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Abstract
The strong independent saturation number Is(G) of a graph G = (V,E) is defined as min {Is(v) : v ∈ V },
where Is(v) is the maximum cardinality of a minimal strong independent dominating set of G that
contains v. Let Ḡ be the complement of a graph G . The complementary prism ḠG of G is the graph
formed from the disjoint union of G and Ḡ by adding the edges of a perfect matching between the
corresponding vertices of G and Ḡ. In this paper, the strong independent saturation in complementary
prisms are considered, complementary prisms with small strong independent saturation numbers are
characterized, and relationship between strong independent number and the distance-based parameters
are investigated.
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1. Introduction
Graph theoretic techniques provide a convenient tool for the investigation of networks. It is well-known that

an interconnection network can be modeled by a graph with vertices representing sites of the network and edges
representing links between sites of the network. Therefore various problems in networks can be studied by graph
theoretical methods. Independence based parameters reveal an underlying efficient and stable communication
network. A subset of pairwise nonadjacent vertices in a graph G is called independent (or stable/internally stable).
The cardinality of a maximum size independent set in G is called the independence (or stability) number (or
coefficient of internal stability [7]) of G and is denoted by β(G) . The independence number of a graph is one
of the basic numerical characteristics of a graph and most fundamental and well-studied graph parameters. The
maximum stable set problem is a central problem in combinatorial optimization, and has been the subject of
extensive study. The problem of determining a stable set of maximum cardinality is a basic algorithmic graph
problem occurring in many models in computer science and operations research and finds important applications
in various fields, including computer vision and pattern recognition. Finding a maximum independent set is a
well-known widely-studied NP -hard problem. We refer to [2] for a review concerning algorithms, applications,
and complexity issues of this problem.

Among the independence-type parameters that have been studied, the strong independent saturation number
is one of the fundamental ones introduced in [8]. In a graph G(V (G), E(G)), a subset S ⊆ V of vertices is a
dominating set if every vertex in V (G)− S is adjacent to at least one vertex of S . Let u, v ∈ V . Then, u strongly
dominates v and if uv ∈ E and deg(u) ≥ deg(v) . A set D ⊂ V is a strong-dominating set of G if every vertex
in V − D is strongly dominated by at least one vertex in D [9]. A strong independent dominating set is both
independent and strong-dominating. For a vertex v of a graph G , Is(v) denotes the maximum cardinality of a
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minimal strong independent dominating set of G which contains v . The strong independent saturation number of
G, denoted by Is(G), is the value min {Is(v) : v ∈ V } . Let v ∈ V be such that Is(V ) = Is(G). Then any minimal
strong independent dominating set of cardinality Is(G) containing v is called an Is -set.

In this paper, finite undirected graphs without loops and multiple edges are considered. The order of G
is the number of vertices in G . The open neighborhood of v is N(v) = {u ∈ V (G)|uv ∈ E(G)} and the closed
neighborhood of v is N [v] = {v} ∪N(v) . For a set S ⊆ V , N(S) = ∪v∈SN(v) and N [S] = N(S)∪ S . The degree of
a vertex v is degG(v) = |N(v)|. A vertex of degree zero is an isolated vertex or an isolate. A leaf or an endvertex
or a pendant vertex is a vertex of degree one and its neighbor is called a support vertex. The maximum degree of
G is ∆(G) = max {degG(v)|v ∈ V (G)} . For S ⊆ V (G) , the subgraph of G induced by S is denoted by G[S] . The
distance d(u, v) between two vertices u and v in G is the length of a shortest path between them. If u and v are not
connected, then d(u, v) =∞ , and for u = v , d(u, v) = 0 . The eccentricity of a vertex v in G is the distance from v to
a vertex farthest away from v in G. The diameter of G , denoted by diam(G) , is the largest distance between two
vertices in V (G) [3–5, 10].

Complementary prisms were first introduced by Haynes, Henning, Slater and Van der Merwe in [6]. For a
graph G , its complementary prism, denoted by GḠ , is formed from a copy of G and a copy of Ḡ by adding a
perfect matching between corresponding vertices. For each v ∈ V (G) , let v̄ denote the vertex v in the copy of Ḡ .
Formally GḠ is formed from G ∪ Ḡ by adding the edge vv̄ for every v ∈ V (G). For example, if G is a 5-cycle, then
GḠ is the Petersen graph. Also, independence saturation of complementary prisms are studied in detail in [1].

