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A measure of radial asymmetry for bivariate
copulas based on Sobolev norm
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Abstract

The modi�ed Sobolev norm is used to construct an index for measuring
the degree of radial asymmetry of a copula. We study various aspects
of this index and discuss its rank-based estimator. Through simulation
and a real data example, we compare the proposed index with the other
radial asymmetry measures.
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1. Introduction

Let (X,Y ) be a pair of continuous random variables with the joint distribution function
H(x, y) = P (X ≤ x, Y ≤ y), and univariate marginal distributions F (x) = P (X ≤ x),
G(y) = P (Y ≤ y), at each x, y ∈ R. Let C be the unique copula associated with (X,Y )
through the relation

H(x, y) = C(F (x), G(y)), x, y ∈ R,
in view of Sklar's Theorem [19]. In fact, C is the cumulative distribution function of the
pair (U, V ) = (F (X), G(Y )) of uniform (0,1) random variables. For a given copula C, let

Ĉ(u, v) = u+ v− 1 +C(1−u, 1− v) be the survival copula or re�ected copula associated
with C or equivalently, the cumulative distribution function of the pair (1 − U, 1 − V ).
A copula C is said to be radially symmetric [12] if

(1.1) C(u, v) = Ĉ(u, v), for all u, v ∈ [0, 1].

This concept is also called 're�ection symmetry' or 'tail symmetry' in literature, see, e.g,
[12, 15]. When the condition (1.1) fails for some u, v ∈ [0, 1], the copula C is said to be
radially asymmetric. Nelsen [14] argued that any suitably normalized distance between
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the surfaces z = C(u, v) and z = Ĉ(v, u), in particular, any Lp distance, would yield a
measure of radial asymmetry. Diagnostics such as asymmetry measures are useful during
data analysis. For instance the presence of radial asymmetry in a set of data rejects
the null hypothesis of bivariate normality and other models with more �exibility should
be considered. Recently several copula-based measures of radial asymmetry have been
proposed and the desirable properties for such measures are addressed in [3, 15]. Some
tests for identifying radial symmetry of bivariate copulas are discussed in [1, 10]. The
asymmetry considered here is also distinguished from the issue of whether a copula is
exchangeable, i.e., for all u, v ∈ [0, 1], C(u, v) = C(v, u). For discussion on this kind of
symmetry we refer to [5, 14, 18]. The purpose of this paper is to introduce and study
another copula�based measure of radial asymmetry based on the modi�ed Sobolev norm
[18]. The paper is organized as the following: the proposed index and its properties are
discussed in Section 2. In Section 3, we compare the new radial asymmetry measure
with the other measures. The estimation of the proposed asymmetry measure is given in
Section 4. Sample properties are studied through simulation and a real data example in
Sections 5 and 6. Concluding comments are given in Section 7.

2. Sobolev measure of radial asymmetry

Since copulas are Lipschitz continuous functions from [0, 1]2 to [0, 1] with Lipschitz
constant equal to 1, then they are absolutely continuous in each argument, so that it can
be recovered from any of its partial derivatives by integration. The partial derivatives of
a copula C can be seen as conditional distribution functions Ċ1(u, v) = ∂C(u, v)/∂u =

P (V ≤ v|U = u) ∈ [0, 1] and Ċ2(u, v) = ∂C(u, v)/∂v = P (U ≤ u|V = v) ∈ [0, 1].
For more details on copulas we refer to [13]. Let C be the class of all bivariate copu-
las. The di�erentiability properties of copulas imply that C is a subset of any standard
Sobolev space W 1,p(I2,R), for p ∈ [1,∞); see [2]. Among these spaces, the Sobolev space
W 1,2([0, 1]2,R) is a Hilbert space. Let span(C) denote the vector space generated by C.
Obviously, span(C) ⊂W 1,2([0, 1]2,R). For A,B ∈ span(C), let

(2.1) 〈A,B〉 =

∫ 1

0

∫ 1

0

{
Ȧ1(u, v)Ḃ1(u, v) + Ȧ2(u, v)Ḃ2(u, v)

}
dudv,

and

(2.2) ||A||2 =

∫ 1

0

∫ 1

0

{(Ȧ1(u, v))2 + (Ȧ2(u, v))2}dudv.

