Cumhuriyet Üniversitesi Fen Fakïltesi
Fen Bilimleri Dergisi (CFD), Ciltl 36, No. 1 (2015)
ISSN: 1300-1949

SPLIT SEMI-QUATERNIONS ALGEBRA IN SEMI-EUCLIDEAN 4-SPACE

MEHDI JAFARI
Department of Mathematics, University College of Science and Technology Elm o Fan, Urmia, Iran

Received: 27.07.2014; Accepted: 29.01.2015

> AbSTRACT. The aim of this paper is to study the split semi-quaternions, $H_{s s}$, and to give some of their algebraic properties. We show that the set of unit split semi-quaternions is a subgroup of $H_{s s}^{\circ}$. Furthermore, with the aid of De Moivre's formula, any powers of these quaternions can be obtained.
> Keywords De Moivre's formula, Split semi-quaternion, Euler's formula.

1. Introduction

Quaternions were invented by Sir William Rowan Hamilton as an extension to the complex number in 1843. Hamilton's defining relation is most succinctly written as

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

Quaternions have provided a successful and elegant means for the representation of three dimensional rotations, Lorentz transformations of special relativity, robotics, computer vision, problems of electrical engineering and so on. The Euler's and De-Moivre's formulas for the complex numbers are generalized for quaternions. Obtaining the roots of a quaternion was given by Niven[3] and Brand [1]. Brand proved De Moivre's theorem and used it to find n-th roots of a quaternion. These formulas are also investigated in the cases of split and semi-quaternions $[2,4]$. A brief introduction of the split semi-quaternions is provided in [5]. In this paper, we investigate some algebraic properties of split semi-quaternions. Moreover, we obtain De-Moivre's and Euler's formulas for these quaternions in different cases. We use De-Moivre's formula to find $n-$ th roots of a split semi-quaternion. Finally, we give some example for the purpose of more clarification.

2. Splitsemi-quaternions

Definition 2.1. A split semi-quaternion q is defined as

$$
q=a_{0}+a_{1} i+a_{2} j+a_{3} k
$$

where a_{0}, a_{1}, a_{2} and a_{3} are real numbers and i, j, k are quaternionic units with the properties that

$$
\begin{aligned}
& i^{2}=1, \quad j^{2}=k^{2}=0 \\
& i j=k=-j i, \quad j k=0=k j
\end{aligned}
$$

and

$$
k i=-j=-i k
$$

[^0]The set of all split semi-quaternions are denoted by $H_{s s}$. A split semi-quaternion q is a sum of a scalar and a vector, called scalar part, $S_{q}=a_{0}$, and vector part $V_{q}=a_{1} i++a_{2} j+a_{3} k$. The set of split semi-quaternions $H_{s s}-\{[0,(0,0,0)]\}$ is written $H_{s s}^{\circ}$.

Let $q, p \in H_{s s}$, where $q=S_{q}+V_{q}$ and $p=S_{p}+V_{p}$. The addition operator, + , is defined

$$
\begin{aligned}
q+p & =\left(S_{q}+S_{p}\right)+\left(V_{p}+V_{q}\right) \\
& =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) i+\left(a_{2}+b_{2}\right) j+\left(a_{3}+b_{3}\right) k .
\end{aligned}
$$

This rule preserves the associativity and commutativity properties of addition. The product of scalar and a split semi-quaternion is defined in a straightforward manner. If c is a scaler and $q \in H_{s s}$,

$$
c q=c S_{q}+c V_{q}=\left(c a_{0}\right) 1+\left(c a_{1}\right) i+\left(c a_{2}\right) j+\left(c a_{3}\right) k .
$$

The multiplication rule for split semi-quaternions is defined as

$$
q p=S_{q} S_{p}-<V_{q}, V_{p}>+S_{q} V_{p}+S_{p} V_{q}+V_{q} \times V_{p},
$$

where

$$
<V_{q}, V_{p}>=-a_{1} b_{1}, V_{p} \times V_{q}=0 i-\left(a_{3} b_{1}-a_{1} b_{3}\right) j+\left(a_{1} b_{2}-a_{2} b_{1}\right) k
$$

It could be written as

$$
q p=\left[\begin{array}{cccc}
a_{0} & a_{1} & 0 & 0 \\
a_{1} & a_{0} & 0 & 0 \\
a_{2} & -a_{3} & a_{0} & a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

Split semi-quaternion multiplication is not generally commutative. We state the following properties of quaternion multiplication:

Proposition 2.1. Let $q, q^{\prime}, p \in H_{s s}$ and $r \in \mathbb{R}$. Then

$$
\begin{array}{rlrl}
(p q) q^{\prime} & =p\left(q q^{\prime}\right) & & \text { (Quaternion multiplication is associative.) } \\
p\left(q+q^{\prime}\right) & =p q+p q^{\prime} & \text { (Quaternion multiplication distributes } \\
\left(q+q^{\prime}\right) p & =q p+q^{\prime} p & \text { across addition. })
\end{array}
$$

Corollary 2.1. $H_{s s}$ with addition and multiplication has all the properties of a number field expect commutativity of the multiplication. It is therefore called the skew field of quaternions.