The corona of a graph G , denoted by G ◦K1 , is a graph constructed from a copy of the graph G where each
vertex of V (G) is adjacent to exactly one vertex of degree one.

We use bxc to denote the largest integer not greater than x , and dxe to denote the least integer not less than x .
The paper proceeds as follows. In section 2, existing literature on strong independent saturation number is

reviewed. The strong independent saturation numbers for complementary prism GḠ when G is a specified family
of graphs are computed and formulae are derived. Strong independent saturation numbers for the graphs and
vertices with specific distance-based parameters are investigated. The graphs and vertices for which Is is small are
characterized.

2. Strong independent saturation

2.1 Known results

Theorem 2.1. [8] The strong independent saturation of

(a) the complete graph Kn is 1;

(b) the path Pn is
{
bn/2c , if n ≥ 2, n 6= 3;
0, n = 3.

;

(c) the cycle Cn (n ≥ 3) is bn/2c;

(d) the complete bipartite graph Km,n is
{
n , if m = n;
0, otherwise.

;

(e) the double star Dr,s is
{
r + 1 , if r = s;
0, otherwise.

.

2.2 Complementary prisms

We begin this subsection by determining the strong independent saturation number of the complementary
prism GḠ when G is a specified family of graphs.

Observation 2.2.

(a) β(Pn) = dn/2e

(b) β(Cn) = bn/2c
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(c) For n > 3, β(C̄n) = 2

Definition 2.1. [2] Let G1 and G2 be two disjoint graphs. The union of G1 and G2 with disjoint vertex sets V (G1)
and V (G2) and edge sets E(G1) and E(G2) is the graph G = G1 ∪G2 with vertex set V (G) = V (G1) ∪ V (G2) and
edge set E(G) = E(G1) ∪ E(G2) .

Observation 2.3. Let G1, G2, ..., Gn be disjoint graphs. If G =
⋃n

i=1Gi , then β(G) =
∑n

i=1 β(Gi) .

Theorem 2.4.

(a) If G = Kn, then Is(GḠ) = n.

(b) If G = tK2 (t > 1), then Is(GḠ) = t+ 1.

(c) If G = Kt ◦K1, then Is(GḠ) = t+ 1.

(d) If G = K1,n (n > 1), then Is(GḠ) = 0.

(e) If G = Km,n where 2 ≤ m ≤ n, then Is(GḠ) =

{
m+ 1 , if m = n;
0, if m < n.

.

(f) If G = Cn (n > 3), then Is(GḠ) = d(n+ 2)/2e.

(g) If G = Wn (n > 3), then Is(GḠ) = 0.

(h) If G = Pn (n > 3), then Is(GḠ) = 0.

Proof. To prove (a), for G = Kn, the complementary prism GḠ is the corona Kn ◦K1 . Let v be a vertex of GḠ . If v
is a support vertex, then the Is(v) -set includes each leaf of the other support vertices except v . If v is a leaf, then
Is(v) -set has a support vertex which is not adjacent to v and each leaf of the other support vertices. Hence, for any
v ∈ V (GḠ) , Is(v) = n and thus Is(GḠ) = n.

To prove (b), label the 2t vertices of V (G) as ui, vi where 1 ≤ i ≤ t such that uivi ∈ E(G). Let I be a Is(v) -set of
GḠ. Then, there exist three cases depending on the different type of vertices of GḠ:

Case 1. If v = ūi or v = v̄i, then I = {ūi} ∪ {v̄i} ∪ {uj : ∀j 6= i}with cardinality t+ 1.

Case 2. If v = ui then being t 6= i, then I = {ūt} ∪ {v̄t} ∪ {ui : ∀i 6= t}with cardinality t+ 1.

Case 3. If v = vi then being t 6= i, then I = {ūt} ∪ {v̄t} ∪ {vi : ∀i 6= t}with cardinality t+ 1.

By Cases 1, 2, and 3, for any v ∈ V (GḠ) , Is(v) = t+ 1 , and we have Is(GḠ) = t+ 1 .