As shown in [17], 〈., .〉 and ‖ .‖ de�ne a scalar product and a norm on span(C) respectively.

For every copula C, it is easy to see that ‖C‖2 = ‖Ĉ‖2. Thus for a radially symmetric

copula C, we have that 〈C, Ĉ〉 = ‖C‖2. A natural measure of radial asymmetry in
a copula C, based on the modi�ed Sobolev norm, could be constructed by using the

quantity 〈C, Ĉ〉/‖C‖2.

2.1. De�nition. Consider the functional λ : C→ R+ de�ned by

(2.3) λ(C) = 2

(
1− 〈C, Ĉ〉‖C‖2

)
.

We call λ(C) as the Sobolev measure of radial asymmetry for copula C.

The following result shows that the index λ(C) satis�es a set of reasonable properties
of a measure of radial asymmetry proposed in [3].

2.2. Theorem. For every C ∈ C the functional λ(C) satis�es

(i) λ(C) ∈ [0, 1];
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(ii) λ(C) = 0 if and only if C = Ĉ;

(iii) λ(C) = λ(Ĉ).
(iv) If {Cn}n∈IN and C are in C, and if limn→∞ ‖Cn−C‖ = 0, then limn→∞ λ(Cn) =

λ(C).

Proof. Part (i) follows from the fact that 1/2 ≤ 〈C, Ĉ〉 ≤ 1 and ‖C‖2 ≤ 1 (see, Theorem
14 in [17]) and the identity

(2.4) 0 ≤ ‖C − Ĉ‖2 = ‖C‖2 + ‖Ĉ‖2 − 2〈C, Ĉ〉 = 2(‖C‖2 − 〈C, Ĉ〉).

For part (ii) if C = Ĉ then λ(C) = 0. Conversely, if λ(C) = 0 then 〈C, Ĉ〉 = ‖C‖2

or equivalently, ‖C − Ĉ‖2 = 0. Let D(u, v) = C(u, v) − Ĉ(u, v). If ‖D‖2 = 0 then
∂
∂u
D(u, v) = 0 and ∂

∂v
D(u, v) = 0 a.e. in [0, 1]2. Since D(0, 0) = 0, in view of absolutely

continuity of D in each arguments, we have that D(u, v) = 0 for almost all u, v ∈ [0, 1].

Part (iii) follows from the fact that ‖C‖2 = ‖Ĉ‖2 and
¯̂
C = C. For part (iv), �rst note

that the inequality
∣∣‖Cn‖ − ‖C‖∣∣ ≤ ‖Cn − C‖ implies that ‖Cn‖ → ‖C‖. Since∣∣‖(Cn − Ĉn)− (C − Ĉ)‖

∣∣ ≤ ‖Cn − C‖+ ‖Ĉn − Ĉ‖ → 0,

from the identity 〈Cn, Ĉn〉 = ‖Cn‖2 − 1
2
‖Cn − Ĉn‖2, we have that 〈Cn, Ĉn〉 → 〈C, Ĉ〉,

which gives the required result. �

2.3. De�nition. We say that a copula C is maximally radially asymmetric with respect
to λ, if and only if λ(C) = 1.

2.4. Theorem. For every C ∈ C the following are equivalent:

(i) C is maximally radially asymmetric with respect to λ.

(ii) ‖C‖2 = 1, and 〈C, Ĉ〉 = 1
2
.

Proof. From (2.3) and (2.4), we have that λ(C) = 1 if and only if ‖C − Ĉ‖2 = ‖C‖2 =

2〈C, Ĉ〉. The statement (ii) follows from the fact that 1/2 ≤ 〈C, Ĉ〉 ≤ 1 and ‖C‖2 ≤ 1
(see, Theorem 14 in [17]). �

2.5. Example. Let θ ∈ [0, 1], and Cθ be a family of copulas given by

(2.5) Cθ(u, v) = min(u, v, (u− 1 + θ)+ + (v − θ)+),

where t+ = max(t, 0). Cθ is a copula whose mass is distributed uniformly on the line
segments joining the points (0, θ) to (1− θ, 1), and (1− θ, 0) to (1, θ). Easy calculations

show that Ĉθ = C1−θ for each θ ∈ [0, 1
2
] and

‖Cθ‖2 = 1, 〈Cθ, Ĉθ〉 = 8θ2 − 4θ + 1.

