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Abstract 
 

This paper bestows the implementation of bio-inspired algorithms like Teaching-learning Based Optimization (TLBO) and Salp 
Swarm Algorithm (SSA) for the solution of Economic Load Dispatch (ELD) problem with multiple set of fuels. To obtain the 
optimal solution, the proposed algorithms are validated on test system consists of ten thermal units with four different load demands.  
Results have been obtained using SSA and TLBO and they are compared with the results of recently published methods. The study 
has been done without valve-point effect as well as with valve-point effect for four different load demands. Both the mentioned 
algorithms are described and presented in this paper. The optimization which has been done taking total fuel cost as the fitness 
function. The results are simulated for both the cases and analyzed and then presented in this paper. The results reveal the 
effectiveness and applicability of the proposed algorithms to ELD problem. 
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1. Introduction 

     In the present scenario the electric power demand 
is growing due to the advances in both industrial and 
public sector. The major source for this electric power 
is mainly thermal plants and they are expected to 
satisfy the load demand. For any thermal plant in 
general the generation cost will be proportional to the 
fuel cost. So, in order to provide lower generation cost 
proper load sharing of generating units are required. 
For this purpose, Economic Load Dispatch (ELD) 
problem is considered to obtain optimal allocation of 
generation by all the generating units that minimize 
the total fuel cost, while satisfying equality constraint 
and a set of inequality constraints. Usually, the ELD 
problem is complex due to the design and operation 
constraints of the generating units such as 
transmission network losses, valve-point effects, 
prohibited operating zones and multiple fuel options. 
In conventional ELD problem, the cost function is 
approximated by a single quadratic function and the 
valve-point effects are ignored.  
  
      Usually Lambda Iteration method [1] is used to 
solve the ELD problem for the proper allocation of  
thermal units with minimum fuel cost. But it is 
difficult to obtain proper allocation of generating units 

for large system. To overcome this problem 
researchers are trying new methods similar to 
Evolutionary Programming Techniques [2], Genetic 
Algorithm (GA) [3] and Particle Swarm Optimization 
(PSO) [4]. In practical power systems, an ELD 
problem is non-convex due to the valve-point effect, 
so the application of the classical methods is 
restricted. In order to solve ELD problem with valve-
point effect improved differential evolution (IDE) [5], 
Tournament-based harmony search (THS) [6] and 
Oppositional based grey wolf optimization (OGWO) 
[7] algorithms are used. 
 
      Present operating conditions of many thermal 
units, the generation cost functions for thermal plants 
be segmented as piecewise quadratic functions. The 
reasons for this partitioning of the cost curves are 
many thermal units supplied with multiple fuels like 
coal, oil and natural gas. Hence, there is a dilemma 
for some generating units to determining which fuel is 
most economical to burn. A single unit poses the 
problem of at least two cost curves for a single unit, 
these curves are not parallel. Intersecting curves 
implies that it may be more efficient to burn oil for 
some MW outputs and natural gas for others. 
Additionally, varying heat contents of natural gas 
from multiple suppliers could result in cost curves 
which are not parallel when compared to each other. 
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The notion of multiple cost curves is not limited to 
applications with multiple fuels. To solve this 
problem, many methods have been proposed such as 
hierarchical economic dispatch [8], Hopfield neural 
network (HNN) [9-10] and PSO [11] without 
considering the valve-point effect.  
 
       A non-convex ELD problem considering the 
multiple fuels with valve-point effect is more realistic. 
In recent years, many researchers put effort to solve 
the realistic ELD problem by applying various search 
techniques. Biogeography-based optimization (BBO) 
[12], Improved PSO [13], Improved Random Drift 
PSO [14], hybrid algorithm consisting of distributed 
sobol PSO, tabu search algorithm (DSPSO-TSA) 
[15], backtracking search algorithm (BSA) [16], 
Lighting Flash algorithm (LFA) [17], new adaptive 
PSO (NAPSO) [18] and multiple algorithms [19] 
consisting of modified shuffled frog leaping algorithm 
(MSFLA), global-best harmony search algorithm 
(GHS), hybrid algorithm such as SFLA-GHS and 
shuffled differential evolution (SDE)  are committed 
to the solve ELD problem with valve-point loading 
and multiple fuel options. 
 

In this paper, implementation and application 
of some nature inspired algorithms like Teaching-
Learning Based Optimization (TLBO) [20] and Salp 
Swarm algorithm (SSA) [21] for a constrained ELD 
problem. They are applied on a ten unit thermal 
system with multiple fuel quadratic cost function as 
first case and including valve-point effect as second 
case to test the efficiency of the suggested algorithms.   

