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Abstract

In the last two decades the �eld evolutionary computation has become
a mainstream and several types of evolutionary algorithms are devel-
oped for solving optimization and search problems. Evolutionary algo-
rithms (EAs) are mainly inspired from the biological process of evolu-
tion. They do not demand for any concrete information such as conti-
nuity or di�erentiability and other information related to the problems
to be solved. Due to population based nature, EAs provide a set of so-
lutions and share properties of adaptation through an iterative process.
The steepest descent methods and Broyden-Fletcher-Goldfarb-Shanno
(BFGS),Hill climbing local search are quite often used for exploitation
purposes in order to improve the performance of the existing EAs. In
this paper, We have employed the BFGS as an additional operator in
the framework of Genetic Algorithm. The idea of add-in BFGS is to
sharpen the search around local optima and to speeds up the search pro-
cess of the suggested algorithm. We have used 24 benchmark functions
which was designed for the special session of the 2005 IEEE-Congress
on Evolutionary Computation (IEEE-CEC 06) to examine the perfor-
mance of the suggested hybrid GA. The experimental results provided
by HGBA are much competitive and promising as compared to the
stand alone GA for dealing with most of the used test problems
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1. Introduction

Global optimization has gained much attentions in both academia and industrial ap-
plication over the past many years. In this regards, di�erent test suites of optimization
problems are designed in the existing literature of evolutionary computation. These prob-
lems are quite useful for thorough experimental computational testing and evaluation in
order to design a powerful and robust optimization algorithm [1, 2]. The practical exam-
ples of optimization included the pooling/blending operations, heat exchanger network
synthesis, phase and chemical reaction equilibrium, robust stability analysis, batch plant
design under uncertainty, chemical reactor network synthesis, parameter estimation and
data reconciliation, conformational problems in clusters of atoms and molecules, pump
network synthesis, trim loss minimization, homogeneous azeotropic separation system,
dynamic optimization problems in parameter estimation and in reactor network synthe-
sis, and optimal control problems. In general, constrained minimization problem can be
written as follows [3, 5]:

Minimize f(x), x = (x1, x2, . . . , xn)T ∈ Rn(1.1)

Subject to

{
gi(x) ≤ 0, i = 1, 2, . . . , p

hj(x) = 0, j = p+ 1, p+ 2, . . . , q
(1.2)

where x ∈ Ω ⊆ S, Ω is the feasible search space de�ned by p number of inequal-
ity constraints, q number of equality constraints and S is the search space de�ned by
parametric constraints: Li ≤ x ≤ Ui. The inequality constraints that satisfy gi(x) = 0
are said to be an active constraints. It is important to be mentioned here that an
equality constraints are always active. There are many types of optimization problems
including multi-quadratic programming, bilinear and biconvex, generalized geometric
programming, general constrained nonlinear optimization, bilevel optimization, comple-
mentarity, semi-de�nite programming, mixed-integer nonlinear optimization, combinato-
rial optimization and optimal control problems [3]. Generally all the above mentioned
optimization problems can be categorized into two class including the constrained and
unconstrained one. In this paper, we are interested in solving the unconstrained optimiza-
tion problems with continuous variables. They are called boxed constrained optimization
problems.

The last two decades are witnessed for the signi�cant improvement and developments
of optimization methods.Technically, optimization methods can be categorized into deter-
ministic and stochastic ones. They have tackled diverse set of problems with continuous,
discrete, integer, mixed integer variables [4]. The deterministic approaches are required
the analytical properties of the problems while �nding their optimal solutions [7]. The
interval optimization [6], branch-and-bound [8, 9] and algebraic techniques [10], Simplex
method [11], Hill climbing [12], Newton-Raphson method [13] are leading examples of
the some deterministic approaches.

