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Iterative Methods For Solving Nonlinear Lane-Emden Equations
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Abstract

In this paper we derive solutions for the nonlinear Lane-Emden type of equations with iterative methods, Daftardar-Jafari Method (DJM),
Adomian Decomposition Method (ADM) and Differential Transformation Method (DTM). The difficulty of Lane-Emden type of equations
for implementing these iterative methods is due to the singularity at X = 0. We compare the efficiency of DIM — which is the authentic
part of the paper — with ADM and DTM in solving the nonlinear, singular, initial value Lane-Emden type of equations.

Keywords: Daftardar-Jatari Method (DJM), Adomian Decomposition Method (ADM), Differential Transformation Method (DTM),
Lane-Emden type of equations, e nonlinear, singular, initial value Lane-Emden type of equations

Oz

Bu ¢alismada lineer olmayan Lane-Emden tip denklemlerin Daftardar-Jafari Method (DJM), Adomian Decomposition Method (ADM) ve
Differential Transformation Method (DTM) isimli yinelemeli yontemlerle ¢oziimlerini elde ettik. Bu yinelemeli yontemlerin Lane-Em-
den tip denklemlere uygulanmasindaki zorluk, denklemlerin da tekil noktalarinin olmasindandir. Bu caligmanin 6zgiin tarafi olarak, tekil,

lineer olmayan, baslangi¢ degerli Lane-Emden tip denklemlerin ¢6ziimiinde DJM yo6nteminin ADM ve DTM yd&ntemleriyle karsilastir-
mast yapilmistir.

Anahtar Kelimeler: Daftardar-Jafari Metodu (DJM), Adomian Ayristirma Metodu (ADM), Diferansiyel Donilisiim Yontemi
(DTM), Lane-Emden tip denklemler.

I. INTRODUCTION

Lane-Emden equations are singular initial value problems that arise in the study of stellar structures. In this paper we con-
sider Lane-Emden equations of the first kind;

(1)
4= 2dy N dy
dx2+xdx+} — }(ﬂ}—j-:dxlx:ﬂ'_ﬂ

and Lane-Emden equations of the second kind;

2

7 d}'
+—-——+ }-:ﬂ_. (0 :1_._ = =0
v g }(} dxl:r o
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Lane - Emden equation of the first kind can be solved analytically for . = 0,1 and 5, for the remaining values of 1 nu-
merical methods need to be applied [13]. There are some decomposition methods in literature that have been proposed to
solve nonlinear problems without simplifying the original problem.

ADM, DTM and DJM have been shown to solve effectively and accurately large class of linear and nonlinear equations
[1, 2, 3]. In literature first and second kind of Lane-Emden equations have been studied with ADM and DTM [5, 6, 7, 8, 9],
but not with DJM so far.

In this paper we investigate the efficiency of DJM compared with ADM and DTM applied both to first and second kind
of Lane-Emden equations through two numerical examples.

The paper is organized as Section 2 to illustrate briefly the theory of DJIM, ADM and DTM, Section 3 to show the appli-
cation of these 3 methods to two numerical problems and analysis of the results, and Section 4 to give a discussion and conc-
lusion.

IL.THEORY OF METHODS

I.1. Daftardar-Jafari Method (DJM). Let
A3)
y=N(O)+g

where N might be a nonlinear operator and g is a known function. DJM decomposes the solution ¥ into series as

“4)
¥y = Z Vn
n=0

With the series expansion (4), nonlinear operator N{37) in (3) can be decomposed as

)
07 oo n n—-1
v (Z Y, ) =N+ ) (N(Z ym) =NC) ym})
n=0 n=1 m=0 m=0
From (4) and (5), (3) can be rewritten as
(6)
07 oo n n—1
Yo+ ¥y + Z Yn=g+ Nlyo) + Z (N(Z Ym) = N(Z J’m})
n=2 n=1% m=0 m=0

DJM considers ¥y = g and ¥ = N () , and obtain the remaining ¥;, terms by the following recurrence relation;
(7
Yo=4g

=N ‘:}"u-}

Vme1 = Nyg + v+ -+ 30 —Nlyg + 1 +-+ ¥meq), m =
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This yields
(8
Vit V2t et Vmer = Nyg + 3 o+ ), m=12,..

