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Abstract
We present a new study on the square roots of real 2× 2 matrices with a special view towards examples,
some of them inspired by geometry.
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We begin with the following general matrix A =

(
a c
b d

)
∈M2(R) and ask: is there a matrix B ∈M2(R) such

that B2 = A? Such a matrix B is called square root of A. We point out that the more complicated case of a real matrix
of order 3 is discussed in [4]. Although the case we consider is also well studied (according to the bibliography of
[3]) we add several examples and facts concerning this notion as well as a series of geometrical applications.

The Euclidean example We recall the n-orthogonal group: O(n) = {A ∈ Mn(R) : At · A = In}; is the invariant
group of the Euclidean inner product < ·, · > (yielding the usual Euclidean norm ‖ · ‖). If A ∈ O(n) then
(detAt) · (detA) = detIn = 1 implies that detA = ±1. Hence, the orthogonal group splits into two components:

O(n) = SO(n) tO−(n)

where SO(n) contains the matrices from O(n) having detA = 1 and O−(n) those with detA = −1; t represents the
disjoint reunion of sets. SO(n) is a subgroup in O(n) and is called n-special orthogonal group. O−(n) is not closed
under product: A1, A2 ∈ O−(n) implies that A1A2 ∈ SO(n).

Since M1(R) = R we have that O(1) = {±1} with SO(1) = {1} and O−(1) = {−1}; we remark that O(1)
contains the integer unit roots! We know O(2) as well:

R(t) =

(
cos t − sin t
sin t cos t

)
∈ SO(2), S(t) =

(
cos t sin t
sin t − cos t

)
∈ O−(2), t ∈ R.

Hence, we have that:

S(t)2 =

(
cos t sin t
sin t − cos t

)(
cos t sin t
sin t − cos t

)
= I2

which means that any S(t) is a root of the unit matrix I2. We recall that from a geometrical point of view a square
root of the unit matrix is called almost product structure, see for example [6].

Geometrical significance: R(t) is the matrix of rotation of angle t in trigonometrical sense (i.e anticlockwise) around
the origin and S(t) is the matrix of axial symmetry with respect to dt/2=line from plane R2 which contains the origin
O and makes the oriented angle t/2 with Ox. We have that S(t2) · S(t1) = A(t2 − t1) 6= S(t1) · S(t2). 2
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We return to the general case of matrix A. We remind that A has two invariants:

TrA := a+ d, detA := ad− bc.

Properties:
i) Tr : M2(R)→ R is a linear operator: Tr(αA1 + βA2) = αTrA1 + βTrA2,
ii) det : M2(R)→ R is a multiplicative function: det(A1A2) = detA1 detA2,
iii) The characteristic equation of A:

A2 − TrA ·A+ detA · I2 = O2.

The multiplicative property of the determinant yields:

The necessary condition for existence of square roots:

∃B : B2 = A⇒ detA ≥ 0.

Hence we assume from now on that detA ≥ 0.

Revised Euclidean example 1: TrS(t) = 0, detS(t) = −1 which says that S(t) does not admit roots. A root of
order 4 of unit matrix is called structure of electromagnetic type according to [7, p. 3807]. 2

We also have relationships between the invariants of A and B:

TrA = (TrB)2 − 2 detB, detA = (detB)2. (0)

Proof. It is enough to proof the first identity. We write the characteristic equation of B:

A− TrB ·B + detB · I2 = O2 (1)

which gives:
A = TrB ·B − detB · I2. (2)

We square this relation:
A2 = (TrB)2 ·A− 2TrB · detB ·B + (detB)2I2

or:
A2 − (TrB)2 ·A+ 2 detB[TrB ·B]− (detB)2I2 = O2. (3)

From (1) we have that:
TrB ·B = A+ detB · I2 (4)

which is replaced in square brackets from (3):

A2 − (TrB)2 ·A+ 2 detB[A+ detB · I2]− (detB)2I2 = A2 − [(TrB)2 − 2 detB] ·A+ (detB)2I2 = O2

and by comparing with the characteristic equation of A we obtain the conclusion.