3. Some properties of split semi-quaternions

Definition 3.1. Let $q \in H_{s s}$. Then \bar{q} is called the conjugate of q is defined by

$$
\bar{q}=a_{0}-\left(a_{1} i+a_{2} j+a_{3} k\right)=S_{q}-V_{q}
$$

It is clear the scalar and vector part of q is denoted by $S_{q}=\frac{q+\bar{q}}{2}$ and $V_{q}=\frac{q-\bar{q}}{2}$.
The above definition would lead to the following properties:
Proposition 3.1. Let $q, p \in H_{s s}$. Then
i) $\overline{\bar{q}}=q$
ii) $\overline{p q}=\bar{q} \bar{p}$
iii) $\overline{q+p}=\bar{q}+\bar{p}$
iv) $q \bar{q}=\bar{q} q$.

Definition 3.2. Let $q \in H_{s s}$ and let the mapping $\|\|:. H_{s s} \rightarrow \mathbb{R}$ be defined by $\|q\|=q \bar{q}=a_{0}^{2}-a_{1}^{2} \in \mathbb{R}$. This mapping is called the norm and $\|q\|\left(=N_{q}\right)$ is norm of q. If $\|q\|=a_{0}^{2}-a_{1}^{2}=1$, then q is called a unit split semi-quaternion. We will use $H_{s s}^{1}$ to denote the set of unit split semi-quaternion.

A split semi-quaternion q for which $\|q\|=0$ has the form $q=a_{2} j+a_{3} k,\left(a_{0}=\right.$ $\left.a_{1}=0\right)$ and it is a zero divisor, but not all zero divisors of this algebra have this form.

Definition 3.3. Let $q \in H_{s s}$ and $\|q\| \neq 0$. Then there exists $q^{-1} \in H_{s s}$ such that $q q^{-1}=q^{-1} q=I$. Furthermore q^{-1} is unique and it is given by

$$
q^{-1}=\frac{\bar{q}}{\|q\|}
$$

Proposition 3.2. Let $p, q \in H_{\text {ss }}$ and $\lambda \in \mathbb{R}$. The following three equations hold:

$$
\text { i) }(q p)^{-1}=p^{-1} q^{-1}, \quad \text { ii) }(\lambda q)^{-1}=\frac{1}{\lambda} q^{-1}, \quad \text { iii) } \quad\left\|q^{-1}\right\|=\frac{1}{\|q\|}
$$

Proposition 3.3. The set $H_{s s}^{1}$ of unit split semi-quaternions is a subgroup of the group $H_{s s}^{\circ}$.

Proof. Let $q, q^{\prime} \in H_{s s}^{1}$. We have $\left\|q q^{\prime}\right\|=1$, i.e. $q q^{\prime} \in H_{s s}^{1}$ and thus the first subgroup requirement is satisfied. Also, by proposition 3.2,

$$
\|q\|=\|\bar{q}\|=\left\|q^{-1}\right\|=1
$$

and thereby the second subgroup requirement $q^{-1} \in H_{s s}^{1}$.
4) To divide a split semi-quaternion p by the semi-quaternion $q\left(N_{q} \neq 0\right)$, one simply has to resolve the equation

$$
x q=p \quad \text { or } \quad q y=p
$$

with the respective solutions

$$
\begin{aligned}
& x=p q^{-1}=p \frac{\bar{q}}{N_{q}} \\
& y=q^{-1} p=\frac{\bar{q}}{N_{q}}
\end{aligned}
$$

and the relation $N_{x}=N_{y}=\frac{N_{p}}{N_{q}}$.

