV A2} or {V/A1, —v/ A2 }. Equivalently, we are in case 113 with:
[A+ e/ Mdalo] = S - diag(£1/ A1, £/ A2) - S7L. (16)

B:E(E) \/74—6\/7

Proof. Because det A > 0 we have that A\; and A, have the same sign. We suppose that A\; < A < 0. From (6) we
have that (TrB)? = A1 + A2 £ 2¢/A1 A3 > 0. It follows only the case with + i.e. —|\1]| — [A2] + 2+/|A1][A2] > 0 but
this is impossible because of the AM-GM inequality. Recall that the AM-GM inequality states that the arithmetic
mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list. O
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The golden example It is known that the golden proportion (or the golden number) is the positive root, ¢ = @,
of the equation [6]:
2 —2—-1=0. (17)

The negative rootis —¢~! = % Let us consider the matrix:

A:(;’ ;) TrA = 6,det A= 5. (18)

A is diagonalisable, being symmetric, with 0 < A\; =1 < Ay = 5. We have that:
TrA+2eVdet A =6+ 2eV5 = (V5 +¢)? (19)

We are in Case 113 and for example:

Bx(1) :i\/51+1 ( 3+2\/5 3+2\/5 ) :i% ( 2(52 2;2 ) :i< qﬁl d); ) (20)

By analogy with the problem studied here, we call the matrix A € M,,(R) satisfying A> — A — I,, = O, as being
an almost golden structure. In [6] we study the relationship between almost golden structures and almost product
structures. O

We return to the case I given by A = al; and we present the solution from [3, p. 491]. We have, irrespective of
a’s sign, an infinity of roots:

Bi(c,s):::t(a_cz Sc), ceR,s e R*. (21)

S

If ¢ = 0 then we add the infinite set of almost tangent structures:

0 0

Bi(u)~—i<u O)’ u€eR. (22)

If ¢ > 0 then we add the infinite set:

_( £/a O _( £/a O
Revised Euclidean example 3 For a = 1 the family B, (¢, s) becomes:
B(e,s) = ( e f ) (24)
- ¢
which gives:

B(cost,sint) = S(t). (25)

This way we obtain the matrices from O~ (2). We consider now a right triangle with sides z, y and hypotenuse z.
We have that:
iz oy
S(t)-(y _I>. (26)

If (z,y,2) € (N*)3 then (z,y, 2) is a Pythagorean triple. This example of almost product structures provided by
Pythagorean triples appears on the Web page [1]. In [5] we gave a method for finding matrices A € M3(R) which
transforms a Pythagorean triple into another Pythagorean triple.

Open problem Do the matrices A which preserve Pythagorean triples admit roots? O

We return now to the given corollary: a symmetric matrix A with different and strictly positive eigenvalues is
positive definite, [2]. Thus, A defines a new inner product on R™:

< Ty >a=< T, Ay > . (27)
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If A admits B as a root then:
< I,y >a:=<7,B%) >=< B'z, By > . (28)

If B is also symmetric, which happens when n = 2, then:
< Z,§ >4:=< Bz, By > (29)

hence:
I1Z]% = | Bz||. (30)

Thus, for nonzero vectors z,y € R”, the angle ¢ 4(Z, ) between them with respect to < -,- > 4 is given by:
cos o4 (%, 7)) = cos p(BE, BY). (31)

Generalized golden example The matrix A € M(R) is called bi-symmetric if it has the form:

A_<‘b’2). (32)

Then det A = a2 — b2 and, for having roots, we assume that a > b. We are in case 113 and obtain that:

1(\/a—|—b+z-:\/a—b \/a—i-b—s\/a—b)
2\ Va+b—cva—b Va+b+eva—b

Bi(e) ==+ (33)

which gives us the result that any of its root is also bi-symmetric. The conversely: If B is bi-symmetric then B? is
bi-symmetric is obvious from calculus. O

Hyperbolic example We consider:

cosht sinht
At) = ( sinht cosht ) ) (34)

A is a bi-symmetric matrix with a > b and with formula (33) we obtain that:

cosht sinhi sinhf coshi
_ 5 3 1) — 2 2

B(1) =+ ( sinh & cosh £ ) , Bi(-1)==% < cosh & sinh £ > ) (35)
O

Fibonacci example In [8, p. 24] is introduced the Q-Fibonacci matrix:

11
o=(1 ) (36)
that has the natural powers:
n __ Fn+1 Fn
Q N ( Fn Fn—l ) (37)
Because of the golden example, we consider the matrix:
_ Fn+1 Fn
am=( Tt ). (59)

With relation (33) we have the roots:

_ 1 \/Fn+2+5\/Fn72 \/Fn+2—5\/Fn2>
Qi(n’é:) B :l:z ( \/Fn+2 - E\/F‘nf2 \/Fn+2 +€\/an2 ’ (39)

O

Almost complex example A root of the matrix —1I is called almost complex structure. According to (21) we have:

S c

B (s,c) ::|:< g2 >, seR,ceR". (40)

—S
c
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An interesting particular case is:

(41)

. sinh¢ cosht
By (sinht, cosht) := B(t) = £ ( _cosht —sinht > .

O
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