The relation (4) is fundamental for finding B and we have two cases:
Case I): TrB = 0 implies that: A = −detB · I2.
Case II) TrB 6= 0 implies that:

B =
1

TrB
[A+ detB · I2]. (5)

From the first relation (0) we have that:

(TrB)2 = TrA+ 2|
√

detA| (6)

hence, if A 6= aI2, we obtain that:
II1) TrA+ 2

√
detA ≤ 0 implies that A does not have roots,

II2) TrA+ 2
√

detA > 0 but TrA− 2
√

detA ≤ 0 implies that A has two roots:

B± = ± 1√
TrA+ 2

√
detA

[A+
√

detAI2] (7)
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II3) TrA− 2
√

detA > 0 (which implies that TrA+ 2
√

detA > 0) implies that A has four roots:

B±(ε) = ± 1√
TrA+ 2ε

√
detA

[A+ ε
√

detAI2], ε = ±1. (8)

Revised Euclidean example 2 For A(t) we have:

TrR(t) = 2 cos t, detR(t) = 1, T rR(t) + 2
√

detR(t) = 4 cos2
t

2
, T rR(t)− 2

√
detR(t) = 2(cos t− 1) ≤ 0. (9)

From Case II2, we get that R(t) has two roots:

B±(t) = ± 1

2 cos t
2

(
cos t+ 1 − sin t

sin t cos t+ 1

)
= ±R

(
t

2

)
. (10)

The relation (10) can be considered the matrix version of the well-known Moivre’s relation from complex algebra
(C,+, ·):

(cos t+ i sin t)2 = cos(2t) + i sin(2t). (11)

The group law of SO(2) is: R(t1) ·R(t2) = R(t1 + t2) = R(t2) ·R(t1) which gives: R(t)2 = R(2t) and the fact that
SO(2) is a group isomorphic to the multiplicative group (S1, ·) of all unit complex numbers. 2

Inspired by characteristic equation of A we introduce the characteristic polynomial of A, namely pA ∈ R[X]:

pA(X) = X2 − TrA ·X + detA. (12)

We know that the possible real roots of pA are called eigenvalues of A and are useful in studying the diagonalisation
of A. So, if the eigenvalues exist and are different, we denote them by λ1 < λ2 and it follows that A admits a diagonal
form:

A = S−1 diag(λ1, λ2)S (13)

with S ∈ GL(2,R)=2-general linear group i.e. the group of all real invertible matrices of order 2. Obviously, the
condition of existence and inequality for λ1,2 holds when the discriminant ∆(pA) is strictly positive:

∆(pA) := (TrA)2 − 4 detA. (14)

The relationship between ∆(pA) and ∆(pB) is given by:

Proposition Let B be a square root of A. Then:

∆(pA) = (TrB)2∆(pB). (15)

Thus, if TrB 6= 0 then A has different eigenvalues if and only if B has different eigenvalues.

Proof. The relation (15) is a direct consequence of (0).

Corollary Suppose the matrix A with detA > 0 has the root B with TrB 6= 0. Assume that A is diagonalisable with
S ∈ GL(2,R) and different eigenvalues λ1 < λ2. Then, 0 < λ1 < λ2 and B is diagonalisable with the same matrix S having
the eigenvalues {

√
λ1,
√
λ2} or {−

√
λ1,−

√
λ2} or {−

√
λ1,
√
λ2} or {

√
λ1,−

√
λ2}. Equivalently, we are in case II3 with:

B±(ε) = ± 1√
λ2 + ε

√
λ1

[A+ ε
√
λ1λ2I2] = S · diag(±

√
λ1,±

√
λ2) · S−1. (16)

Proof. Because detA > 0 we have that λ1 and λ2 have the same sign. We suppose that λ1 < λ2 < 0. From (6) we
have that (TrB)2 = λ1 + λ2 ± 2

√
λ1λ2 > 0. It follows only the case with + i.e. −|λ1| − |λ2| + 2

√
|λ1||λ2| > 0 but

this is impossible because of the AM-GM inequality. Recall that the AM–GM inequality states that the arithmetic
mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list.
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The golden example It is known that the golden proportion (or the golden number) is the positive root, φ =
√
5+1
2 ,

of the equation [6]:
x2 − x− 1 = 0. (17)

The negative root is −φ−1 = 1−
√
5

2 . Let us consider the matrix:

A =

(
3 2
2 3

)
, T rA = 6,detA = 5. (18)

A is diagonalisable, being symmetric, with 0 < λ1 = 1 < λ2 = 5. We have that:

TrA+ 2ε
√

detA = 6 + 2ε
√

5 = (
√

5 + ε)2 (19)

We are in Case II3 and for example:

B±(1) = ± 1√
5 + 1

(
3 +
√

5 2

2 3 +
√

5

)
= ± 1

2φ

(
2φ2 2
2 2φ2

)
= ±

(
φ φ−1

φ−1 φ

)
. (20)