Definition 3.4. Let $q, p \in H_{s s}, q=S_{q}+V_{q}$ and $p=S_{p}+V_{p}$. The inner product is defined as

$$
\begin{aligned}
g(q, p) & =S_{q} S_{p}+<V_{q}, V_{p}> \\
& =S(q \bar{p})
\end{aligned}
$$

Theorem 3.1. The inner product has the properties;

1) $g\left(p q_{1}, p q_{2}\right)=N_{p} \cdot g\left(q_{1}, q_{2}\right)$
2) $g\left(q_{1} p, q_{2} p\right)=N_{p} \cdot g\left(q_{1}, q_{2}\right)$
3) $g\left(p q_{1}, q_{2}\right)=g\left(q_{1}, \bar{p} q_{2}\right)$
4) $g\left(p q_{1}, q_{2}\right)=g\left(p, q_{2} \overline{q_{1}}\right)$.

Proof. We will prove the identities (1) and (3).

$$
\begin{aligned}
g\left(p q_{1}, p q_{2}\right) & =S\left(p q_{1} \overline{p q_{2}}\right)=S\left(p q_{1} \bar{q}_{2} \bar{p}\right) \\
& =S\left(\bar{q}_{2} \bar{p} p q_{1}\right)=N_{p} S\left(\bar{q}_{2} q_{1}\right) \\
& =N_{p} S\left(q_{1} \bar{q}_{2}\right)=N_{p} \cdot g\left(q_{1}, q_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(p q_{1}, q_{2}\right) & =S\left(p q_{1} \bar{q}_{2}\right)=S\left(q_{1} \bar{q}_{2} p\right) \\
& =S\left(q_{1} \overline{\bar{p}} q_{2}\right)=g\left(q_{1}, \bar{p} q_{2}\right)
\end{aligned}
$$

Theorem 3.2. The algebra $H_{\text {ss }}$ is isomorphic to the subalgebra of the algebra \mathbb{C}_{2}^{\prime} consisting of the (2×2)-matrices

$$
\hat{A}=\left[\begin{array}{cc}
A & B \\
0 & \bar{A}
\end{array}\right]
$$

and to the subalgebra of the algebra \mathbb{C}_{2}° consisting of the (2×2)-matrices

$$
\tilde{A}=\left[\begin{array}{cc}
A & B \\
0 & A
\end{array}\right]
$$

where $A, B \in \mathbb{C}$.
Proof. The proof can be found in [5].

4. De Moivre's formula for split semi-quaternions

In this section, we express De-Moivre's formula for split semi-quaternions. For this, we can consider two different cases:

Case 1: Let the norm of split semi-quaternion be positive.

SPLIT SEMI-QUATERNIONS ALGEBRA IN SEMI-EUCLIDEAN 4-SPACE

Definition 4.1. Every nonzero split semi-quaternion $q=a_{0}+a_{1} i+a_{2} j+a_{3} k$ can be written in the polar form

$$
q=r(\cosh \varphi+\vec{w} \sinh \varphi)
$$

where $r=\sqrt{N_{q}}$ and

$$
\cosh \varphi=\frac{\left|a_{0}\right|}{r}, \quad \sinh \varphi=\frac{\sqrt{a_{1}^{2}}}{r}=\frac{\left|a_{1}\right|}{\sqrt{a_{0}^{2}-a_{1}^{2}}}
$$

The unit vector \vec{w} is given by

$$
\vec{w}=\frac{1}{\sqrt{a_{1}^{2}}}\left(a_{1} i+a_{2} j+a_{3} k\right), a_{1} \neq 0
$$

Euler's formula for a unit split semi-quaternion holds. Since $\vec{w} \vec{w}=1$, we have

$$
\begin{aligned}
e^{\vec{w} \varphi} & =1+\vec{w} \varphi+\frac{(\vec{w} \varphi)^{2}}{2!}+\frac{(\vec{w} \varphi)^{3}}{3!}+\ldots \\
& =\left(1+\frac{\varphi^{2}}{2!}+\frac{\varphi^{4}}{4!}+\ldots\right)+\vec{w}\left(\varphi+\frac{\varphi^{3}}{3!}+\frac{\varphi^{5}}{5!}+\ldots\right) \\
& =\cosh \varphi+\vec{w} \sinh \varphi
\end{aligned}
$$

Moreover, this can be shown by using the following method.