From this ¥ can be written as follows

)

y=g+ ZJ-};

n=0

It is shown that if NV is a contraction operator then ¥ = ¥, -5 ¥, converges absolutely and uniformly to the unique ¥ in
view of Banach fixed point theorem [4]. The practical solution will be the k-ferm approximation to ¥ .

(10)

k
yH Z Vn
n=>0

2.2. Adomian Decomposition Method (ADM). Let
(11)
Ly+Ry+Ny=g

di"l.
where L is the highest order linear differential operator (L = o {.) ; with invertibility assumption), R is the remain-
der linear operator and IV is the nonlinear operator and g is any function. By applying the inverse operator L™t we get the
following

(12)
Ly = L 'g— L *Ry— LNy

where for initial value problems the inverse operator L71is conveniently defined as the n-fold definite integration opera-
tor from 0 to £. ADM decomposes the solution into a series

(13)
y= Z Y
n=0

Then
(14)

LI Ly = L‘lLZ Y= L71g— L‘lRZ Vv, — L7
n=0 =0

As N is a nonlinear operator, N can not be evaluated as Ny0 + Nyl + .... ADM replaces IV with a series of “Ado-
mian” polynomials (An,n = 0,1,2 ...) which are generated for the particular nonlinearity of the operator V. Thus we
have

15)
Ny = Z A,
n=0
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With the definition of L™* and by taking ¥ (the first term of the series < ¥,,> ) as the sum of L™ 1 4§ and with the terms re-
sulting from the initial conditions, (14) can be written as

(16)
n=>0 n=0 n=0

Where 4, can be formulated as follows
a7
Ay = flyo)

(18)

n

A, = Z cle,n)f (yg), n=12..

v=1

Where f': v} (vg) is the vt derivative of the nonlinear term evaluated at Vg and € (,m) is the function defined in [1].
A4, A5 and Aj are calculated as given below

(19)
Ay =c(1,1) Flp) = v )

Az =12 Fo) + c22) ') = 32 FO0) + 2 1)

.13 .
A3 =c(13) F ) + €(2.3) £ (i) +€(3.3) FO0e) = vs o) + 31725 (0) 2 FP0)

Convergence of 2.,,= 4, has been shown based on the assumption that nonlinear operator IV is a contraction in Banach
space [10].

Using (18) following recursive relation is obtained

(20)
vi = —L7 'Ry, —L7'4,

¥ _L_lR}"n—l_ L_l‘qn—l

As ¥y is calculated from the initial conditions and A, depends only on ¥g, ¥1, .., ¥ we can find all ¥, and 4, respe-
ctively.

The practical solution will be the k-term approximation to ¥.

e2))

k
¥ *Z Vn
n=0

Convergence of the series ¥V = E:::D}-‘n can be evaluated with the ratio test.
Forn = 0,1, 2, ... we define
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(22)

o = ||}'1rz+1”
T vl

then the series ¥ = ¥..,—g ¥y, converges when @, < 1foralln = 0,1, 2,... [11]

By the same ratio test, domain of convergence can also be determined as the interval where each «_is less than 1 [12].

2.3 Differential Transformation Method (DTM). An arbitrary analytic function y(x) can be expanded by a

Taylor series about any point *ias
(23)
=1 d *y(x)

k! dx*®
k=0

}-‘(.’X.'} = |x=xn (.'X' - xﬂ'}k

Differential Transformation of ¥{x)) is defined as
(24)

1 d*y(x)

Y =4

— i lxme k=012

and Differential inverse transform of ¥ {k) is defined as
(25)

) = ) ¥ (= xp)*
k=0

Thus, with n-terms approximation we obtain
(26)

n
NOED R (GECEPNE
k=0
The fundamental operations of DTM performed at x = 0 is shown in Table 1.

Table | - Most used Diff Transform Operators

Original Function Transformed Function
vix) = ulx) £ v(x) Yik) = U(k) + V(k)
y(x) = culx) Y(k) = e Uk)
y() = u(v(x) Y=y UV~
d"u(x) (k +n)!
y() = — V() = UGk +n)
y(x) = xm Y(k}zé‘(k—n}:{éj i;izi
K
yx) = e Y@ = =
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II.LNUMERICAL APPLICATIONS

In this section we consider numerical examples to compare the efficiency of DJM, ADM and DTM in solving two La-
ne-Emden type of equations, one of first kind and other is of second kind.