To prove (c), let G = Kt ◦K1. If t = 1, then G = K2 and from (a), Is(GḠ) = 2 . Assume that t ≥ 2, and label the
vertices of G as follows :let A = {ai | 1 ≤ i ≤ t} be the set of t vertices that induce the subgraph Kt of G, and let
B = {bi | 1 ≤ i ≤ t} be the end-vertices in G adjacent to the vertices in A such that aibi ∈ E(G) . Then, there exist
three cases depending on the different type of vertices of GḠ :

Case 1. If v = b̄i or v = ai , then Is(v)-set is composed of
{
b̄i
}
∪ {ai} ∪B \ {bi}with cardinality t+ 1.

Case 2. If v = āi , then being j 6= i , Is(v) -set is composed of {āi} ∪
{
b̄i
}
∪ {aj} ∪B \ {bi, bj}with cardinality t+ 1 .

Case 3. If v = bi, then being j 6= i , Is(v) -set is composed of {bi} ∪
{
b̄j
}
∪ {aj} ∪B \ {bi, bj}with cardinality t+ 1 .

By Cases 1, 2, and 3, since for all v ∈ V (GḠ) , Is(v) = t+ 1 , and we have that Is(GḠ) = t+ 1 .

To prove (d), since G is a star, the support vertex t in G is an isolated vertex t̄ in Ḡ and a leaf in GḠ . Denote the
n leaves of G by {ui | 1 ≤ i ≤ n} . The leaves in G will form a complete graph on n vertices in Ḡ . Let I be a Is(v)
-set of GḠ . Then, there exist four cases according to the types of vertices in GḠ .

Case 1. If v = t , then I = {t, ūi} (1 ≤ i ≤ n) with Is(v) = 2.
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Case 2. If v = t̄ , then we have that NGḠ(v) = {t} . However, vertex t cannot be strong dominated by any other vertex
either vertex v or vertex ui (∀i) where {ui : ∀i} ∈ NGḠ(t) . Therefore, there is no minimal independent strong
dominating set containing v yielding Is(v) = 0.

Case 3. If v = ui (1 ≤ i ≤ n), then we have that NGḠ(v) = {t, ūi} . Therefore, similar to Case 2, Is(v) = 0.

Case 4. If v = ūi (1 ≤ i ≤ n) , then I = {t, ui} is the unique minimal independent strong dominating set containing
v, so Is(v) = 2.

Consequently, by Cases 1, 2, 3, and 4, Is(GḠ) = min {2, 0} = 0 .

To prove (e), let G = Km,n (2 ≤ m ≤ n) , where R and S are the partite sets of G with cardinality m and n ,
respectively. Let R = {r1, r2, ..., rm} and S = {s1, s2, ..., sn} . The vertices of R and S will form complete graphs
Km and Kn on m and n vertices, respectively, in Ḡ . Then, there exist four cases depending on the types of vertices
of GḠ :

Case 1. If ri ∈ R (1 ≤ i ≤ m) , then I = {s̄} ∪R is the Is(ri) -set yielding Is(ri) = m+ 1 .

Case 2. If si ∈ S (1 ≤ i ≤ n) , then two subcases occur:

Subcase 1. If m = n , then I = S ∪ {r̄} is the Is(si)-set with cardinality n+ 1 .

Subcase 2. If m < n , then we have that NGḠ(si) = R ∪ {s̄i} . Since for any vertex r ∈ R , degGḠ(r) = n+ 1 , that is,
degGḠ(si) = m+ 1 < degGḠ(r) , vertex r cannot be strong dominated by vertex si . In addition, being
NGḠ(r) = S ∪ {r̄} and degGḠ(r̄) = m < degGḠ(r) , vertex r cannot be strong dominated by r̄ , either.
Hence, there does not exist a minimal independent strong dominating set containing the vertex si ,
yielding Is(si) = 0 .

Case 3. If r̄i ∈ R̄ (1 ≤ i ≤ m) , then two subcases occur:

Subcase 1. If m = n , then I = S ∪ {r̄i} is the unique Is(r̄i) -set with cardinality n+ 1 .

Subcase 2. Ifm < n , then we have thatNGḠ(r̄i) = ri∪R̄\{r̄i} . On one hand, since degGḠ(ri) = n+1 > degGḠ(r̄i) =
m , vertex ri cannot be strong dominated by vertex r̄i . On the other hand, NGḠ(ri) = {r̄i} ∪ S but since
degGḠ(ri) > degGḠ(s) = m+ 1 , vertex ri cannot be strong dominated by any vertex s , either, implying
that Is(r̄i)-set is an empty set, thus Is(r̄i) = 0 .

