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A note on the multiple comparisons of exponential
location parameters with several controls under

heteroscedasticity
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Abstract

Several researchers have addressed the problem of constructing simul-
taneous con�dence intervals (SCIs) for comparing exponential location
parameters with a control or controls under heteroscedasticity when
sample sizes are equal or unequal. They usually used simulation-based
inference procedures or Lam's technique that leads to conservative
SCIs. In this paper, we present a set of SCIs for comparing exponential
location parameters with a control, controls and the best control under
heteroscedasticity when sample sizes are possibly unequal. Our method
is not a simulation-based inference procedure and our results show that
the proposed SCIs have some advantages over others.
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1. Introduction

There are many applications of exponential distribution in reliability analysis, life
testing, biological and epidemiological studies. For example, in dose-response analysis,
the location and scale parameters are known as the guaranteed mean e�ective duration
and the mean e�ective duration in addition to the guaranteed mean e�ective duration,
respectively. In biological and epidemiological studies, these parameters are known as
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the latency period and the mean duration of a disease; for more applications of expo-
nential distribution see [17] and [9]. We use notation E(a, b) to denote the exponential
distribution with the following density function

f (x; a, b) =
1

b
exp

(x− a
b

)
I[a,∞) (x) ,

where IA(·) is the indictor function of event A and parameters a ∈ (−∞,∞) and
b ∈ (0,∞) are location and scale parameters, respectively. Suppose that there are I
independent treatment groups and J independent control groups where the i-th treat-
ment group follows E(θi, σi) and the j-th control group follows E(µj , δj). We consider the
problem of constructing simultaneous con�dence intervals (SCIs) for θi−µj , i = 1, . . . , I;
j = 1, . . . , J , under one-stage and two-stage sampling procedures and heteroscedasticity;
i.e. when the scale parameters are unequal.

Under two-stage sampling scheme or the homogeneity assumption of scale parameters,
the problem of comparing exponential location parameters with a control or controls
has been addressed by several authors; e.g. [8] , [13] and [14]. Recently, Wu et al.
[15] proposed conservative two-sided and one-sided SCIs for θi − µ1, i = 1, . . . , I, under
heteroscedasticity when sample sizes are equal. They used Lam's [6, 7] technique to show
theoretically that the proposed SCIs are conservative. They also examined the coverage
probability (CP) of SCIs via a simulation study. The results of simulation indicated that
the proposed SCIs are too conservative. Maurya et al. [12] proposed one-sided and two-
sided conservative SCIs for θi − µj , i = 1, . . . , I; j = 1, . . . , J , under heteroscedasticity
when sample sizes are equal. They also used Lam's [6, 7] technique to show that their
SCIs are conservative. Maurya et al. [11] proposed only two-sided conservative SCIs for
θi − µ1, i = 1, . . . , I, under heteroscedasticity when sample sizes are equal. They also
used Lam's [6, 7] technique to obtain the required critical values. However, they did not
examine the CP of their SCIs.

Kharrati-Kopaei et al. [5] proposed simultaneous �ducial generalized con�dence in-
tervals (SFGCIs) for the successive di�erences of the location parameters of several ex-
ponential distributions and indicated how their proposed procedure can be modi�ed to
obtain SFGCIs for comparisons of the location parameters with one or several controls.
Malekzadeh et al. [10] proposed parametric bootstrap simultaneous con�dence inter-
vals (PBSCIs) for θi − µj , i = 1, . . . , I; j = 1, . . . , J , under heteroscedasticity when
sample sizes are unequal. They showed theoretically that their SCIs have correct CP
asymptotically; however, they did not investigate the CP of PBSCIs for small samples
theoretically. Malekzadeh et al. [10] also compared the CP of PBSCIs with SFGCIs via
simulation studies and concluded that PBSCIs outperform the SFGCIs for sample size
as small as 10.