Example 1. Lane-Emden equation of first kind;

27
dly 2 dy
dx}: x d_i: Ty =0

}(ﬂ} =1, _]"1' (ﬂ} =0

Exact solution is (‘l + ?) : [13].
Solving with ADM:

To interpret the equation in operator form in a way to rescue from the singularity at ¥ = 0 we define the operator L as
follows as shown in [5];

L) =x? é(xé) ®

L d ,,:i) 2dy d%y

Ly=x"+ (‘ == — 4+ —
y=x dxxdx} x dx dx*

So (27) can be interpreted as
(28)

Ly= —y°

Conveniently we define the inverse operator

") = Lxx‘z Lxxz(.} dx dx

Applying L™ to (28) we obtain;
(29)

V= }'(ﬂ} — L_j-}.'E

Taking into consideration the initial values and series expansion of ¥ we obtain the following recursive relation with
Yo=1
(30)

x X
¥ = —j x~2 (j x%4; dx):ix
0 0

fori = 1,2, ... where the 4; are the Adomian polynomials for the nonlinear term =,

The ADM solution for the first 13 terms of ¥; is as follows;

676039 x2* 29393 x22 46189x20 12155 x18 715 x1#8

= — + — +

: 2229025112064 309586582112 15479341056 1289945088 23887872
143 1% N 77 x12 ?xm+ 35 x 8 SJCE'_|_JC4 x2+ 1
1492992 248332 6912 10368 432 24 [
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We now check the region of convergence of this solution ¥ by the ratio test defined in (2.20) through the first 12 terms of
the series. We are looking for the upper limit of & that make all &@; =< 1 (i = 0to 12).

As shown on the graph upper limit of X gets almost steady starting from 8" term which means the upper limit of the re-
gion of convergence will not be less than 1.5.

Graph of the exact solution and Adomian solution ¥(x) is shown below in the region of convergence x € (0, 1.5)

x € (0,1.5);

Solving with DTM:
To remove singularity at ¥ = 0 both sides of (27) is multiplied by X. So we have
(31
d2y dy
X—S+2—+xy>=0
dx~ dx y

Applying Differential Transform to (31) we obtain
(32)
k
Zé‘(i—i}(k—i+1} k=1+2)¥k—-1+2)+2(k+1D¥(k+1)

=0

+ ia(z - 1}(§ ¥(m) (kimym (k_f_r}’(p} (k_l_zm_py(r) ¥(k—l-m—t—p

=0 m=0 =0 =0 r=0

~))

From initial conditions we get ¥{0) = 1 and ¥{1) = 0. The remaining ¥{k) are recursively obtained from (3.6). The
DTM solution for the 23 terms of ¥; (£ = 0 £0 22) is as follows;

46189 x20 12155 x18 N 715 x18 143 x1# N 77 x12 ?xm+ 35 x°
r= 15479341056 1289945088 23887872 1492992 248832 6912 10368
5x‘5_|_x‘1 x2+1
432 24 o
Solving with DJM:
We use the same inverse operator L™ a5 used in ADM solution.
(33)
Ly = —y®
(34)

v = }*(ﬂ} —_ L_l}rﬁ'

By applying the DJM on (34) we get the following

(35)
. . i 5 fi-1 0\ F
Vieg = —j x7? j x2 Z_}‘k - Z}-‘k dx |dx, i=01,..
¢ ¢ k=0 k=0
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where from the initial conditions we have Vg = }-‘(ﬂ} = 1. %4, ¥2 and ¥3 are shown below, and remaining ¥; are found
recursively.

k] — xz
M= 6

K12 10 s cy8 5x54_x4
1213056 28512 7776 7Tio 24

Y2 =

xEuZ

~ 10259743193767782369829953843757056
A 60

+
4519206272413369287 3264662052864
170655x =2

 69718017420567232259648705 28663552
1222645x 5%

+
6954523549639869721128603066626752
787296635x5*

 85418832769825016462132128644071424
45537508673 x 52

+
121097892548167564490553573324619776
132931480411x5%°

© 106953294398244470706011914255728640
1803028635x ¢

+
526969474662040286168510606863848
1329643780895x %

~ 166079883996987040626285704380416
6697763153581 x%

+
41404744437731736770382976253952
37659458624195x %

Y3 =

5801288321401x%° 189472789416445 38

+ —
129904692527318733362646333824 304343107560615293081795080192
123223324205395x%