Case 4. If s̄i ∈ S̄ (1 ≤ i ≤ n) , then I = R ∪ {s̄i} is the unique Is(s̄i) -set with cardinality m+ 1 .

As a consequence, by Cases 1, 2, 3, and 4,
if m = n , then Is(GḠ) = min {m+ 1, n+ 1} = m+ 1 = n+ 1 ;
if m < n , then Is(GḠ) = min {m+ 1, 0} = 0 . Thus, the proof holds.

To prove (f), let the vertices of G = Cn be labeled sequentially as u0, u1, ..., un−1 . There exist two cases according
to the number of vertices of Cn :

Case 1. If n is even;

Subcase 1. For n 6= 4;
If I is a Is(uj)-set of GḠ where 0 ≤ j ≤ n − 1 , then exactly two vertices of Ḡ different than the
vertex uj should be in I to independent strong dominate V̄ . Let the two vertices be ūj+1 and ūj+2,
where j + 1 and j + 2 are taken modulo n , and S = V (GḠ) \ {NGḠ[ūj ] ∪NGḠ[ūj+1] ∪NGḠ[ūj+2]}.
Since GḠ[S] = Pn−4 , I includes the independent set of maximum cardinality of GḠ[S] , yielding
Is(uj) = 3 + β(Pn−4) = (n+ 2)/2 .
If I is a Is(ūj) -set ofGḠwhere 0 ≤ j ≤ n−1 , then let S = V (GḠ)\NGḠ[ūj ]. We have thatGḠ[S] = Cn+1.
Since the two adjacent vertices ūj−1 and ūj+1 are both of degree n− 2 where j − 1 and j + 1 are taken
modulo n , by including one of them to set I , other one and the vertex ū of degree 3 in GḠ are all strong
dominated. Thus, Is(ūj) = 1 + β(Cn+1) = (n+ 2)/2 .
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Subcase 2. For n = 4 ;
If I is a Is(uj)-set of GḠ where 0 ≤ j ≤ n − 1 , then since degGḠ(u) > degGḠ(ū) for all u ∈ V
and ū ∈ V̄ , I exactly includes the vertices uj and uj+2 , where j + 2 is taken modulo n. Let S =
V (GḠ) \ {NGḠ[uj ] ∪NGḠ[uj+2]} . Hence, GḠ[S] = P2 and obviously Is(uj) = 2 + β(P2) = 3.
If I is a Is(ūj)-set ofGḠwhere 0 ≤ j ≤ n−1 , then let S = V (GḠ)\NGḠ[ūj ] . We have thatGḠ[S] = Cn+1.
NGḠ(ūj) = {uj , ūj+2} being degGḠ(ūj) = 2 where j + 2 is taken modulo n , thus vertex uj of degree
3 cannot be strong dominated by vertex ūj . Therefore, I also includes both vertices uj−1 and uj+1 ,
where j − 1 and j + 1 are taken modulo n , in order to be a minimal independent strong dominating set ,
yielding Is(ūj) = {ūj , uj−1, uj+1}with cardinality 3.

By Subcases 1 and 2, for n is even, Is(GḠ) = (n+ 2)/2.

Case 2. If n is odd;
Similar to Subcase 1 of Case 1, Is(uj) = 3 + β(Pn−4) = (n + 3)/2 and Is(ūj) = 3 + β(Cn+1) = (n + 3)/2 .
Therefore, for n is odd, Is(GḠ) = (n+ 3)/2 .

By Cases 1 and 2, Is(GḠ) = d(n+ 2)/2e . Thus, the proof holds.

To prove (g), let G be a wheel of order n + 1 and consider GḠ . Since the center vertex c of G is adjacent to
every other vertex of G, it is an isolate in Ḡ and a leaf in GḠ . Therefore, if I is a Is(c)-set of GḠ , then first c ∈ I
. Since Wn = Cn + K1, if the vertices of Cn are labeled sequentially as u0, u1, ..., un−1 in GḠ , then NGḠ(c) =
{c̄} ∪ {ui | 0 ≤ i ≤ n− 1} . Let S = V (GḠ) \NGḠ[c] . Eventually, GḠ[S] = C̄n and so Is(c) = 1 + β(C̄n) = 3.