The stochastic approaches involve randomness to perform their search process. The
simulated annealing [14], Monte Carlo sampling [15], stochastic tunneling [16], and par-
allel tempering [17], Genetic Algorithm (GA) [18], Evolutionary Strategies (ES) [19],
Evolutionary Programming (EP) [20], Particle Swarm Optimization (PSO) [23], Ant
Colony Optimization (ACO) [25] and di�erential evolution (DE) [26], Krill herd algo-
rithms [35, 36, 37], Monarch butter�y optimization [38], Earthworm optimization algo-
rithm [39], Plant propagation algorithm (PPA) [40, 41, 42, 43] are stochastic nature based
optimization methods. Evolutionary computation is the collective name of these algo-
rithms inspired by biological process of evolution, such as natural selection and genetic
inheritance [44].
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Hybrid evolutionary algorithms [45, 46, 51] have got much attention of the researchers
and practitioners due to their high potentialities and capabilities in handling various real
world problems and benchmark functions comprising high complexity, noisy environment,
imprecision, uncertainty and vagueness [27, 28, 29, 47, 48, 49, 50].

In this paper, the suggested algorithm utilizes the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [30, 31] in combination with GA for population evolution at each
multiple of 10th generations. The suggested algorithm is called HGBA have solved most
of the test problems that were designed for the special session of the 2005 IEEE-congress
on evolutionary computation (IEEE-CEC'05) [32]. HGBA have tackled most of the used
test problems in an auspicious manner.

The rest of the paper is organized as follows. Section 2 presents the proposed algo-
rithms. Section 3 demonstrates experimental results. Section 4 concludes this paper with
some future plan.

2. Hybridization of Genetic Algorithm with BFGS

Genetic algorithm was �rst proposed by Holland inspired by the process of natural
selection [33, 34]. GA is one of the most popular and well-known classical paradigms of
evolutionary algorithms (EAs) [44]. This paradigm mainly relies on evolutionary oper-
ators such as mutation, crossover and selection to evolve their uniformly and randomly
generated set of initial solutions called population. Due to population based nature,
GA provides a set of optimal solutions in a single simulation run unlike traditional op-
timization methods. It simulates the survival of the �ttest among the population over
a consecutive generation. Since its inception [52, 53], several variants of GAs have been
proposed and tackled di�erent types of optimization and search problems, particularly
in machine learning, scienti�c modeling, and arti�cial life and reviews a broad span of
research, including the work of Mitchell and her colleagues [54].

The Local search algorithms like the GSAT and WalkSat, 2-opt algorithm, Iterated
Local Search (ILS) perform search by applying local changes in the search space of solu-
tion to solution until stopping criteria is not satis�ed. The combined use of e�cient local
search optimizers can speed up search process of the GA framework to locate the exact
global optimum of the given optimization problems. The BFGS algorithm [30, 31] is one
of best well known hill-climbing local search method. Due to their fast convergence speed
behavior, BFGS is applied to solve di�erent nonlinear global optimization functions.

In the recent few years, several modi�cations have been made in the of the original
framework of the genetic algorithm (GA) aiming at to alleviate their drawbacks. GA
has successfully tackled di�erent real-world problems such as space allocation problems
on di�erent sample test like warehouse, shelf, building �oors and container and many
others [55]. Di�erent benchmark functions with continuous and discrete variables are
also solved by GAs with great success. The combination of global and local searching
(LS) can appeared in the form of hybrid evolutionary algorithms. They are quite useful
for reducing the likelihood of the premature convergence which is normally occurred in
the basic EAs for dealing with various search and optimization problems [56, 57, 62].

The suggested algorithm calls the BFGS [30, 31] algorithm 2 at their algorithmic step
5 as explained in the algorithm 1, where the Hessian matrix of the BFGS algorithm is
initialized with identity matrix and here after updated with gradient information of the
current and previous iterations.
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Algorithm 1 Framework of the HGBA.