For this copula we have that λ(C 1
4
) = 1. Therefore, C 1

4
is a maximally radially asym-

metric copula with respect to λ. Note that for θ = 0, Cθ(u, v) = min(u, v), which is
radially symmetric.

3. Comparing with the other asymmetry measures

In this section we compare the Sobolev measure of radial asymmetry with two other
alternatives

(3.1) Ψ∞(C) = 3 · sup
(u,v)∈[0,1]2

∣∣∣C(u, v)− Ĉ(u, v)
∣∣∣ ,

and

(3.2) Ψ2(C) =
864

23

∫ 1

0

∫ 1

0

(
C(u, v)− Ĉ(u, v)

)2
dudv,
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which are constructed based on the L∞ and L2 distance between C and its survival copula

Ĉ. Both measures take values in [0,1] and were �rst discussed by Dehgani et al. [3]. If
we consider the family of copulas given by (2.5), then we have Ψ∞(Cθ/3) = θ and thus
C1/3 is a maximally radially asymmetric copula with respect to Ψ∞, while Ψ2(C1/3) '
0.46. As explained in [3] there are several relationships between radial asymmetry and
dependence. For example the Spearman's rho coe�cient [13] for maximally radially
asymmetric copulas with respect to Ψ∞ takes values in [−5/9, 1/3]; see, [3] for details.

4. Sample version

Given a random sample (X1i, X2i), i = 1, 2, ..., n, from an unknown distribution H
with unique copula C, we derive a non-parametric estimator for the measure of asymme-
try λ(C) de�ned in (2.3). For i ∈ {1, 2, ..., n}, k = 1, 2, consider the pseudo-observations

Ûki = Rki
n+1

, where (R1i, R2i), i = 1, 2...n, are the corresponding vectors of ranks. The

natural estimators of C and Ĉ are then given by the empirical copula Cn and Ĉn [7]
de�ned, at each u, v ∈ [0, 1], by

(4.1) Cn(u, v) =
1

n

n∑
i=1

II{Û1i ≤ u, Û2i ≤ v},

(4.2) Ĉn(u, v) =
1

n

n∑
i=1

II{1− Û1i ≤ u, 1− Û2i ≤ v},

where II{A} denotes the indicator function of A. A �plug-in� rank-based estimator of
λ(C) is given by

(4.3) λ̂ = λ(Cn) = 2

(
1− 〈Cn, Ĉn〉‖Cn‖2

)
.

To approximate the partial derivatives of a copula we proceed as in [16]. Note that the

derivative Ċ1 will fail to be continuous on (0, 1) × [0, 1] if the distribution of V given
U = u has atoms. for instance This phenomenon occurs for the Fréchet lower and upper
bound copulas, W (u, v) = max(u+v−1, 0) and M(u, v) = min(u, v). A copula C is said

to be regular [16] if (i) the partial derivatives Ċ1 and Ċ2 exist everywhere on [0, 1]2 and

(ii) Ċ1 is continuous on (0, 1)× [0, 1] and Ċ2 is continuous on [0, 1]× (0, 1). For a regular

copula E, let Ė1n and Ė2n be the estimates of the partial derivatives Ė1 and Ė2 de�ned
by

(4.4) Ė1n(u, v) =
En(u+ `n, v)− En(u− `n, v)

2`n
,

and

(4.5) Ė2n(u, v) =
En(u, v + `n)− En(u, v − `n)

2`n
,

where `n is a bandwidth parameter, typically `n = 1/
√
n; see [16] for details. We could

also use a kernel based estimate of the derivative [6] but this would limit the writing

of explicit expressions for λ̂. By using (4.4) and (4.5), natural estimators of 〈C, Ĉ〉 and
‖C‖2 are given by

(4.6) 〈Cn, Ĉn〉 =

∫ 1

0

∫ 1

0

{
Ċ1n(u, v)

˙̂
C1n(u, v) + Ċ2n(u, v)

˙̂
C2n(u, v)

}
dudv,

and

(4.7) ‖Cn‖2 =

∫ 1

0

∫ 1

0

{(Ċ1n(u, v))2 + (Ċ2n(u, v))2}dudv.
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Although theses statistics are de�ned by integrals, they reduce to sums, which make it
possible to compute λ(Cn) explicitly.