$$
\begin{aligned}
q & =\cosh \varphi+\vec{w} \sinh \varphi \Rightarrow d q=(\sinh \varphi+\vec{w} \cosh \varphi) d \varphi \\
d q & =\vec{w}(\cosh \varphi+\vec{w} \sinh \varphi) d \varphi=\vec{w} q d \varphi
\end{aligned}
$$

thus, we get $\int \frac{d q}{q}=\int \vec{w} d \varphi \Rightarrow \ln q=\vec{w} \varphi \Rightarrow q=e^{\vec{w} \varphi}=\cosh \varphi+\vec{w} \sinh \varphi$.
Example 4.1. The polar form of split semi-quaternions $q_{1}=2+\sqrt{2} i-j+2 k, q_{2}=$ $3+2 i+j+k, q_{3}=4+i-j+2 k$ are $q_{1}=\sqrt{2}\left(\cosh \theta_{1}+\vec{w} \sinh \theta_{1}\right)$ where $\theta_{1}=\ln (\sqrt{2}+1)$, $q_{2}=\sqrt{5}\left(\cosh \theta_{2}+\vec{u} \sinh \theta_{2}\right)$ where $\theta_{2}=\ln (\sqrt{5})$, and $q_{3}=\sqrt{15}\left(\cosh \theta_{3}+\vec{\varepsilon} \sinh \theta_{3}\right)$ where $\theta_{3}=\ln \left(\frac{5}{\sqrt{15}}\right)$, respectively.
Lemma 4.1. Let \vec{w} be a unit vector, then we have

$$
(\cosh \varphi+\vec{w} \sinh \varphi)(\cosh \psi+\vec{w} \sinh \psi)=\cosh (\varphi+\psi)+\vec{w} \sinh (\varphi+\psi)
$$

Now, let's prove De Moivre's formula for a split semi-quaternion.
Theorem 4.1. (De-Moivre's formula) Let $q=\cosh \varphi+\vec{w} \sinh \varphi$ be a unit split semi-quaternion. Then for every integer n;

$$
q^{n}=\cosh n \varphi+\vec{w} \sinh n \varphi
$$

Proof. We use induction on positive integers n. Assume that $q^{n}=\cosh n \varphi+$ $\vec{w} \sinh n \varphi$ holds. Then

$$
\begin{aligned}
q^{n+1} & =(\cosh \varphi+\vec{w} \sinh \varphi)^{n}(\cosh \varphi+\vec{w} \sinh \varphi) \\
& =(\cosh n \varphi+\vec{w} \sinh n \varphi)(\cosh \varphi+\vec{w} \sinh \varphi) \\
& =\cosh (n \varphi+\varphi)+\vec{w} \sinh (n \varphi+\varphi) \\
& =\cosh (n+1) \varphi+\vec{w} \sinh (n+1) \varphi
\end{aligned}
$$

The formula holds for all integer n, since

$$
\begin{aligned}
q^{-1} & =\cosh \varphi-\vec{w} \sinh \varphi \\
q^{-n} & =\cosh (-n \varphi)+\vec{w} \sinh (-n \varphi) \\
& =\cosh n \varphi-\vec{w} \sinh n \varphi
\end{aligned}
$$

Example 4.2. Let $q=3-2 i-j+3 k$ be a split semi-quaternion. Then, we can write it as $q=\sqrt{5}(\cosh \theta+\vec{w} \sinh \theta)$ where $\theta=\ln (\sqrt{5})$. Every power of this quaternion is found with the aid of Theorem 4.2 , for example, 10-th power of

$$
q^{10}=5^{5}[\cosh 10 \theta+\vec{w} \sinh 10 \theta]
$$

where $\cosh 10 \theta=\frac{5^{5}+5^{-5}}{2}$ and $\sinh 10 \theta=\frac{5^{5}-5^{-5}}{2}$.
Theorem 4.2. Let $q=\cosh \varphi+\vec{w} \sinh \varphi$ be a unit split semi-quaternion. The equation $x^{n}=q$ has only one root:

$$
x=\cosh \frac{\varphi}{n}+\vec{w} \sinh \frac{\varphi}{n} .
$$

Proof. If $x^{n}=q, q$ will have the same unit vector as \vec{w}. So, we assume that $x=\cosh \chi+\vec{w} \sinh \chi$ is a root of the equation $x^{n}=q$. From Theorem 4.2, we have

$$
x^{n}=\cosh n \chi+\vec{w} \sinh n \chi
$$

Thus, $\chi=\frac{\varphi}{n}$. So, $x=\cosh \frac{\varphi}{n}+\vec{w} \sinh \frac{\varphi}{n}$ is a root of the equation $x^{n}=q$.