These proposed methods are based on intensive computer simulation or Lam's [6, 7]
technique which leads to SCIs that are too conservative. In this paper, we present new
one-stage and two-stage SCIs for θi − µj , i = 1, . . . , I; j = 1, . . . , J , under heteroscedas-
ticity when sample sizes are possibly unequal. We also discuss constructing SCIs for
comparing the treatment groups with the best control. Our proposed method, in con-
trast to PBSCIs and SFGCIs, is not a simulation-based inference procedure and it is
very easy to implement. In addition, our method is not as conservative as the meth-
ods that are based on Lam's technique and consequently our SCIs have shorter lengths.
The organization of the paper is as follows. In Section 2, we present some necessary
backgrounds, notation and a useful lemma for constructing SCIs. In Sections 3 and 4,
SCIs under two-stage and one-stage sampling procedures are presented. In Section 5,
we discuss constructing SCIs for comparing the treatment groups with the best control.
In Section 6, via a simulation study, we compare the proposed SCIs with the ones that
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were proposed by [12], [5], and [10] in terms of CP and average volume (AV). Simulation
results show that the proposed SCIs have higher CP and smaller AV in most cases. In
Section 7, we illustrate our method with a real example that is about two test drugs and
two control drugs used in the treatment of Leukemia, as measured by the duration of
remission time. All proofs are given in the Appendix.

2. Notation and necessary backgrounds

Let Xi1, . . . , Ximi and Yj1, . . . , Yjnj denote random samples of sizes mi and nj from
the i-th treatment and j-th control, respectively. Let Xi = min {Xi1, . . . , Ximi}, Yj =
min

{
Yj1, . . . , Yjnj

}
, SXi =

∑mi
t=1(Xit −Xi)/(mi − 1), SYj =

∑nj

t=1 (Yjt − Yj) /(nj − 1),
CXi = SXi/mi, CYj = SYj/nj , and

C = max

{
max

i=1,...,I
{SXi/mi} , max

j=1,...,J

{
SYj/nj

}}
.

In addition, let WXi = mi(Xi − θi)/SXi and WYj = nj(Yj − µj)/SYj , i = 1, . . . , I; j =
1, . . . , J . It is well-known that WXi 's and WYj 's are independently distributed as F
distributions with 2 and 2mi − 2 and 2 and 2nj − 2 degrees of freedom, respectively;

see [15] and [12]. Let F−1
2,2n−2 (x) = (n − 1)

{
(1− x)−

1
n−1 − 1

}
, for x ∈ (0, 1), generally

denote the quantile function of a random variable whose distribution is F distribution
with 2 and 2n− 2 degrees of freedom.

The two-stage sampling scheme can be described as follows. Initial random samples of
sizesmi and nj are taken from the i-th treatment and the j-th control group, respectively.
Then random quantities

Mi = max

{
mi,

[
SXi

d

]
+ 1

}
and Nj = max

{
nj ,

[
SYj

d

]
+ 1

}
,

i = 1, . . . , I; j = 1, . . . , J, are calculated where the constant d > 0 is given and used
to control the length of the con�dence intervals for θi − µj and [x] denotes the largest
integer smaller than or equal to x; see [8]. If mi < Mi (nj < Nj), then Mi − mi

(Nj − nj) additional observations Ximi+1,. . . , XiMi (Yjnj+1, . . . , YjNj ) are taken from
the i-th (j-th) population. Let

X̃i =

{
min {Xi, Ximi+1, . . . , XiMi} if mi < Mi

Xi if mi =Mi,

Ỹj =

{
min

{
Yj , Yjnj+1, . . . , YNj

}
if nj < Nj

Yj if nj = Nj ,

and C̃Xi = SXi/Mi, C̃Yj = SYj/Nj , W̃Xi =Mi(X̃i−θi)/SXiand W̃Yj = Nj(Ỹj−µj)/SYj ,

i = 1, . . . , I; j = 1, . . . , J . Note that W̃Xi 's are distributed as F distribution with 2 and

2mi−2 degrees of freedom and W̃Yj 's are also distributed as F distribution 2 and 2nj−2

degrees of freedom; see [12]. In addition, W̃Xi 's and W̃Yj 's are independent.
The following lemma is useful for constructing SCIs for θi − µj ; see [4]. We use this

lemma for constructing SCIs under di�erent sampling schemes.