4.1. Theorem. Let (X1j , X2j), j = 1, 2, . . . , n, be a sample of size n from a vector
(X1, X2) of continuous random variables having a regular copula C and let (R1j , R2j),
j = 1, . . . , n, be the corresponding vectors of ranks. Then

(4.8) 〈Cn, Ĉn〉 =
1

4n

n∑
i=1

n∑
j=1

(A
(1)
ij B

(2)
ij +A

(2)
ij B

(1)
ij )

and

(4.9) ‖Cn‖2 =
1

4n

n∑
i=1

n∑
j=1

(D
(1)
ij E

(2)
ij +D

(2)
ij E

(1)
ij ),

where for k = 1, 2,

A
(k)
ij = max

(
Rki
n+ 1

− `n, 1−
Rkj
n+ 1

+ `n

)
+ max

(
Rki
n+ 1

+ `n, 1−
Rkj
n+ 1

− `n
)

− 2 max

(
Rki
n+ 1

, 1− Rkj
n+ 1

)
,

D
(k)
ij = max

(
Rki
n+ 1

− `n,
Rkj
n+ 1

+ `n

)
+ max

(
Rki
n+ 1

+ `n,
Rkj
n+ 1

− `n
)

− 2 max

(
Rki
n+ 1

,
Rkj
n+ 1

)
,

and

(4.10) B
(k)
ij = min

(
1− Rki

n+ 1
,
Rkj
n+ 1

)
, E

(k)
ij = min

(
1− Rki

n+ 1
, 1− Rkj

n+ 1

)
.

Proof. For k = 1, 2 and h = 1, 2, .., n, let Ûkh = Rkh/(n + 1), Ah(u1, u2) = II{Û1h ≤
u1}II{Û2h ≤ u2}, and Bh(u1, u2) = II{1 − Û1h ≤ u1}II{1 − Û2h ≤ u2}. Let Cn be the
associated empirical copula. Then one may write

Ċ1n(u, v)
˙̂
C1n(u, v) =

1

4n

n∑
i=1

n∑
j=1

{Ai(u+`n, v)−Ai(u−`n, v)}{Bj(u+`n, v)−Bj(u−`n, v)},

(Ċ1n(u, v))2 =
1

4n

n∑
i=1

n∑
j=1

{Ai(u+`n, v)−Ai(u−`n, v)}{Aj(u+`n, v)−Aj(u−`n, v)},

and

Ċ2n(u, v)
˙̂
C2n(u, v) =

1

4n

n∑
i=1

n∑
j=1

{Ai(u, v+`n)−Ai(u, v−`n)}{Bj(u, v+`n)−Bj(u, v−`n)},

(Ċ2n(u, v))2 =
1

4n

n∑
i=1

n∑
j=1

{Ai(u, v+`n)−Ai(u, v−`n)}{Aj(u, v+`n)−Aj(u, v−`n)}.

It is easy to see that

Ai(u+ `n, v)Bj(u+ `n, v) = II{max(Û1i − `n, 1− Û1j − `n) ≤ u}II{max(Û2i, 1− Û2j) ≤ v},
Ai(u+ `n, v)Bj(u− `n, v) = II{max(Û1i − `n, 1− Û1j + `n) ≤ u}II{max(Û2i, 1− Û2j) ≤ v},
Ai(u− `n, v)Bj(u+ `n, v) = II{max(Û1i + `n, 1− Û1j − `n) ≤ u}II{max(Û2i, 1− Û2j) ≤ v},
Ai(u− `n, v)Bj(u− `n, v) = II{max(Û1i + `n, 1− Û1j + `n) ≤ u}II{max(Û2i, 1− Û2j) ≤ v},
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and

Ai(u+ `n, v)Aj(u+ `n, v) = II{max(Û1i − `n, Û1j − `n) ≤ u}II{max(Û2i, Û2j) ≤ v},
Ai(u+ `n, v)Aj(u− `n, v) = II{max(Û1i − `n, Û1j + `n) ≤ u}II{max(Û2i, Û2j) ≤ v},
Ai(u− `n, v)Aj(u+ `n, v) = II{max(Û1i + `n, Û1j − `n) ≤ u}II{max(Û2i, Û2j) ≤ v},
Ai(u− `n, v)Aj(u− `n, v) = II{max(Û1i + `n, Û1j + `n) ≤ u}II{max(Û2i, Û2j) ≤ v}.