1: L: Lower bound;
2: U : Upper bound of the search space.
3: n: Dimension of search space;
4: N : Population Size.
5: TG: Total Generations/Function Evaluations (FES);
6: x← (L+ (U − L)× rand(N,n); % Initial Population of size N .
7: f(x)← Evalf (x); % Evaluate population set x of size N .
8: G = 1;% Initialize the generation counter.
9: while G < TG do
10: if rem(G, 10) == 0 then
11: (y, f) = BFGS(xb, f, tol)
12: else
13: x[G]← Select− parents(x[G]);
14: ý[t]← Xovers(ý[G]);
15: y[G]←Mutation(ý[G]);
16: f(y[G])← Evaluate(y[G]);
17: end if
18: if f(y[G]) < f(x[G]) then
19: x[G]=y[G]
20: else
21: x[G] = x[G]
22: end if
23: G = G+ 1;
24: end while

Algorithm 2 The Framework of the BFGS Algorithm.

1: Initialize q best solutions;
2: Initialize Hessian Matrix with Identity Matrix;
3: Set ε = 0.00001;% The tolerance value.
4: De�ne TFE ; % Total Function Evaluations.
5: for i = 1 : TFE do
6: dx = xi+1 − xi;
7: dg =: ∇f(xi+1)−∇f(xi); %Compute the di�erence of gradients.
8: if dx 6= 0&dg 6= 0 then
9: λ1 = (dg)′Hidg
10: λ2 = (dx)′dg
11: Hi+1 = Hi + (dxd

′
x(1 + λ1/λ2))/λ2 − (Hidgd

′
x + dxd

′
gH

i)/λ2; % Update the
Hessian Matrix.

12: end if
13: si = −Hi∇f(xi); % The search direction si

14: αi; % Calculate the step size by using golden section search technique.
15: yi = xi + αisi; % Update new solutions.
16: end for
17: yq; % The q local solutions.
18: f(xq); % The objective function values of the q local solutions.



543

Table 1. Classi�cation and properties of Tested functions

Unimodel Multimodel Separable Non Separable

f01 f06 f01 f02
f02 f07 f09 f03
f03 f08 f15 f04
f04 f09 No f05
f05 f10 No f06
No f11 No f07
No f12 No f08
No f13 No f10
No f14 No f11
No f15 No f12
No f16 No f13
No f17 No f14
No f18 No f16
No f19 No f17
No f20 No f18
No f21 No f19
No f22 No f20
No f23 No f21
No f24 No f22
No f25 No f23
No No No f24
No No No f25

3. Discussion on Experimental Results

Continuous optimization problems have wide practical applications ranging from sim-
ple parameter identi�cation in data-model �tting to intrinsic design-parameter optimiza-
tion in complex technical systems in sciences and engineering �elds. Di�erent test suites
of optimization with diverse characteristics as explained in the Table 1 are quite im-
portant for examining the overall performance of optimization algorithms in terms of
convergence rate,precision and robustness.

In this paper, we have chosen test suite 25 benchmark functions [32] that comprising
di�erent characteristics. A brief summary regarding the used test functions denoted by
f1 − f25 is hereby summarized in the Table 1.

The Table 1 provides the name of each test function, f1 − f24 and its variables' value
range is recorded as appears in the original Technical Report [32]. The dimension N of
each solution vector used in the experiments is also recorded together with the �tness
value of the optimal solution f(x*). The CEC'05 test functions are characterized as
follows: the �rst �ve functions f1 − f5 are unimodal and shifted; the second seven test
functions f6−f12 are basic multimodal and shifted; the third two functions f13−f14 are
expanded multimodal; and the fourth eleven functions f15 − f25 are hybrid composition
(i.e., all of them are non-separable, rotated, and multimodal functions containing a large
number of local minima). Further details and evaluation criteria of the IEEE-CEC05 are
given in [32].

We have carried out experiments at the platform:

• Operating system: Windows XP Professional.
• Programming language of the algorithms: Matlab.
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• CPU: Core 2 Quad 2.4 GHz.
• RAM: 4 GB DDR2 1066 MHz.
• Execution: 30 times independent simulation of each algorithm with di�erent
random seeds.