2.1. Lemma. Suppose that X and Y are two positive random variables and a, b, and d
are three positive constants, then [Y ≤ d] ⊆ [aX ≥ bY − bd].
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3. SCIs under two-stage sampling procedure

In this section, we present a set of new two-stage SCIs under heteroscedasticity when
sample sizes are possibly unequal. The following theorem shows how the additional
information in the second stage of sampling can be utilized to construct SCIs for θi−µj .

3.1. Theorem. Suppose that α ∈ (0, 1) is given. Then

(a) (−∞, X̃i − Ỹj + C̃Yj q
u
j ), i = 1, . . . , I; j = 1, . . . , J , are conservative simultaneous

upper bounds for θi − µj, i = 1, . . . , I; j = 1, . . . , J , with con�dence coe�cient 1 − α

where quj = F−1
2,2nj−2

(
(1− α)

1
J

)
.

(b) (X̃i− Ỹj − C̃Xi q
l
i,∞), i = 1, . . . , I; j = 1, . . . , J , are conservative simultaneous lower

bounds for θi − µj, i = 1, . . . , I; j = 1, . . . , J , with con�dence coe�cient 1 − α where

qli = F−1
2,2mi−2

(
(1− α)

1
I

)
.

(c) (X̃i − Ỹj − C̃Xiq
t
i , X̃i − Ỹj + C̃Yjd

t
j), i = 1, . . . , I; j = 1, . . . , J , are conservative

simultaneous two-sided bounds for θi − µj, i = 1, . . . , I; j = 1, . . . , J , with con�dence

coe�cient 1− α where qti = F−1
2,2mi−2

(
(1− α)

1
I+J

)
and dtj = F−1

2,2nj−2

(
(1− α)

1
I+J

)
.

3.2. Remark. When mi = nj = n for all i and j, [15] and [12] also proposed two-stage

SCIs for θi − µj . However, they used d in their SCIs instead of C̃Xi and C̃Yj . It is clear
that the proposed two-stage SCIs performs better than the SCIs proposed by [15] and

[12, 11] since d ≥ maxi=1,...,I C̃Xi and d ≥ maxj=1,...,J C̃Yj .

Note that the additional sample for the second stage may not be available due to
an experimental budget shortage; see [12]. In this view, we do not discuss any more
the SCIs that are based on a two-stage sampling procedure. In the next section, we
discuss constructing SCIs under one-stage sampling scheme when sample sizes and scale
parameters are possibly unequal.

4. SCIs under one-stage sampling procedure

Suppose that the additional sample for the second stage is not available and random
samples of sizesmi and nj are taken from the i-th treatment and j-th control, respectively.
The following theorem presents a set of one-stage SCIs for θi − µj .

4.1. Theorem. Suppose that α ∈ (0, 1) is given. Then
(a) (−∞, Xi − Yj + CYj q

u
j ), i = 1, . . . , I; j = 1, . . . , J , are conservative simultaneous

upper bounds for θi − µj, i = 1, . . . , I; j = 1, . . . , J , with con�dence coe�cient 1 − α

where quj = F−1
2,2nj−2

(
(1− α)

1
J

)
.

(b) (Xi−Yj −CXi q
l
i,∞), i = 1, . . . , I; j = 1, . . . , J , are conservative simultaneous lower

bounds for θi − µj, i = 1, . . . , I; j = 1, . . . , J , with con�dence coe�cient 1 − α where

qli = F−1
2,2mi−2

(
(1− α)

1
I

)
.

(c) (Xi − Yj − CXiq
t
i , Xi − Yj + CYjd

t
j), i = 1, . . . , I; j = 1, . . . , J , are conservative

simultaneous two-sided bounds for θi − µj, i = 1, . . . , I; j = 1, . . . , J , with con�dence

coe�cient 1− α where qti = F−1
2,2mi−2

(
(1− α)

1
I+J

)
and dtj = F−1

2,2nj−2

(
(1− α)

1
I+J

)
.