 
2. PROBLEM FORMULATION 

 
2.1. ELD problem formulation 
 
      In order to minimize the cost of operation, 
Economic Load Dispatch (ELD) is the process of 
optimal allocation of available generation units to 
satisfy the required load demand. In general, the 
generation cost function represented as a second order 
function, as shown in Eqn. (1). 

2
k Gk k Gk k Gk kF (P ) a P b P c                          (1) 

Where ka , kb  and kc are coefficients of generator k. 

The objective function is minimizing to generation cost 
as shown in Eqn. (2). 

n

k Gk
k 1

F min f F (P ) ($ / h)


     (2) 

Where kF  denotes total generation cost for the 

generator unit k, which is defined in Eqn. (1). 
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Figure 2. Fuel cost function with valve-point effect. 

 
2.2. ELD problem with multiple fuels 
 
       Practically the generating units are supplied with 
multiple fuels like oil, gas and coal. In general fuel cost 
represent as single quadratic function even though 
supplied with multiple fuels. But it’s not accurate 
longer than, hence the fuel cost function with multiple 
fuels should be represented as several piecewise 
quadratic functions as shown in 
Fig. 1 reflecting the effects of fuel changes and the 
generator must identify the most economic fuel to burn. 
Practically the fuel cost function should be expressed 
as shown in Eqn. (3).                  
 
2.3. ELD problem with valve-point effect 
        

In practical power system cost function is non-
convex, because of multi-valve steam turbines in 
generating units. Due to the valve-point effect cost 
function contains higher order non-linearity as shown 
in Fig. 2. Hence to simulate the valve-point effect 
added sinusoidal terms to the second order cost 
functions as follows Eqn. (4). 
Where ck cke and f  are constants of the unit-k due to 

discontinuities of generating unit. 
 
2.4. ELD problem with multiple fuels including 

valve-point effect 
       

  In practical operation, generating units are 
supplied with multiple fuels and also including valve-
point effect to the cost functions in order to get 
accurate ELD solution. The generation cost function 
with multiple fuels (3) should be combined with valve-
point effect (4), and can be practically expressed as 
Eqn. (5). 
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Figure 3. Fuel cost function with multiple fuels including 

valve-point effect. 
Complication of the practical ELD problem is due to 
the involvement of valve-point effect and multiple 
fuels to the fuel cost function which is graphically 
shown in Fig.3. 
 
2.4.1. Equality constraint 
 

Total generation of any power system must 
meet the required load demand and losses occur in the 
transmission lines, as shown in Eqn. (6). 
NG

Gk D L
k 1

P P P


           (6) 

Where LP  denotes power losses and DP  denotes the 

power demand. The power loss can be computed using 
B-coefficient method expressed as a second order 
function shown in Eqn. (7). 

n n n

L Gj jk Gk 0 j Gj 00
j 1k 1 j 1

P P B P B P B (MW)
  

      (7)  

 
2.4.2. Power limit constraint 

Any generator output can be varied between 
minimum and maximum power limits as follows Eqn. 
(8). 

min max
Gk Gk GkP P P                                                      (8) 

 
3.TLBO ALGORITHM 
 

Based on the influence of a teacher on learners, 
Ravipudi Venkata Rao proposed Teaching-Learning 
based optimization technique (TLBO) [20]. This 
method works on the effect of teacher on the learners in 
a class, and consequently, learning by interaction 
between learners which helps in their grades. In this 
algorithm a number of solutions which is considered as 
the population or a group of students in a class. 
Learners’ different subjects are represented as design 
parameters in TLBO, and the learners’ grades is similar 
to the ‘‘fitness’’. The best solution in, TLBO is similar 
to teacher because teacher is the most learned person in 
the society. TLBO divided into two parts, among the 
first part is ‘‘teacher phase’’ and the second part is 
‘‘learner phase’’. The learners learning from teachers 
means ‘‘teacher phase’’ and the learners learning 
through the interaction between learners in a class 
means  ‘‘learner phase’’. Now, implementation of 
TLBO is described below. 

 
3.1. Initialization 
          The population X is randomly initialized which 
is bounded by matrix of N (no. of learners) rows and 

D (no.of subjects) columns. The thj parameter of  the  
thi learner is assigned values randomly using the Eqn. 

(9). 
0 min max min
i, j j j jX X rand *(X X )                  (9) 

Where rand  represents a random variable within the 

range (0, 1), min max
j jX and X  represents the minimum 

and maximum value for thj  parameter.  