Similar expressions hold for Ċ2n
˙̂
C2n and (Ċ2n)2. Upon integrating and letting Ûkh =

Rkh
n+1

, k = 1, 2 and h = 1, ..., n, one gets the required result. �

The following result shows that λ(Cn) is a consistent estimator of λ(C).

4.2. Theorem. If C is a regular copula, then λ(Cn) de�ned by (4.3) converges in prob-
ability to λ(C) as n→∞.

Proof. If Ċ1 and Ċ2 are continuous on [0, 1]2, then Cn =
√
n(Cn − C) converges weakly

to a continuous Gaussian process C; see, e.g., [7]. For u, v ∈ [0, 1] and `n = 1/
√
n, we

may write

Ċ1n =
Cn(u+ `n, v)− Cn(u− `n, v)

2`n

=
C(u+ `n, v)− C(u− `n, v)

2`n
+

Cn(u+ `n, v)− Cn(u− `n, v)

2`n
√
n

,

and then

sup
u,v∈[0,1]

|Ċ1n(u, v)− Ċ1(u, v)| = sup
u,v∈[0,1]

|Cn(u+ `n, v)− Cn(u− `n, v)

2`n
− Ċ1(u, v)|

≤ sup
u,v∈[0,1]

|C(u+ `n, v)− C(u− `n, v)

2`n
− Ċ1(u, v)|

+
1

2
sup

u,v∈[0,1]
|Cn(u+ `n, v)− Cn(u− `n, v)|,

which tends to 0 as n → ∞; that is the partial derivative estimates of a regular copula
are uniformly convergent. By using dominated convergence theorem, we have that ‖Cn−
C‖ → 0 and the continuity property (iv) in Theorem 2.2 gives the required result. �

5. Simulation study

In this section, we compare the sample version of the radial asymmetry measure λ
with those of Ψ∞ and Ψ2 given in [3] by

Ψ̂2 =
864

23n2

n∑
i=1

n∑
j=1

min

(
1− R1i

n+ 1
, 1− R1j

n+ 1

)
min

(
1− R2i

n+ 1
, 1− R2j

n+ 1

)
(5.1)

−2 min

(
1− R1i

n+ 1
,
R1j

n+ 1

)
min

(
1− R2i

n+ 1
,
R2j

n+ 1

)
+ min

(
R1i

n+ 1
,
R1j

n+ 1

)
min

(
R2i

n+ 1
,
R2j

n+ 1

)
,

and

Ψ̂∞ = 3
√
n max
i,j∈{1,2,...,n}

|Cn(
i

n+ 1
,

j

n+ 1
)− Ĉn(

i

n+ 1
,

j

n+ 1
)|,(5.2)

see, e.g., [10], by simulation. For speci�c sample size n ∈ {200, 500, 1000} a total of
1000 Monte Carlo replications generated from three radially asymmetric copulas Clayton,
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Table 1. Average mean square errors and estimated values for mea-

sure λ̂ from 1000 iterations with sample size n ∈ {200, 500, 1000} from
Clayton, Gumbel and Joe copulas with τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}

n=200 n=500 n=1000

τ Copula λ̂ Bias RMSE λ̂ Bias RMSE λ̂ Bias RMSE

Clayton 0.017 0.010 0.022 0.011 0.004 0.011 0.009 0.002 0.007
0.1 Gumbel 0.038 0.035 0.024 0.029 0.026 0.013 0.022 0.019 0.008

Joe 0.051 0.041 0.025 0.040 0.029 0.015 0.032 0.022 0.009

Clayton 0.012 -0.017 0.022 0.013 -0.016 0.015 0.017 -0.012 0.010
0.25 Gumbel 0.047 0.037 0.025 0.037 0.026 0.013 0.030 0.019 0.009