4.2. Remark. Suppose that mi = nj = n for all i and j. In this case, the proposed
SCIs in Theorem 4.1 are similar to ones proposed by [15] and [12]. The di�erence is that
they used C in their SCIs instead of CXi and CYj . It is clear that the proposed SCIs
outperform the SCIs proposed by [15] and [12] since CXi and CYj are smaller than C for
all i and j.
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4.3. Remark. By using Lemma 2.1, the two-sided SCIs proposed by [11] can be improved
similarly. However, we do not discuss it any more since we are interested in constructing
both one-sided and two-sided SCIs.

5. SCIs for comparing the treatment groups with the best control

Suppose that the best control is de�ned as a control group that has the largest location
parameter. We denote the location parameter of the best control by µ[J]. In practice, it
may be of interest to compare the treatment groups with the best control. In the following
theorem, we present one-stage SCIs for θi − µ[J], i = 1, . . . , I, under heteroscedasticity
when sample sizes are possibly unequal.

5.1. Theorem. Suppose that 0 < α < 1 is given. Then
(a)

(
−∞, Xi −minj=1,...,J {Yj}+minj=1,...,J

{
CYj q

u
j

})
, i = 1, . . . , I, are conservative

simultaneous upper bounds for θi − µ[J], i = 1, . . . , I, with con�dence coe�cient 1− α.
(b)
(
Xi −maxj=1,...,J {Yj} − CXiq

l
i,∞

)
, i = 1, . . . , I, are conservative simultaneous lower

bounds for θi − µ[J], i = 1, . . . , I, with con�dence coe�cient 1− α.
(c)

(
Xi −maxj=1,...,J {Yj} − CXiq

t
i , Xi −minj=1,...,J {Yj}+minj=1,...,J

{
CYjd

t
j

})
, i =

1, . . . , I, are conservative simultaneous two-sided bounds for θi − µ[J], i = 1, . . . , I, with
con�dence coe�cient 1− α.

5.2. Remark. We note that Maurya et al. [12] proposed SCIs for comparing the treat-
ment groups with the best control when sample sizes are equal. However, similar to the
Remarks 3.2 and 4.2, one can see that our proposed SCIs in Theorem 5.1 perform better
than the SCIs proposed by [12].

6. Simulation studies

In this section, we present the results of simulation studies in which we compare our
two-sided one-stage SCIs in terms of CP and AV with the ones that were proposed by [12],
[5], and [10]. We use abbreviations M11, SFGCI, and PBSCI for these three methods.
(A similar procedure can be used for examining and comparing one-sided SCIs.) Note
that in M11, it was assumed that sample sizes are equal; however, our SCIs, SFGCI and
PBSCI methods can be used even when sample sizes are unequal. In this regard, we
compare the methods under two scenarios that sample sizes are equal or unequal. We
�rst review the methods brie�y.
M11. When sample sizes are equal; i.e. mi = nj = n, i = 1, . . . , I; j = 1, . . . , J ,

Maurya et al. [12] used Lam's [6, 7] technique and showed that

(Xi − Yj − Cqt, Xi − Yj + Cqt), i = 1, . . . , I; j = 1, . . . , J,

are conservative simultaneous two-sided bounds for θi − µj , i = 1, . . . , I; j = 1, . . . , J ,

with con�dence coe�cient 1−α where qt = F−1
2,2n−2

(
(1− α)

1
I+J

)
. Note that when there

is only one control group (i.e. J = 1), the above SCIs reduce to the SCIs proposed by
[15].
SFGCI. This procedure is based on the concept of �ducial generalized pivotal quan-

tities (FGPQ); see [2, 3] and [1]. Let X∗i , Y
∗
j , S

∗
Xi
, and S∗Yj

denote independent copies
of Xi, Yj , SXi , and SYj , and let

Rij = Xi −
SXi

S∗Xi

(X∗i − θi)− Yj +
SYj

S∗Yj

(
Y ∗j − µj

)
.

Now, let

TF= max
1≤i≤I;1≤j≤J

∣∣∣(Xi − Yj −Rij)/√Vij∣∣∣,



452

where Vij 's are

(6.1) Vij =
(mi − 1)S2

Xi

m3
i

+
(nj − 1)S2

Yj

n3
j

.