3.2. Teacher Phase 
The mean result of each subject of the learners in the 
class at generation p is given as Eqn. (10). 

p p p p pp
D1 2 3 jM [m ,m ,m ,........,m ,........m ]                   (10) 
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The minimum objective function of learner is 
represented as the ‘Teacher’ ( TX ). The teacher tries to 

improve the grades of other learners ( LX ) by updating 

the mean result ( pM ) of the classroom towards TX   

position. New position of student is given by Eqn. (11). 
p p p p
L L TXnew X rand(X TF*M )               (11)  

Here the valve of TF (teaching factor) either 1 or 2, it is 
evaluated using Eqn. (12). 
TF round[1 rand(0,1){2 1}]                            (12) 

Where TF valve is  randomly decided by the algorithm 
using above Equation. 

If p
LXnew  is found to be lesser than p

LX in generation 

p, than it interchanges on p
LX otherwise it remains p

LX .  

3.3. Learner Phase 
In this phase, the learners increase their 

knowledge with help of other learners. Therefore, each 
learner learns new knowledge if the other learners have 

more knowledge than him/her. For a learner p
LX , 

randomly select other learner p
randLX  as L randL . 

New position of each learner is given by Eqn. (13) and 
Eqn. (14). 

p p p p p p
L L L LrandL randLXnew X rand*(X X ) if f (X ) f (X )    (13) 
p p p p p p
L L L LrandL randLXnew X rand*(X X ) if f (X ) f (X )     (14) 

When MAXIT (maximum iteration) is completed, and 
then the TLBO algorithm is stop, otherwise ‘Teacher 
Phase’ repeated. The flowchart of  TLBO algorithm 
shown in Fig. 4. 
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Figure 4. Flowchart of TLBO algorithm 

 

Execution of TLBO algorithm for ELD  
 
The steps for solving ELD problem using TLBO 
algorithm as follows: 
Step 1: Read cost coefficients of generators, 
minimum/maximum power limits and load demand. 
Step 2: Set time count t=1 and repeat the next steps up 
to maximum iterations. 
Step 3: Start “teacher phase”, teacher is selected to 
minimize the cost. 
Step 4:  In teacher phase new generator matrix is 
formed using Eqn. (10) and Eqn. (11). 
Step 5:   Start “learner phase”, generation is upgraded 
by collaboration with different learners. 
Step 6: Random learner is selected for an individual 
learner to interact each other using Eqn. (13) and Eqn. 
(14). 
Step 7: The process is terminated when maximum 
iteration reached. Otherwise repeat from teacher phase.  

 
4. SALP SWARM ALGORITHM 

 
4.1 Inspiration 

Salp Swarm Algorithm (SSA) [21] is a novel 
optimization algorithm for solving optimization 
problem. The main inspiration of SSA is the swarming 
behaviour of salps when navigating and foraging in 
oceans. Salps belong to the family of Salpidae and 
have transparent barrel-shaped body. Their tissues are 
highly similar to jelly fishes. Salps move similar to 
jelly fish, in which the water is pumped through body 
as propulsion to move forward. In deep oceans, salps 
often form a swarm called salp chain. This is done for 
achieving better locomotion using rapid coordinated 
changes and foraging. 
4.2. Proposed mathematical model for moving 

salp chains 
The population is first divided to two groups: leader 

and followers.  The leader is the salp at the front of the 
chain, whereas the rest of salps are considered as 
followers.  As the name of these salps implies, the 
leader guides swarm and the followers follow each 
other (and leader directly or indirectly). To update the 
position of the leader the following Eqn. (15) is 
proposed. 

j 1 j j 2 j 31
j

j 1 j j 2 j 3

F c ((ub lb )c lb ) c 0.5
x

F c ((ub lb )c lb ) c 0.5

        
    (15)                       

                                   

Where 1
jx shows the position of the first salp 

(leader), jF is the position of the food source, 

1 2 3c ,c and c   
are random numbers. Equation (15) shows that the 
leader only updates its position with respect to the food 
source. The coefficient 1C  is the most important 
parameter in SSA it defined using Eqn. (16). 

4l 2( )
L

1c 2e


                                                             (16) 
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Where l is the current iteration and L is the 
maximum number of iterations.  

The parameter 2C  and 3C  are random numbers 
uniformly generated in the interval of [0, 1]. In fact, 
they dictate if the next position in jth dimension should 
be towards positive infinity or negative infinity as well 
as the step size. To update the position of the followers, 
the following Eqn. (17) is utilized (Newton’s law of 
motion): 

i 2
j 0

1
x at v t

2
                                            (17) 

Where i ≥ 2, i
jx  shows the position of ith follower salp 

in jth dimension, t is time, 0V  is the initial speed, and 

final

0

v
a

v
 where 0x x

v
t


 . 