Now, consider the leaf c̄ in GḠ. NGḠ[c̄] = {c} and degGḠ(c) = n+ 1 > degGḠ(c̄) = 1 , that is, vertex c̄ cannot
strong dominate the support vertex c. In addition, N(c) = {c̄} ∪ {ui | ∀i} and since degGḠ(ui) = 4 < degGḠ(c̄) , it is
impossible to strong dominate vertex c by either vertex c̄ or any vertex ui , yielding Is(c̄) = 0 .

Consider the vertices of Cn which are labeled sequentially as u0, u1, ..., un−1 in GḠ. For any vertex ui(0 ≤ i ≤
n− 1), c ∈ N(ui) . However, we just investigated that the center vertex c of G cannot be strong dominated in GḠ by
any other neighbor vertex, therefore Is(ui) = 0 .

Consequently, consider the vertices of C̄n in GḠ . For a vertex ūi (0 ≤ i ≤ n− 1) of GḠ, ūi strong dominates
all its neighbors in Ḡ , those are the vertices in Ḡ except ūi−1 and ūi+1 , where i− 1 and i+ 1 are taken modulo n .
Since center vertex c of G cannot be strong dominated by any of its neighbors, c is included in Is(ūi)-set and so
vertices c̄ , c , and ui (∀i) are all strong dominated. Thus, Is(ūi) = 1 + β(C̄n) and Is(ūi) = 3.
As a result, Is(GḠ) = min {3, 0} = 0 .

To prove (h), we have two cases depending on the number of vertices of Pn :

Case 1. n is odd;
Consider the vertices of P̄n in GḠ .
If a vertex v̄ of P̄n in GḠ is an endvertex of Pn , then v̄ all strong dominates its neighbors. Let S = V (GḠ) \
NGḠ[v̄] and so GḠ[S] = Pn , yielding Is(v̄) = 1 + β(Pn) = (n+ 3)/2 .

If a vertex v̄ of P̄n in GḠ is a vertex adjacent to an endvertex of Pn , then v̄ all dominates the vertices of
NGḠ[v̄] including one of the endvertices ū of Pn in P̄n . But this vertex is obviously not strong dominated
since degGḠ(v̄) = n− 2 < degGḠ(u) = n− 1 . To strong dominate the vertex ū, take the other endvertex of Pn

in P̄n to Is(v̄) -set. Henceforth, the induced subgraph for the remaining nondominated vertices is the path
Pn−2 , yielding Is(v̄) = 2 + β(Pn−2) = (n+ 3)/2 .

If a vertex v̄ of P̄n in GḠ is neither an endvertex nor a vertex adjacent to an endvertex in Pn, since the
endvertices of Pn in P̄n are adjacent to vertex v̄ in P̄n, then Is(v̄)-set includes those two vertices. However,
endvertices of Pn in P̄n are the only vertices of GḠ with maximum degree. Therefore, it is impossible to
independent strong dominate the endvertices of Pn in P̄n with any other vertex of GḠ . Hence, Is(v̄) = 0 .

Now consider the vertices of Pn in GḠ which are labeled sequentially as v0, v1, ..., vn−1 .

If vi (i = 0 or n − 1) is an endvertex of Pn in GḠ , then vi cannot strong dominate its neighbors, that is,

NGḠ(vi) =

{
{v̄i, vi+1} , if i = 0;
{v̄i, vi−1} , , if i = n− 1.

Since degGḠ(v̄i) = ∆(GḠ) , vertex v̄i−1 , if i = 0; vertex v̄i+1 , if

i = n − 1 must be taken to Is(vi) -set to strong dominate v̄i , where both i − 1 and i + 1 are taken modulo



104 Z.N.Berberler

n. Let S =

{
V (GḠ) \ {NGḠ[vi] ∪NGḠ[v̄i−1]} , if i = 0;
V (GḠ) \ {NGḠ[vi] ∪NGḠ[v̄i+1]} , if i = n− 1.

by taking i − 1 and i + 1 modulo n. Hence,

GḠ[S] = Pn−2 , yielding Is(vi) = 2 + β(Pn−2) = (n+ 3)/2 .