Then 100(1− α)% two-sided SFGCIs for θi − µj are

Xi − Yj ± qFα
√
Vij , i = 1, . . . , I; j = 1, . . . , J,

where qFα is the (1−α)-th quantile of the conditional distribution of TF given the observed
values. The value of qFα is obtained by a Monte Carlo procedure. For more details, see
[5].
PBSCI. Let sxi and syj denote the observed values of SXi and SYj and let

TB = max
1≤i≤I,1≤j≤J

∣∣∣(XB
i − Y

B
j )/

√
V Bij

∣∣∣ ,
where

V Bij =
(mi − 1)

(
SBXi

)2
m3
i

+
(nj − 1) (SBYj

)
2

n3
j

,

in which XB
i and Y Bj are taken from (sxi/mi)E (0, 1) and (syj/nj)E(0, 1), respectively,

and

SBXi
∼ sxi

(2mi − 2)
χ2
2mi−2 and SBYj

∼
syj

(2nj − 2)
χ2
2nj−2,

where generally χ2
n denotes a chi-square distribution with n degrees of freedom. Then

100(1− α)% two-sided PBSCI for θi − µj are

Xi − Yj ± qBα
√
Vij , i = 1, . . . , I; j = 1, . . . , J,

where qBα denotes the (1 − α)-th quantile of the distribution of TB and Vij is given in
(6.1). For more details see [10].

6.1. When sample sizes are equal. We used the following procedure to estimate the
CPs and AVs of the methods when mi = nj = n, i = 1, . . . , I; j = 1, . . . , J . Let (µµµ,θθθ)
and (σσσ,δδδ) denote the vector of location and scale parameters, respectively. To avoid any
bias and for a realistic comparison, we decided to generate the values of (σσσ,δδδ) at random
from a known distribution. We refer to a �case �for a generated value of (σσσ,δδδ). For given
(σσσ,δδδ) and n, random samples of sizes n are generated from E(µµµ,σσσ) and E(θθθ,δδδ). For each
method, the two-sided SCIs are obtained and the results whether or not all the values
of θi − µj fall in their corresponding con�dence intervals are recorded. The (I × J)-th
root of volumes is calculated. This process is repeated 5000 times and the fraction of
times that all θi − µj are in their corresponding SCIs is calculated as an estimate of the
true CP. In addition, the average of the (I × J)-th root of volumes is calculated as AV.
Finally, the whole process is repeated for M cases.

The results are shown in Figure 1 for I = 3 and J = 2, n = 3, 5, 10, and 20, 1− α =
0.95, M = 100 and when the values of scale parameters are generated from chi-square
distributions with two degrees of freedom. In addition, the descriptive statistics of the
AV of methods have been shown in Table 1. In this simulation study, we assumed that
µµµ = θθθ = 000 without loss of generality and for SFGCI and PBSCI methods, we used 50,000
samples to obtained the required quantiles qBα and qFα .

Note that an estimated CP is a normal random variable approximately with mean 1−α
and variance α(1 − α)/5000. Thus a 95% lower bound for the true CP (1 − α = 0.95)
can be obtained as 0.9449. In Figure 1, this lower bound for the true CP has been also
drawn. If the estimated CP of a method is less than this lower bound, we can conclude
that the CP of that method is less than the true CP signi�cantly.
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The following conclusions can be drawn from Figure 1 and Table 1:
(a) M11 has the highest CP and AV for di�erent cases. This method is too conserva-

tive and has the worst performance in terms of AV.
(b) SFGCI performs better than M11 in terms of AV. The AV of SFGCI is larger than

our method and PBSCI. The AV of SFGCI is close to that of PBSCI for large sample size
(n = 20). When sample size is small (n = 3 and 5), the SFGCI method is conservative.
However, it is not as conservative as M11 method. The CP of SFGCI is higher than
our method when n = 3 and they are competitive when n = 5. For moderate and large
sample sizes (n = 10 and 20), our method has higher CP than SFGCI. The CP of SFGCI
tends to 0.95 when sample size increases; see [5].
(c) The AV of PBSCI is much less than M11. Although there are cases that the AV of