Because the time in optimization is iteration, the 
discrepancy between iterations is equal to 1 and 
considering  

0V = 0, this equation can be expressed as follows: 

i i i 1
j j j

1
x (x x )

2
           (18)           

Where i ≥ 2 and i
jx shows the position of ith follower 

salp in jth dimension. 
When maximum iteration is reached, and then the SSA 
algorithm is stop, otherwise from leader section 
algorithm repeated. The flowchart of SSA algorithm 
shown in  Fig. 5. 
 
5. NUMERICAL RESULTS  

To prove the efficacy and superiority of present 
approaches, a ten unit system is considered with 
multiple fuels in first case and valve-point effects are 
considered along with multiple fuels in second case. 
The input data available in reference [19]. In this ELD 
problem, generators are supplied with three types of 
fuels, namely 1, 2 and 3. The total ten units are 
categorized into three subsystems, where the 1st 
subsystem consists of four thermal units and remaining 
two subsystems consists of three thermal units. Among 
the ten thermal units unit-1 supplied with only two 
types fuels (1 and 2), unit-9 is a different, even though 
fuel 2 is available but uneconomical to burn and when 
fuels 1 and 3 are not available then fuel 2 can be 
utilized instantly.  

The parameters require to implementing the TLBO 
and SSA algorithms are as follows. The population 
(no.of students in class or no. of salps) and maximum 
iteration (termination criteria) are set as 40 and 1500. 
To reduce the statistical errors, test system repeated 50 
times and all simulations are developed in MATLAB 
2014a.  
5.1. ELD problem with multiple fuels  

ELD problem with multiple fuels is 
considered as first case. This case, the 10-unit system 
data, such as fuel types and its cost coefficients are 
taken from Ref. [11]. Initially load demand considered 
as 2400 MW and later with increment of 100 MW, load 

demand increases upto 2700 MW. The best results of 
the proposed TLBO and SSA algorithms are shown in 
Tables 1-4 for different load demands of 2400 MW to 
2700 MW respectively. The comparisons of results 
after 50 trials for the ten unit system with multiple 
fuels are given in Table 5. Furthermore, the average 
and maximum values obtained by proposed algorithms 
are equal to minimum value, which proves the 
robustness of the proposed algorithms. But the time 
require for TLBO is more compared with SSA 
algorithm.  

 
Fig. 5. Flowchart of SSA algorithm 

For this ten unit test system, the optimal 
solution attained from the methods informed in the 
literature namely, hierarchical  economic dispatch [8], 
HNN [9-10], PSO [11] and the proposed algorithms are 
listed in Table 1-4 for a demand of 2400 MW to 2700 
MW respectively.  From the results it can be concluded 
that the proposed methods obtain optimal results as 
compare with other methods informed in the literature. 
The convergence characteristics of the suggested 
algorithms are shown in Fig. 6-9 for different load 
demands.  
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Update the position of follower 
by using Eqn. (17) 

Calculate fitness values of all 
salps by using Eqn. (3) or (5)

& obtain optimal value

Replace salps with its 
corresponding salp if it 

becomes fitter using Eqn. (15) 
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Table 1: Simulation and Comparisons results of proposed algorithms with demand = 2400 MW. 
Unit HM [8] MHNN [9] AHNN [10] MPSO [11] TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

P1(MW) 1 193.2 1 192.7 1 189.1 1 189.7 1 189.7405 1 189.7406 
P2(MW) 1 204.1 1 203.8 1 202.0 1 202.3 1 202.3427 1 202.3427 
P3(MW) 1 259.1 1 259.1 1 254.0 1 253.9 1 253.8953 1 253.8952 
P4(MW) 3 234.3 2 195.1 3 233.0 3 233.0 3 233.0456 3 233.0456 
P5(MW) 1 249.0 1 248.7 1 241.7 1 241.8 1 241.8297 1 241.8296 
P6(MW) 3 195.5 3 234.2 3 233.0 3 233.0 3 233.0456 3 233.0456 
P7(MW) 1 260.1 1 260.3 1 254.1 1 253.3 1 253.2750 1 253.2750 
P8(MW) 3 234.3 3 234.2 3 232.9 3 233.0 3 233.0456 3 233.0455 
P9(MW) 1 325.3 1 324.7 1 320.0 1 320.4 1 320.3832 1 320.3831 
P10(MW) 1 246.3 1 246.8 1 240.3 1 239.4 1 239.3969 1 239.3970 
PT(MW) 2401.2 2399.8 2400.0 2400 2400 2400 
FC($/h) 488.500 487.87 481.700 481.723 481.7226 481.7226 

Time(sec) ----- ----- ----- ----- 9.1955 4.6413 
 
Table 2: Simulation and Comparisons results of proposed algorithms with demand = 2500 MW. 