If vi (1 ≤ i ≤ bn/2c) is not an endvertex of Pn, then Is(vi)-set should somehow include one of the endvertices
of Pn in P̄n, vertex v̄0 or v̄n−1 since those vertices have the maximum degree in GḠ . Take the vertex v̄n−1 to
Is(vi)-set. Then, let S = V (GḠ) \ {NGḠ[vi] ∪NGḠ[v̄n−1]} . Hence, we have GḠ[S] = Pi−1 ∪ Pn−i−2 , yielding

Is(vi) = 2 + β(Pi−1 ∪ Pn−i−2) = 2 + β(Pi−1) + β(Pn−i−2) =

{
(n+ 3)/2 , if i is even;
(n+ 1)/2, if i is odd.

.

As a consequence, for n is odd, Is(GḠ) = min {(n+ 3)/2, 0, (n+ 1)/2} = 0 .

Case 2. n is even;
If a vertex v̄ of P̄n in GḠ is an endvertex of Pn , then similar to Case 1, Is(v̄) = 1 + β(Pn) = (n+ 2)/2 .

For a vertex v̄ of P̄n in GḠ is a vertex adjacent to an endvertex of Pn in P̄n , then similar to Case 1, Is(v̄) =
2 + β(Pn−2) = (n+ 2)/2 .

If a vertex v̄ of P̄n in GḠ is neither an endvertex nor a vertex adjacent to an endvertex in Pn , then similar to
Case 1, Is(v̄) = 0 .

Now consider the vertices of Pn in GḠ which are labeled sequentially as v0, v1, ..., vn−1 .
If vi (i = 0 or n− 1) is an endvertex of Pn in GḠ, then similar to Case 1, Is(vi) = 2 + β(Pn−2) = (n+ 2)/2 .
If vi (1 ≤ i < n/2) is not an endvertex of Pn , then similar to Case 1, Is(vi) = (n+ 2)/2.

Consequently, for n is even, Is(GḠ) = min {(n+ 2)/2, 0} = 0 . Thus, the proof holds.

2.3 Small values

Theorem 2.5. If a vertex v has eccentricity one in G , then Is(v) = 1 .

Proof. If there exists a vertex v with eccentricity one in a graph G , then this implies that this vertex is attached to all
other n− 1 vertices of G yielding degG(v) = n− 1 = ∆(G) . Hence, vertex v can independent strong dominate V .
Thus, the proof holds.

Theorem 2.6. Let G be a graph of order n . If G has a vertex with eccentricity one, then Is(G) is either 1 or 0.

Proof. If G = Kn , then ∀v ∈ V Is(v) = 1 and so Is(G) = 1 . Otherwise, there exist at least two vertices that cannot
strong dominate a vertex with eccentricity one and so with Is = 0 yielding Is(G) = 0.

Theorem 2.7. Let G be a graph of order n > 1 . If G has a unique vertex with eccentricity one, then Is(GḠ) = 0.

Proof. If G has only one vertex v with eccentricity one in G, then in GḠ since degGḠ(v) = n > degGḠ(u) where
u ∈ NGḠ(v) , vertex v cannot be strong dominated by any of the vertices of NGḠ(v) for an Is

GḠ
(u) -set yielding

Is
GḠ

(u) = 0 and Is(GḠ) = 0.

Theorem 2.8. For a graph G of order n, if either G or Ḡ has diameter one, then Is(GḠ) = n .

Proof. If either G or Ḡ has diameter one, then GḠ is the corona Kn ◦K1 . Therefore, by Theorem 2.4 (a), the proof is
immediate.

Theorem 2.9. For a graph G of order n and its complementary prism GḠ, Is(GḠ) = 1 if and only if n = 1 .

Proof. The sufficiency is immediate since if n = 1 , then GḠ = K2 . Thus, by Theorem 2.4 (a), Is(GḠ) = 1. Now,
suppose that Is(GḠ) = 1 . This implies that there exists at least one vertex in GḠ that has Is(v) = 1 or has
eccentricity one and can independent strong dominate V (GḠ) . By the structure of complementary prisms, there
is a perfect matching between the same labeled corresponding vertices of G and Ḡ. Therefore, the equality of
Is
GḠ

(v) = 1 can only be possible when G = K1 . This establishes the necessity.
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