PBSCI is less than the AV of our method (see Table 1), there are several cases that the
CP of PBSCI is signi�cantly less than 0.95 (especially when sample sizes are small i.e.
n = 3 and 5).There are a few cases that the CP of PBSCI is signi�cantly less than 0.95
for large sample size (i.e. n =20). When sample size increases, our method has higher
CP than PBSCI and the number of cases that the AV of our method is less than PBSCI
increases. It seems that PBSCI method is somewhat liberal for some cases (especially
for small sample sizes).
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Figure 1. The CPs and AVs of our (solid line), M11 (dashed line),
SFGCI (long dashed line), and PBSCI (dotted line) methods when the
scale parameters are generated from chi-square distributions with two
degrees of freedom.

(d) The AV of our proposed method is much less than M11 and it is smaller than the
AV of SFGCI method (see Table 1). Therefore, our method performs better than M11
and SFGCI in terms of AV. The CP of our method is higher than 0.95 in contrast to
PBSCI when n = 3 and n = 5 and it has smaller AV than PBSCI for most cases when
n = 5, 10 and 20. The CP of our method varies between 0.96 and 0.97 approximately for
all cases and sample sizes that we considered here.

We also compared the methods when the values of σσσ and δδδ are generated from chi-
square distributions with two and �ve, �ve and two degrees of freedom, respectively, and
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Table 1. The descriptive statistics of the AV of methods.

n Methods Min Max Mean S.D.
Number of cases that the AV
of our method is less than

3

M11 14.80 127.70 58.81 26.22 100
SFGCI 6.41 50.40 22.07 9.85 100
PBSCI 4.60 33.93 15.08 6.29 26
New 5.07 37.14 16.86 7.99 -

5

M11 5.24 54.25 17.04 8.36 100
SFGCI 2.56 18.98 7.50 3.00 100
PBSCI 2.35 15.36 6.48 2.58 76
New 1.68 14.41 5.69 2.35 -

10

M11 0.80 19.78 16.19 3.50 100
SFGCI 0.48 8.43 2.71 1.41 100
PBSCI 0.43 8.10 2.56 1.35 96
New 0.39 5.70 2.03 1.09 -

20

M11 0.36 5.22 2.21 1.04 100
SFGCI 0.24 2.26 1.08 0.48 100
PBSCI 0.24 2.22 1.06 0.47 99
New 0.17 1.85 0.81 0.38 -

from a half-normal distribution with mean two (the results are not shown here). The
results were similar to Figure 1.

6.2. When sample sizes are unequal. Simulation results in the previous section
showed that the AV of our and PBSCI methods are less than those of other methods.
Therefore, we decided to compare our method with PBSCI when sample sizes are unequal.
We used the same procedure as in Section 6.1 to estimate the CPs and AVs of methods.
The di�erence is that the values of sample sizes are generated from a truncated Poisson
distribution at zero and one points with parameter λ in each case. The results for λ = 3,
10, and 20 are shown in Figure 2 and Table 2. It is seen that although the AV of PBSCI
is less than our method in some cases when λ is small (sample sizes are small), the CP
of PBSCI is less than 0.95 signi�cantly in most cases (54% of cases). In addition, there
are cases that the CP of PBSCI is less than 0.95 signi�cantly when λ is moderate and
large (28% and 6% of cases) while the CP of our method is higher than 0.95 in all cases.
Therefore, it seems that PBSCI is not a reliable method when sample sizes are small
which is commonly occurred in practice. It is worth mentioning that our method not
only have higher CP than PBSCI but also its AV is smaller than PBSCI for λ = 10 and
20.
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Figure 2. The CPs and AVs of our (solid line) and PBSCI (dashed
line) methods when the scale parameters are generated from chi-square
distributions with two degrees of freedom and sample sizes are gener-
ated from a truncated Poisson distribution at zero and one points with
λ = 3, 10, and 20.

Table 2. The descriptive statistics of the AV of our and PBSCI meth-
ods for λ=3, 10, and 20.