Unit HM [8] MHNN [9] AHNN [10] MPSO [11] TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel type 
GEN 
(MW) 

P1(MW) 2 206.6 2 206.1 2 206.0 2 206.5 2 206.5190 2 206.5190 
P2(MW) 1 206.5 1 206.3 1 206.3 1 206.5 1 206.4573 1 206.4573 
P3(MW) 1 265.9 1 265.7 1 265.7 1 265.7 1 265.7391 1 265.7392 
P4(MW) 3 236.0 3 235.7 3 235.9 3 236.0 3 235.9531 3 235.9532 
P5(MW) 1 258.2 1 258.2 1 257.9 1 258.0 1 258.0177 1 258.0177 
P6(MW) 3 236.0 3 235.9 3 235.9 3 236.0 3 235.9531 3 235.9531 
P7(MW) 1 269.0 1 269.1 1 269.6 1 268.9 1 268.8635 1 268.8635 
P8(MW) 3 236.0 3 235.9 3 235.9 3 235.9 3 235.9531 3 235.9531 
P9(MW) 1 331.6 1 331.2 1 331.4 1 331.5 1 331.4877 1 331.4877 
P10(MW) 1 255.2 1 255.7 1 255.4 1 255.1 1 255.0562 1 255.0561 
PT(MW) 2501.1 2499.8 2500.0 2500.0 2500.0 2500.0 
FC($/h) 526.700 526.13 526.2300 526.239 526.2388 526.2388 

Time(sec) ----- ----- ----- ----- 8.7299 4.5864 
 
Table 3: Simulation and Comparisons results of proposed algorithms with demand = 2600 MW. 

Unit HM [8] MHNN [9] AHNN [10] MPSO [11] TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel type 
GEN 
(MW) 

P1(MW) 2 216.4 2 215.3 2 215.8 2 216.5 2 209.7880 2 209.7880 
P2(MW) 1 210.9 1 210.6 1 210.7 1 210.9 1 207.9079 1 207.9079 
P3(MW) 1 278.5 1 278.9 1 279.1 1 278.5 1 269.9146 1 269.9146 
P4(MW) 3 239.1 3 238.9 3 239.1 3 239.1 3 236.9782 3 236.9782 
P5(MW) 1 275.4 1 275.7 1 276.3 1 275.5 1 263.7247 1 263.7247 
P6(MW) 3 239.1 3 239.1 3 239.1 3 239.1 3 236.9782 3 236.9782 
P7(MW) 1 285.6 1 286.2 1 286.0 1 285.7 1 274.3591 1 274.3591 
P8(MW) 3 239.1 3 239.1 3 239.1 3 239.1 3 236.9782 3 236.9782 
P9(MW) 1 343.3 1 343.5 1 342.8 1 343.5 1 402.7945 1 402.7945 
P10(MW) 1 271.9 1 272.6 1 271.9 1 272.0 1 260.5767 1 260.5767 
PT(MW) 2600.0 2599.8 2600.00 2600.00 2600.00 2600.00 
FC($/h) 574.030 574.26 574.370 574.381 573.7413 573.7413 

Time(sec) ----- ----- ----- ----- 8.9296 4.5722 
Table 4: Simulation and Comparisons results of proposed algorithms with demand = 2700 MW. 

Unit HM [8] MHNN [9] AHNN [10] MPSO [11] TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel type 
GEN 
(MW) 

P1(MW) 2 218.4 2 224.5 2 225.7 2 218.3 2 209.7880 2 209.7880 
P2(MW) 1 211.8 1 215.0 1 215.2 1 211.7 1 207.9079 1 207.9079 
P3(MW) 1 281.0 3 291.8 1 291.8 1 280.7 1 269.9146 1 269.9146 
P4(MW) 3 239.7 3 242.2 3 242.3 3 239.6 3 236.9782 3 236.9782 
P5(MW) 1 279.0 1 293.3 1 293.7 1 278.5 1 263.7247 1 263.7247 
P6(MW) 3 239.7 3 242.2 3 242.3 3 239.6 3 236.9782 3 236.9782 
P7(MW) 1 289.0 1 303.1 1 302.8 1 288.6 1 274.3591 1 274.3591 
P8(MW) 3 239.7 3 242.2 3 242.3 3 239.6 3 236.9782 3 236.9782 
P9(MW) 3 429.2 3 355.7 3 355.1 3 428.5 3 402.7945 3 402.7945 
P10(MW) 1 275.2 1 289.5 1 288.8 1 274.9 1 260.5767 1 260.5767 
PT(MW) 2702.2 2699.7 2700.00 2700.00 2700.00 2700.00 
FC($/h) 625.180 626.12 626.240 623.809 622.8092 622.8092 