Joe 0.079 0.040 0.032 0.067 0.028 0.018 0.061 0.022 0.013

Clayton 0.021 -0.029 0.024 0.031 -0.019 0.017 0.036 -0.014 0.012
0.5 Gumbel 0.037 0.025 0.020 0.030 0.018 0.011 0.024 0.012 0.007

Joe 0.082 0.024 0.028 0.076 0.018 0.018 0.072 0.014 0.012

Clayton 0.015 -0.017 0.016 0.021 -0.011 0.010 0.024 -0.008 0.007
0.75 Gumbel 0.014 0.008 0.010 0.012 0.006 0.006 0.010 0.004 0.004

Joe 0.039 0.005 0.017 0.040 0.006 0.010 0.039 0.005 0.007

Clayton 0.001 -0.011 0.006 0.005 -0.008 0.004 0.007 -0.006 0.003
0.9 Gumbel 0.003 0.001 0.004 0.002 0.000 0.002 0.002 0.000 0.001

Joe 0.009 -0.004 0.007 0.011 -0.002 0.004 0.012 0.001 0.003

Gumbel and Joe with �ve di�erent degrees of dependence in terms of Kendall's tau:
τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. For each case, 1000 random samples are generated and the
estimates of λ are computed. The average values of the estimates from 1000 iterations
are reported in Table 1 together with their corresponding RMSEs. The absolute bias
is reduced by increasing the sample size in all cases. It can be observed that the three
measures perform well in the high dependence case in fact, bias decreases (slightly) when
dependence increases. We also see that the RMSEs decrease as n increases.

5.1. Remark. We have not addressed the important problem of �nding the asymptotic
distribution of the estimator of λ which is useful for testing symmetry of bivariate data.
However, histograms of the estimates generated from above simulation for Clayton cop-
ula with di�erent degree of dependence presented in Figure 1, support the asymptotic
normality.

Table 2. Estimates of λ, Ψ∞ and Ψ2 for Loss-ALAE data

λ̂ Ψ̂2 Ψ̂∞
Estimate 0.0366 0.0892 0.0580
Standard error 0.0056 0.0100 NA

6. Example with real data

For the application, we present an example with a real data set on 1500 insurance
claims. Each claim consists of an indemnity payment (the loss) and an allocated loss
adjustment expense (ALAE). For details of the data set; see [8]. The scatter plot for
uniform scores of data presented in Figure 2 (left panel). We can see that there is
some asymmetry and a positive dependence in this data set. For these two variables
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Figure 1. Histogram of simulated estimates for Clayton copula with τ = 0.25 (top
left), τ = 0.5 (top right), τ = 0.75 (bottom left), τ = 0.9 (bottom right).
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Figure 2. Scatter plot of uniform scores of the loss (U) and ALAE (V) (left panel) and
Scatter plot of a random sample of size 1500 from Gumbel copula with the parameter

θ = 1.554 (right panel).
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the Spearman's rho and Kendall's tau coe�cients are 0.452 and 0.315, respectively. The
estimates of the radial asymmetry measures λ, Ψ∞ and Ψ2 for Loss-ALAE data are

shown in Table 2. For Ψ̂2 and λ̂, the standard errors are obtained using the jackknife
method, which is not applicable for calculating the standard error of Ψ̂∞. Choosing a
copula for this data set has been examined by means of various model selection methods
in [4, 8, 9]. For instance, in [4] the Gumbel, Clayton, Frank and Joe copulas were �tted
and reported that the Gumbel copula with the parameter θ = 1.554 is the best �ts.
The approximate values of three radial asymmetry measures for Gumbel copula with the
parameter θ = 1.554, are given Ψ∞ = 0.0744, Ψ2 = 0.0685 and λ = 0.023. The right
panel of Figure 2 displays the scatter plot of a random sample of size 1500 from Gumbel
copula with the parameter θ = 1.554.

7. Concluding remarks

Based on a modi�ed version of the Sobolve norm, an index is introduced for measur-
ing the radial asymmetry of a bivariate copula. The proposed index satis�es desirable
properties of a measure of radial asymmetry addressed in [3]. The measure λ is also
shown to be continuous, therefore it is possible to use empirical method to estimate the
value of this measure. The rank�based estimator of λ has a closed form and can be used
to detecting radial asymmetry in a set of bivariate data.
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