+
15781104767 624555319407935488
10426114956665x 3+ 46601856508615 x 32

- +
117489456165373003191287808 = 50681726188984432749182976
5398476088321 %30 17160622399925x 22

- +
618313070389026924527616  224941851772352089030656
39894960567365 x ¢ 119572763x24

_-54323144?5258951?54992_F25018?83219810304

50429974571 x22 407717491x2° 708048755x 18 159505x 18

- + - +
1584736629814001664  1993021273571328 579603125477376 23538138624
638941x1*  92975x12  421x10  g5x® 5yt

T 18307441152 @ 560431872 598752 | 27216 1008
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The graph of DIM solution for the 6 terms of ¥; (i = 0 £0 5) is as follows;

Example 2. Lane-Emden equation of second kind;

(36)

d?y 2dy Lo
- ¥ z2) =
:ix2+xdx+4(2€ +ez)=0

With initial conditions ¥{0) = 0 and y (0) = 0.
-2 In{1+x%)

Exact solution is

Solving with ADM:
We use the same operator L and the inverse operator L™ used in the first example
(37

Ly=—4 {293" + e;)

(3%)

y =y(0) — 1714 (2e7 + ei)

(39

x x
¥ = —j x7? (j x4, dx)dx
o o

¥
for i = 1, 2, ... where the 4; are the Adomian polynomials for the nonlinear term < (2 ¥ + ez )
The ADM solution for the first 13 terms of y;{i = 0 t0 12) is as follows
k2% 222 20 9418 416 9,18 412 9,10 LB 96

- & _ .2
6 11T s 9 vtz 7 Ttz s Tzt

y =

For the convergence region of the series y we check the upper limit of the domain X that ensure &; == 1 for each
i = 0 to 11 by the ratio test defined at (2.20).

As shown on the graph upper limit of X gets steady at the value 1 starting from the 87 term which means the upper limit
of the region of convergence will be around 1.0.

Graph of exact solution and Adomian solution ¥{x) is shown below for x € {0, 1.5);

We see on this graph that the series solution ¥ is not a good approximation to the exact solution when X is out of region
of convergence as stated above (¥ = 1)

Solving with DTM:

To overcome the singularity at ¥ = 0 both sides of (36) is multiplied by X, obtaining

(40)

d’ _dy ¥
4+ 2+ x4(2e¥ +e2)=0
dx* dx x4 (2e e2)

X

Table 1 does not include the differential transformation of functions in the form of £*. This transformation can be hand-

led by using Maclaurin series expansion of e %) where o is a scalar.
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(41)

(ey"(0)e™ @ + (@y'(0)) 2 @) _
x2

e (%) = oo (0) 4 gy (0)e (O x + :

+

(a},(a} (0)e®(@ 4 2a(0 gy (0)y'(0) + 26y (0)e® (@ (D) + e D}(a—},'(ﬂ]}a)
3!

x*+

. yixl
We define g{x) = e¥'* ) whose differential transform is G(k)andg(x) = e = whose differential transform is @ (k).
We then apply differential transformation to (41)
(42)

b3

Zc’:‘(i—1}(3::—E+1}(k—E+2}Y(k—i+2}+2(k+1}?(k+1}
=0

k K
+8 Y (l-1DGk-D+4 ) s(1-1)Qk-0D=0
2 2

where from the initial conditions we have ¥'{0) = 0, and ¥(1) = 0.

G(k)(k = 0,1, ...) is derived from the following illustration of g{) again with the initial conditions of ¥(0) = 0 and

¥(1) = 0and v**(0) = k! Y (k). As seen G(k) s depend only on ¥{j) s with j =< k.

o) = 1+7(2) 22 +7(3) £3 + %[2 Y(2)2 + 4 ¥(4)] x* + %[5 ¥(2) ¥(3) + 5 ¥(5)] °
+é [3 ¥(3)2+4Y(2) v(4) + % Y(2)(2v(2)2+47Y(4) +c6 Y(ﬁ}] x€

+% [4 Y(3) ¥(4) + % Y(3) (2¥V(2)2+4¥(4)) +5¥(2) ¥(5) + %F(E} (5¥(2)v(3) +5Y(5))

+7 y(?}] 7

+é [Y@} (2v(2)2+4¥(4)) +5¥(3) ¥(5) + % ¥(3) (5Y(2)v(3) +5¥(5)) +6¥(2) ¥(6)
+ % ¥(2) (3 ¥(3)2+4Y(2)V(4) + % v(2)(2¥(2)2+4¥(4)) +6 Y(a})