Time(sec) ----- ----- ----- ----- 9.1236 4.3085 
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Table 5: Statistical comparison of proposed algorithms for 50 trials. 
Load (MW) Cost ($/h) SDE [19] SFLA-GHS [19] TLBO SSA 

2400 
Minimum cost 481.7226 481.7226 481.7226 481.7226 
Average cost 481.7226 481.7226 481.7226 481.7226 

Maximum cost 481.7226 481.7226 481.7226 481.7226 

2500 
Minimum cost 526.2388 526.2388 526.2388 526.2388 
Average cost 526.2388 526.2388 526.2388 526.2388 

Maximum cost 526.2388 526.2388 526.2388 526.2388 

2600 
Minimum cost 574.3808 574.3808 573.7413 573.7413 
Average cost 574.3808 574.3808 573.7413 573.7413 

Maximum cost 574.3808 574.3808 573.7413 573.7413 

2700 
Minimum cost 623.8092 623.8092 622.8092 622.8092 
Average cost 623.8092 623.8092 622.8092 622.8092 

Maximum cost 623.8092 623.8092 622.8092 622.8092 
 
From the convergence characteristics the results presented in the tables are ratified. From the graphs observed that 

TLBO algorithm get convergence with less number of iterations as compare with SSA algorithm, but the amount of 
time require for (each trial) TLBO algorithm is more as compared with SSA algorithm. For statistical analysis proposed 
algorithms are repeated 50 times and corresponding convergence curves for 50 trials are presented in Fig. 10 and Fig. 
11 for the load demand of 2700 MW. 

 
Figure 6. Convergence characteristics of 10 unit system 

with power demand = 2400 MW for case 1. 

 
Figure 7. Convergence characteristics of 10 unit system 

with power demand = 2500 MW for case 1. 

 
Figure 8. Convergence characteristics of 10 unit system 

with power demand = 2600 MW for case 1. 

 
Figure 9. Convergence characteristics of 10 unit system 

with power demand = 2700 MW for case 1. 

 
Figure 10. TLBO characteristics of 10 unit system with 
power demand = 2700 MW for 50 trials for case 1. 

Figure 11. SSA characteristics of 10 unit system with 
power demand = 2700 MW for 50 trials for case 1. 

11Journal of Intelligent Systems: Theory and Applications 1(1) 2018: 5-15



Y. V. Krishna Reddy, Dr. M. Damodar Reddy

 
5.2. ELD problem with multiple fuels including Valve-Point effect  
 

ELD problem with multiple fuels including valve-point effect is considered as second case. This case, the 10-
unit system data, such as fuel types and its cost coefficients are taken from Ref. [17]. Load demands are consider as 
similar to previous case like 2400 MW to 2700 MW with increment of 100 MW.  The best results of the proposed 
TLBO and SSA algorithms are shown in Tables 6-9 for different load demands of 2400 MW to 2700 MW respectively. 
The comparisons of results after 50 trials for the ten unit thermal system with multiple fuels with valve-point effect are 
given in Table 10. Furthermore, the average and maximum values obtained by proposed algorithms are approximately 
same as minimum value because due to the effect of valve-point effect.  
 
Table 6: Simulation and Comparisons results of proposed algorithms with demand = 2400 MW. 

Unit SDE [19] MSFLA[19] GHS [19] 
SFLA-GHS 

[19] 
TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

P1(MW) 1 190.09 1 184.57 1 189.31 1 188.52 1 190.0426 1 189.7406 
P2(MW) 1 202.3 1 204.78 1 202.55 1 203.54 1 201.7834 1 202.3427 
P3(MW) 1 254.44 1 244.36 1 253.43 1 254.44 1 254.1962 1 253.8952 
P4(MW) 3 233.05 3 231.85 3 233.05 3 234.53 3 233.0582 3 233.0456 
P5(MW) 1 240.36 1 254.55 1 243.96 1 239.93 1 240.6335 1 241.8296 
P6(MW) 3 233.05 3 29.29 3 234.13 3 232.78 3 231.2827 3 233.0456 
P7(MW) 1 252.16 1 257.11 1 252.18 1 254.54 1 253.1148 1 253.2750 
P8(MW) 3 233.05 3 234.53 3 233.45 3 231.71 3 232.8416 3 233.0455 
P9(MW) 1 320.39 1 323.16 1 319.28 1 322.05 1 322.6016 1 320.3831 
P10(MW) 1 241.06 1 235.79 1 238.63 1 237.3 1 240.4456 1 239.3970 
PT(MW) 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 
FC($/h) 481.7305 482.278 481.75043 481.7754 481.7489 481.6420 