Evolutionary Algorithms (EAs) are searching for the global optimum in their search
space Rn comprising n dimensions. Initially, EAs require a set of N solutions to evolve
them user de�ned function evaluations (FES). In this paper, the experiments performed
according to parameter settings described as follows:

• N = 100, the population size.
• n = 2, 5,10,20, 30 are dimensions of the search space.
• FES = n×N , total function evaluations.
• q = 5, allowed best solutions for BFGS to works in the HGBA framework.

The algorithmic behavior of the proposed HGBA is veri�ed by CEC05 problems with
parameter settings as mentioned above. We have recorded all experimental results in
minimum, mean, median, standard deviation and maximum values with di�erent settings
ofn = 2, 5, 10, 20, n = 30 while solving each test problem of the IEEE-CEC05 test suite
[32]. It is important to mentioned here that we did not include all experimental results
obtained with di�erent settings of n.

Table 2 provides the numerical results of problems solved with n = 10 dimension.
Table 3 presents the objective function values each CEC'05 benchmark function with
n = 30 dimension. Both these tables clearly indicate that the suggested hybrid version
of GA has solved most functions with better performance as compared to the basic GA
on most problems.

The convergence graph of the HGBA versus GA are illustrated in the �gures 1-1
for benchmark functions with search space dimension n = 10 and n = 30 in their 25
independent runs of simulation. The �gure 1 shows the evolution of average function
values within allowed function evaluations (FES). While the 1 demonstrates the average
evolution in the objective function values of some CEC '05 test problems solved with
search space dimension n = 30. It can see from these �gures, the convergence speed
of the proposed algorithm is much better than the basic genetic algorithm (GA) while
elapsing less function evaluations to reach near to the global optimum of the most CEC05
test problems.

4. Conclusion

Global optimization problems o�er many challenges to evolutionary computing (EC)
communities due to the existence of nonlinearity and multi-modality in their formulation
structures. The stand-alone local search optimization methods are mostly unable to deal
with such problems. Currently, hybridization of local search optimizers with existing
meta-heuristic algorithms have got much attention of researchers in EC �eld . In this pa-
per, a hybrid population-based global optimization algorithm is proposed that combines
genetic algorithm (GA) with BFGS. The proposed algorithm denoted by HGBA are com-
bined GA with BFGS in an ensemble manner to promote information sharing among the
population and thus enhance the searching e�ciency of basic GA. The performance of
the proposed HGBA is evaluated on a diverse set of benchmark functions designed for the
special session of the 2005 IEEE-CEC [32]. The experimental results show the proposed
algorithm have performed better than GA in terms of better convergence speed near to
the known optimal and hence not get stuck in local optimum of the most problems.

In future, we intend to analyze the impact of the proposed algorithm by employing
some other e�ective local search optimizers and search operators such as improved vari-
ants di�erential evolution [26], particle swarm optimization (PSO) [23] and ant colony
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Table 2. The Numerical Results of the HGBA versus GA for each
CEC'20O5 test problems with n = 10 dimension [32].