By analogy with the problem studied here, we call the matrix A ∈ Mn(R) satisfying A2 − A− In = On, as being
an almost golden structure. In [6] we study the relationship between almost golden structures and almost product
structures. 2

We return to the case I given by A = aI2 and we present the solution from [3, p. 491]. We have, irrespective of
a’s sign, an infinity of roots:

B±(c, s) := ±
(

c s
a−c2

s −c

)
, c ∈ R, s ∈ R∗. (21)

If a = 0 then we add the infinite set of almost tangent structures:

B±(u) := ±
(

0 0
u 0

)
, u ∈ R. (22)

If a > 0 then we add the infinite set:

B±(u) :=

(
±
√
a 0

u ∓
√
a

)
, B± :=

(
±
√
a 0

0 ±
√
a

)
. (23)

Revised Euclidean example 3 For a = 1 the family B+(c, s) becomes:

B(c, s) =

(
c s

1−c2
s −c

)
(24)

which gives:
B(cos t, sin t) = S(t). (25)

This way we obtain the matrices from O−(2). We consider now a right triangle with sides x, y and hypotenuse z.
We have that:

S(t) =
1

z

(
x y
y −x

)
. (26)

If (x, y, z) ∈ (N∗)3 then (x, y, z) is a Pythagorean triple. This example of almost product structures provided by
Pythagorean triples appears on the Web page [1]. In [5] we gave a method for finding matrices A ∈M3(R) which
transforms a Pythagorean triple into another Pythagorean triple.

Open problem Do the matrices A which preserve Pythagorean triples admit roots? 2

We return now to the given corollary: a symmetric matrix A with different and strictly positive eigenvalues is
positive definite, [2]. Thus, A defines a new inner product on Rn:

< x̄, ȳ >A:=< x̄,Aȳ > . (27)
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If A admits B as a root then:
< x̄, ȳ >A:=< x̄,B2ȳ >=< Btx̄, Bȳ > . (28)

If B is also symmetric, which happens when n = 2, then:

< x̄, ȳ >A:=< Bx̄,Bȳ > (29)

hence:
‖x̄‖2A = ‖Bx̄‖2. (30)

Thus, for nonzero vectors x̄, ȳ ∈ Rn, the angle ϕA(x̄, ȳ) between them with respect to < ·, · >A is given by:

cosϕA(x̄, ȳ) = cosϕ(Bx̄,Bȳ). (31)

Generalized golden example The matrix A ∈M2(R) is called bi-symmetric if it has the form:

A =

(
a b
b a

)
. (32)

Then detA = a2 − b2 and, for having roots, we assume that a > b. We are in case II3 and obtain that:

B±(ε) = ±1

2

( √
a+ b+ ε

√
a− b

√
a+ b− ε

√
a− b√

a+ b− ε
√
a− b

√
a+ b+ ε

√
a− b

)
(33)

which gives us the result that any of its root is also bi-symmetric. The conversely: If B is bi-symmetric then B2 is
bi-symmetric is obvious from calculus. 2

Hyperbolic example We consider:

A(t) :=

(
cosh t sinh t
sinh t cosh t

)
. (34)

A is a bi-symmetric matrix with a > b and with formula (33) we obtain that:

B±(1) = ±
(

cosh t
2 sinh t

2
sinh t

2 cosh t
2

)
, B±(−1) = ±

(
sinh t

2 cosh t
2

cosh t
2 sinh t

2

)
. (35)

2

Fibonacci example In [8, p. 24] is introduced the Q-Fibonacci matrix:

Q =

(
1 1
1 0

)
(36)

that has the natural powers:

Qn =

(
Fn+1 Fn

Fn Fn−1

)
. (37)

Because of the golden example, we consider the matrix:

Q(n) =

(
Fn+1 Fn

Fn Fn+1

)
. (38)

With relation (33) we have the roots:

Q±(n, ε) = ±1

2

( √
Fn+2 + ε

√
Fn−2

√
Fn+2 − ε

√
Fn−2√

Fn+2 − ε
√
Fn−2

√
Fn+2 + ε

√
Fn−2

)
. (39)

2

Almost complex example A root of the matrix −I2 is called almost complex structure. According to (21) we have:

B±(s, c) := ±
(

s c
−1−s2

c −s

)
, s ∈ R, c ∈ R∗. (40)
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An interesting particular case is:

B±(sinh t, cosh t) := B(t) = ±
(

sinh t cosh t
− cosh t − sinh t

)
. (41)

2
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