Time(sec) ----- ----- ----- ----- 60.1740 15.5595 
 

Table 7: Simulation and Comparisons results of proposed algorithms with demand = 2500 MW. 

Unit SDE [19] MSFLA[19] GHS [19] 
SFLA-GHS 

[19] 
TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel type 
GEN 
(MW) 

P1(MW) 2 207.29 2 208.32 2 207.30 2 206.22 2 212.1764 2 207.1101 
P2(MW) 1 206.26 1 206.01 1 206.76 1 206.76 1 205.2873 1 203.5421 
P3(MW) 1 265.53 1 266.54 1 265.53 1 265.53 1 265.5651 1 265.3599 
P4(MW) 3 236.01 3 237.08 3 235.60 3 234.26 3 236.6921 3 236.2802 
P5(MW) 1 258.34 1 254.37 1 258.27 1 258.49 1 252.2533 1 254.9352 
P6(MW) 3 236.01 3 236.95 3 235.20 3 235.07 3 235.0916 3 234.5333 
P7(MW) 1 268.75 1 266.49 1 268.75 1 271.17 1 269.9148 1 273.6039 
P8(MW) 3 236.01 3 236.68 3 236.28 3 233.86 3 233.8608 3 239.2363 
P9(MW) 1 332.02 1 328.69 1 332.56 1 334.23 1 331.4671 1 333.1278 
P10(MW) 1 253.74 1 258.82 1 253.71 1 254.37 1 257.6916 1 252.2711 
PT(MW) 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 
FC($/h) 526.24266 526.33166 526.26547 526.32577 526.2762 526.1032 

Time(sec) ----- ----- ----- ----- 54.3198 12.8801 
 

Table 8: Simulation and Comparisons results of proposed algorithms with demand = 2600 MW. 

Unit SDE [19] MSFLA[19] GHS [19] 
SFLA-GHS 

[19] 
TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

P1(MW) 2 216.53 2 218.59 2 209.34 2 214.48 2 216.8075 2 212.0521 
P2(MW) 1 210.72 1 203.04 1 207.99 1 212.70 1 210.4631 1 208.4934 
P3(MW) 1 278.64 1 271.58 1 269.62 1 277.63 1 282.6441 1 272.5263 
P4(MW) 3 238.83 3 236.41 3 236.95 3 239.63 3 239.3174 3 236.1458 
P5(MW) 1 276.31 1 276.43 1 265.48 1 275.03 1 276.4376 1 263.5184 
P6(MW) 3 238.96 3 241.92 3 235.87 3 241.25 3 238.4607 3 236.8176 
P7(MW) 1 285.35 1 287.72 1 273.51 1 282.98 1 282.9223 1 277.0237 
P8(MW) 3 238.83 3 240.84 3 237.75 3 239.37 3 238.4305 3 237.2208 
P9(MW) 1 343.09 1 344.19 1 403.32 1 344.19 1 342.0667 1 395.7819 
P10(MW) 1 272.70 1 27.22 1 260.11 1 272.69 1 272.4502 1 260.4200 
PT(MW) 2600.0 2600.0 2600.00 2600.00 2600.00 2600.00 
FC($/h) 574.3839 574.89446 574.78857 574.4561 573.7620 573.5663 

Time(sec) ----- ----- ----- ----- 54.1888 13.4834 
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For this ten unit test system, the optimal solution attained from the methods informed in the literature namely, 
SDE [19], MSFLA [19], GHS [19],  SFLA-GHS [19] and the proposed algorithms are listed in Table 6-8 for a demand 
of 2400 MW, 2500 MW and 2600 MW respectively. For 2700 MW power demand optimal solution compared with 
DPSO-TSA [15], BSA [16], NAPSO [18], SFLA-GHS [19] and the proposed algorithms are listed in Table 9. From the 
results it can be concluded that the suggested methods obtain best results as compare with other methods informed in 
the literature. The convergence characteristics of the suggested algorithms are shown in Fig. 12-15 for different load 
demands.  