a)Hybrid Genetic Algorithm, b) Genetic Algorithm

CEC'05 Functions Best Mean Std Algorithm

f01
0.000001 0.000001 0.521016 a
0.000000 0.000000 0.306146 b

f02
0.000000 0.000000 0.198374 a
0.000000 0.000000 0.445100 b

f03
0.000000 0.000000 637.666968 a
0.000000 0.000105 14.057797 b

f04
0.000000 0.000000 0.327159 a
0.000000 0.000000 0.039318 b

f05
0.000000 0.000000 32.036672 a
0.000000 0.000002 40.692395 b

f06
0.000000 0.000000 13.781630 a
0.000000 0.000283 10.536194 b

f07
0.000009 3.557594 2.587509 a
0.004455 2.986633 1.413326 b

f08
0.000000 0.000000 0.076302 a
0.000000 0.000000 0.197469 b

f09
0.000000 0.000000 0.311911 a
0.000000 0.000000 0.426611 b

f10
0.000061 0.007804 0.103723 a
0.004425 0.021671 0.120534 b

f11
0.000000 0.000000 0.206919 a
0.000000 0.000000 2.123631 b

f12
0.000000 0.000000 0.012976 a
0.000000 0.000000 0.005400 b

f13
0.000006 0.000768 0.040584 a
0.000024 0.000056 0.041487 b

f14
1457.115466 1457.115806 4.142761 a
1457.215625 1457.259106 7.013462 b

f15
1024.120243 1024.157612 22.599572 a
1024.994920 1025.288941 22.631336 b

f16
1018.156033 1018.192758 14.263865 a
1018.836790 1019.096324 12.314532 b

f17
827.203398 827.205103 19.246432 a
827.217635 832.500164 15.346813 b

f18
1250.190437 1250.106352 6.944744 a
1250.705684 1251.048538 8.034050 b

f19
885.666535 916.629538 67.349620 a
894.251157 921.019167 54.960124 b

f20
1341.214724 1341.214724 0.000000 a
1341.214724 1341.214724 0.000000 b

f21
1180.095532 1185.909739 16.297264 a
1188.596456 1236.814978 21.359977 b
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Table 3. The Numerical Results of the HGBA versus GA for each
CEC'20O5 test problems with n = 30 dimension [32].

a) Hybrid Genetic Algorithm, b) Genetic Algorithm.

CEC'05 Functions Best Mean Std Algorithm

f01
0.000000 0.000000 605.382503 a
0.000000 0.000000 661.259167 b

f02
0.000003 0.039364 942.982813 a
0.000119 0.330952 1124.284441 GA

f03
315225.984858 539100.620758 5887328.994022 a
112502.970129 425041.073907 1309109.898453 b

f04
0.000040 0.149584 1154.242033 a

1218.002421 9074.364177 12412.710359 b

f05
0.000000 0.000003 1366.160967 a
0.000000 0.000333 1403.301756 b

f06
1.231123 4.107561 47669318.286299 a
2.318733 4.922776 30969857.223058 b

f07
20.267766 20.279503 0.015343 a
20.204322 20.277736 0.036564 b

f08
0.000000 3.422413 10.595200 a
0.000026 5.327192 11.222839 b

f09
17.676048 17.676048 8.873088 a
16.273877 18.097991 9.534268 b

f10
6.364467 7.146139 0.286591 a
7.327944 7.471782 0.455529 b

f11
12.600003 40.466356 3909.201355 a
57.433299 553.051436 7246.718863 b

f12
0.895147 1.349706 1.421402 a
1.018349 1.283563 1.315277 b

f13
3.103262 3.103262 0.068194 a
3.366543 3.456506 0.074904 b

f14
1360.491281 1360.554486 26.255421 a
1360.522848 1360.720281 27.040415 b

f15
1287.077900 1297.099559 22.730716 a
1288.507390 1299.373887 23.507829 a

f16
1290.781525 1296.891223 20.723626 a
1293.072508 1298.831638 23.050568 b

f17
1255.746668 1260.787053 14.183325 a
1258.658973 1259.159586 13.039324 b

f18
1342.330076 1379.304890 29.825873 a
1317.106976 1382.449478 30.816738 b

f19
1153.289503 1211.524349 25.341379 a
1189.855128 1238.001648 23.684564 b

f20
1391.379431 1400.300400 27.610007 a
1395.714142 1410.221171 20.295410 b

f21
1356.522833 1365.801357 12.111518 a
1372.117983 1441.648192 25.123694 b

optimization algorithms [25] with combined self-adaptive procedures. We also our pro-
posed HGBA to solve constrained test suites of the IEE-CEC series [63].
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Figure 1. The convergence graph displayed by HGBA versus GA for
CEC'05 [32] with ten variables.
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Figure 2. The convergence graph displayed by HGBA versus GA for
CEC'05 [32] with thirty variables.
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