+8 Y(S}] x®
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+% g (27v(2)2+4v(4) ) ¥(5) + % ¥(4)(5¥(2) ¥(3) +5¥(5)) +6 ¥ (3) ¥(6)

+ % ¥Y(3) (3 Y(3)24¥(2) Y(4) + % Y(2)(2v(2)2+4v(4)) + 5}’(5})
+7 Y(2)¥(7)
+ % ¥(2) (4 ¥Y(3) Y(4) + g Y(3)(2v(2)2+4v(4)) +5¥(2) ¥(5)

+ % Y(2)(5¥(2)¥(3)+5¥(5)) +7 Y(?}) +9¥(9)| x°

+11—ﬂ ¥(5) (5¥(2) Y (3) +5¥(5)) + g (2v(2)2+4v(4)) ¥(6)

+ % Y(4) (3 Y(3)2+4¥(2) ¥(4) + % ¥(2)(2v(2)2+4v(4)) +6 Y(E.})
+7Y(3)¥(7)
¥Y(3) (4 ¥Y(3) ¥(4) + g ¥(3) (2¥(2)2+4¥(4) +5¥(2) ¥(5)

+
|

+
LA ba =1] L

Y(2)(5¥Y(2)¥(3)+5Y¥(5)) +7 Y(?}) +8Y(2)¥(8)

=+

¥(2) (Y{4} (2v(2)2+4v(4)) +5¥(3) ¥(5)

Y(3)(5¥(2)¥(3)+57(5)) +6¥(2) ¥(6)

+

+
Wil Al ]

Y(2) (3 Y(3)2+4¥(2) ¥(4) + % ¥(2) (2v(2)2+4v(4)) +6 Y(E})

+8 Y{S}) + 10 ¥(10| x10+ ..

Qi) (k = 0,1, ...) is derived from the similar illustration of g{x).
With these & (k) and @ (k) and initial conditions, (42) can be solved for each k up to the desired approximation term.
The DTM solution for the 19 terms of ¥; (i = 0 to 18) is found as

¥ =025x1 —0.285714 x¥* + 0.333333 x12 — 04 x1® + 0.5x% — 0.666667 x% + x* — 2 x?

Solving with DIM:
We use the same operator L and L™ used in the first example.
(43)

Ly = —N(y)

(44)
x a x ) ¥
Yy=%Y- j x= (j x© 4(2&3" + ez )dx)dx
o o
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By applying DJM we obtain the following recurrent relation
(45)

x x ) — . _10k
Vis1 = —j x~2 j x? [8 eThzodk + 4 glk=iy — (S Tk + 4 gTH=E )] dx dx
o

With ¥ = 1 from the initial conditions.
Integral in (45) can't be solved analytically for # = 0.

However we can use Maclaurin series expansion of €% by agreeing with the truncation error which would definitely con-
verge to zero as the number of the series terms (¥1) increase. So (45) can be rewritten as follows

(46)

Vieq = j j 2 {Ekl}lk} +4Z(E }?)

i 1Jk

Z{ }"} 42{2“’2 dx dx

For the practical solution we take n as a finite number. Using (46) we get

y1= —2x?

v, = —4.463632181023485 x2% + 0.0000269012 x2° — 0.00014881 x1&

+ 0.000749883 x5 — 0.0034127 x* + 0.0138889 x1? —0.05 x1¢
+ 0.157407 x® — 0.428571 x© + x*

The DIM solution for 21 terms of ¥; (i = 0 to 20) is as follows

v = —0.181818 x¥22 4 02x30 0222222 18 L 025 15— 0.285714 x1* 4+ 0.333333 414
—04 x4+ 05x% — 0666667 x°+ x*— 2x°

IV.CONCLUSION

We analyzed 3 iterative methods for solving singular nonlinear Lane-Emden equations. As can easily be seen from solu-
tion plots Lane-Emden equation of first kind is solved very effectively with all ADM, DTM and DJM. Second kind Lane-Em-
den equation can be solved by ADM and DTM directly whereas DJM requires to use the series expansion of the exponential
nonlinear term. We also find out second kind Lane-Emden equation with the exponential nonlinear term can be approxima-
ted within a narrower convergence region compared with the first kind equation.
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