 
Table 9: Simulation and Comparisons results of proposed algorithms with demand = 2700 MW. 

Unit DPSO-TSA [15] BSA [16] NAPSO [18] 
SFLA-GHS 

[19] 
TLBO SSA 

 
Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

Fuel 
type 

GEN 
(MW) 

P1(MW) 2 217.55 2 218.57 2 219.06 2 218.59 2 219.7690 2 221.6360 
P2(MW) 1 211.21 1 211.21 1 211.16 1 212.20 1 210.9383 1 209.7312 
P3(MW) 1 279.64 3 279.56 1 279.65 1 279.64 1 278.8449 1 280.6238 
P4(MW) 3 240.04 3 239.50 3 239.41 3 239.90 3 239.1031 3 240.5800 
P5(MW) 1 279.94 1 279.97 1 280.09 1 279.95 1 277.9823 1 276.8772 
P6(MW) 3 239.77 3 241.11 3 239.52 3 239.77 3 237.0181 3 239.2363 
P7(MW) 1 287.73 1 289.79 1 287.73 1 290.09 1 285.2918 1 294.9909 
P8(MW) 3 239.50 3 240.57 3 240.08 3 239.50 3 238.9219 3 239.5051 
P9(MW) 3 428.70 3 426.88 3 428.17 3 427.45 3 439.2320 3 423.6788 
P10(MW) 1 275.86 1 272.79 1 275.07 1 272.84 1 272.8986 1 273.1406 
PT(MW) 2700.0 2700.0 2700.00 2700.00 2700.00 2700.00 
FC($/h) 623.8375 623.9016 623.62170 623.84065 622.8490 622.7174 

Time(sec) ----- ----- ----- ----- 52.0099 22.8867 
 

Table 10: Statistical comparison of proposed algorithms for 50 trials. 
Load (MW) Cost ($/h) TLBO SSA 

2400 
Minimum cost 481.7489 481.6420 
Average cost 481.8118 481.9565 

Maximum cost 481.8655 482.1060 

2500 
Minimum cost 526.2762 526.3032 
Average cost 526.3337 527.9598 

Maximum cost 526.4121 526.5349 

2600 
Minimum cost 573.7620 573.5663 
Average cost 574.1227 574.2088 

Maximum cost 574.5190 574.7104 

2700 
Minimum cost 622.8490 622.7174 
Average cost 622.8836 622.9975 

Maximum cost 622.9424 623.1005 
 
From the results conclude that proposed methods produce better results as compared with other methods proposed in 

the literature. For given different load demands proposed method SSA produce better result as compare with TLBO  
Method and also the computational time for SSA is less as compared with TLBO method. The convergence 
characteristics for TLBO and SSA are shown in below figures. 

 
Figure. 12. Convergence characteristics of 10 unit 

system with power demand = 2400 MW for case 2. 
 

 
Figure. 13. Convergence characteristics of 10 unit system 

with power demand = 2500 MW for case 2. 
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Figure 14. Convergence characteristics of 10 unit 

system with power demand = 2600 MW for case 2. 

 
Figure 15. Convergence characteristics of 10 unit system 

with power demand = 2700 MW for case 2. 

 
Figure 16. TLBO characteristics of 10 unit system with 
power demand = 2700 MW for 50 trials for case 2. 

 
Figure 17. SSA characteristics of 10 unit system with 
power demand = 2700 MW for 50 trials for case 2. 

 
From the convergence characteristics the results 

presented in the tables are ratified. From the graphs 
observed that TLBO algorithm get convergence with 
less number of iterations as compare with SSA 
algorithm, but the amount of time require for (each 
trial) TLBO algorithm is more as compared with SSA 
algorithm. For statistical analysis proposed algorithms 
are repeated 50 times and corresponding convergence 
curves for 50 trials are presented in Fig. 16 and Fig. 17 
for the load demand of 2700 MW. 

 
6. CONCLUSIONS 

 
In this paper, we attempt to use recently developed 
Teaching-Learning Based Optimization (TLBO) and 
Salp Swarm Algorithm (SSA) to solve the realistic 
Economic Load Dispatch (ELD) problem. In this work, 
we address the 10-unit system with multiple fuel option 
as first case and non-convex ELD problem with 
multiple fuel options as second case. The proposed 
methods exhibits same result during first case, but for 
second case SSA method exhibits better result as 
compare with TLBO method. The suggested 
algorithms found optimal results for the 10 unit thermal 
system than the other results found so far in the 
literature. The results clearly indication that the 
suggested methods can be used as an effective 
optimizer providing better results for real power system 
ELD problems. 
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