Example 4.3. Let $q=2+\sqrt{3} i-2 j+k=(\cosh \varphi+\vec{w} \sinh \varphi)$ be a split semiquaternion. The equation $x^{3}=q$ has one root and that is

$$
x=\left(\cosh \frac{\ln (2+\sqrt{3})}{3}+\vec{w} \sinh \frac{\ln (2+\sqrt{3})}{3}\right)
$$

Case 2: Let the norm of split semi-quaternion be negative.
Definition 4.2. Every nonzero split semi-quaternion $q=a_{0}+a_{1} i+a_{2} j+a_{3} k$ can be written in the polar form

$$
q=r(\sinh \psi+\vec{u} \cosh \psi)
$$

where $r=\sqrt{\left|N_{q}\right|}$ and

$$
\sinh \psi=\frac{\left|a_{0}\right|}{r}, \quad \cosh \psi=\frac{\sqrt{a_{1}^{2}}}{r}=\frac{\left|a_{1}\right|}{\sqrt{\left|a_{0}^{2}-a_{1}^{2}\right|}}
$$

The unit vector \vec{u} is given by

$$
\vec{u}=\frac{1}{\sqrt{a_{1}^{2}}}\left(a_{1} i+a_{2} j+a_{3} k\right), a_{1} \neq 0
$$

Example 4.4. The polar form of the split semi-quaternions $q_{1}=2+3 i-j+$ $2 k, q_{2}=1+\sqrt{2} i+2 j+k$ are $q_{1}=\sqrt{5}\left(\sinh \theta_{1}+\vec{u} \cosh \theta_{1}\right)$ where $\theta_{1}=\ln \sqrt{5}$, $q_{2}=\sinh \theta_{2}+\vec{u} \cosh \theta_{2}$ where $\theta_{2}=\ln (1+\sqrt{2})$, respectively.

Theorem 4.3. (De-Moivre's formula) Let $q=\sinh \varphi+\vec{u} \cosh \varphi$ be a unit split semi-quaternion. Then for every integer n;

$$
q^{n}=\sinh n \varphi+\vec{u} \cosh n \varphi
$$

Example 4.5. Let $q=\sqrt{2}+2 i-j+3 k=\sqrt{2}(\sinh \theta+\vec{u} \cosh \theta)$ be a split semi-quaternion. Every power of this spit semi-quaternion is found by the aid of Theorem 4.4 , for example, 40 -th power is

$$
q^{40}=2^{20}[\sinh 40 \theta+\vec{u} \cosh 40 \theta]
$$

where $\sinh 40 \theta=\frac{(1+\sqrt{2})^{40}-(1+\sqrt{2})^{-40}}{2}$ and $\cosh 40 \theta=\frac{(1+\sqrt{2})^{40}+(1+\sqrt{2})^{-40}}{2}$.
Theorem 4.4. Let $q=\sinh \varphi+\vec{u} \cosh \varphi$ be a unit split semi-quaternion. The equation $x^{n}=q$ has only one root:

$$
x=\sinh \frac{\varphi}{n}+\vec{u} \cosh \frac{\varphi}{n}
$$

Proof. If $x^{n}=q, q$ will have the same unit vector as \vec{u}. So, we assume that $x=\sinh \theta+\vec{u} \cosh \theta$ is a root of the equation $x^{n}=q$. From Theorem 4.4, we have

$$
x^{n}=\cosh n \chi+\vec{u} \sinh n \chi
$$

Thus, $\theta=\frac{\varphi}{n}$. So, $x=\sinh \frac{\varphi}{n}+\vec{u} \cosh \frac{\varphi}{n}$ is a root of the equation $x^{n}=q$.

Example 4.6. Let $q=2+3 i-2 j+k=(\sinh \varphi+\vec{u} \cosh \varphi)$ be a split semiquaternion. The equation $x^{4}=q$ has one root and that is

$$
x=\left(\sinh \frac{\ln (\sqrt{5})}{4}+\vec{u} \cosh \frac{\ln (\sqrt{5})}{4}\right)
$$

5. Conclusion

In this paper, we give some of algebraic properties of the split semi-quaternions and investigate the Euler's and De Moivre's formulas for these quaternions in different cases. We use it to find n-th roots of a split semi-quaternion.

References

[1] Brand L.. The roots of a Quaternion, American Mathematical Monthly 49-8(1942) 519-520.
[2] Mortezaasl H., Jafari M., A study on Semi-quaternions Algebra in Semi-Euclidean 4-space, Mathematical Science and Applications E-Notes, Vol. 1/2,(2013) 20-27.
[3] Niven I. The roots of a quaternion, American Mathematical Monthly 49-6(1942) 386-388.
[4] Ozdemir M., The roots of a split quaternion, Appl. Math. Lett. 22(2009) 258-263.
[5] Rosenfeld B., Geometry of Lie groups, Kluwer Academic Publishers, Netherlands,1997.

[^0]: * Corresponding author. Email address: mjafari@science.ankara.edu.tr