λ Methods Min Max Mean S.D.
Number of cases that the AV
of our method is less than

3
PBSCI 1.91 117.50 23.78 18.42 33
New 1.96 136.90 32.62 29.73 -

10
PBSCI 0.26 17.28 3.28 2.39 96
New 0.23 8.73 2.60 1.77 -

20
PBSCI 0.21 3.52 1.26 0.61 98
New 0.17 2.52 0.98 0.47 -

It is clear that in practice a desirable set of SCIs must have the highest CP and the
lowest lengths. In this view, it seems that our method has some advantages over the
other methods. The CP of our method is higher than the nominal CP for all sample sizes
and scale parameters (see Theorem 4.1) in contrast to PBSCI method (especially when
sample size is small). Our simulation results show that our method is not as conservative
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as M11 method and consequently has smaller AV; see remark 4.2. Although the CP of
SFGCI is higher than our method for small sample sizes, our method has smaller AV. For
moderate and large sample size, our method has higher CP and smaller AV than SFGCI.
The CP of our method is higher than PBSCI and the AV of our method is smaller than the
AV of PBSCI in most cases. In addition, our method is not a simulation-based method
in contrast to SFGCI and PBSCI methods and it is very easy to implement. Totally,
it seems that our method can be recommended for multiple comparisons of exponential
location parameters with several controls since our method performs better than the
other methods in terms of either CP or AV.

7. Example

Consider the data in Table 3 that is taken from [12] and [16]. They are representing the
e�ectiveness of two test drugs and two control drugs used in the treatment of Leukemia,
as measured by the duration of remission time. Maurya et al. [12] showed that each of
the four groups of data is exponentially distributed.

Table 3. Remission duration by four drugs.

Test Drug 1 Test Drug 2 Control Drug 1 Control Drug 2

1.034 5.115 2.214 4.158
2.344 4.498 4.976 4.025
1.266 4.617 8.154 5.170
1.563 4.651 2.686 11.909
1.169 4.533 2.271 4.912
4.118 4.513 3.139 4.629
1.013 7.641 2.214 3.955
1.509 5.971 4.480 6.735
1.109 12.130 8.847 3.140
1.965 4.699 2.239 12.446
5.136 4.914 3.473 8.777
1.533 17.169 2.761 6.321
1.716 5.497 2.833 3.256
2.778 11.332 2.381 8.250
2.546 18.922 3.548 3.759
2.626 13.712 2.414 5.205
3.413 6.309 2.832 3.071
1.929 10.086 5.551 3.147
2.061 9.293 3.376 9.773
2.951 11.787 2.968 10.218

Maurya et al. [12] and Malekzadeh et al. [10] previously analyzed this data set. Our
two-sided SCIs for comparing the test drugs with the control drugs are shown in Table
4. For comparisons, the results for PBSCI and SFGCI methods are also shown in this
table. It is seen that our conclusion with con�dence coe�cients 0.95 and 0.975 is the
same as M11, PBSCI and SFGCI methods. With respect to 99% SCIs, our conclusion is
the same as 99% SFGCIs: test drug 1 is worse than �both�the control drugs and only test
drug 2 is better than control drug 1. It is seen that the lengths of our two-sided SCIs are
typically shorter than the other methods as re�ected in the values of volume.
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Table 4. The results of two-sided SCIs for our, M11, PBSCI, and
SFGCI methods for comparing the test drugs with the control drugs.

Our
Parameters ααα=0.050 α = 0.025 ααα=0.010

θ1 − µ1 (-1.505,-0.826) (-1.560,-0.757) (-1.637,-0.663)
θ2 − µ1 (1.285,2.659) (1.101,2.728) (0.850,2.823)
θ1 − µ2 (-2.362,-1.265) (-2.417,-1.120) (-2.494,-0.920)
θ2 − µ2 (0.428,2.220) (0.244,2.365) (-0.007,2.565)

Volume 1.833 3.598 7.776

PBSCI
Parameters ααα=0.050 ααα=0.025 ααα=0.010

θ1 − µ1 (-1.552,-0.851) (-1.623,-0.779) (-1.718,-0.684)
θ2 − µ1 (1.509,3.059) (1.352,3.216) (1.141,3.427)
θ1 − µ2 (-2.675,-1.441) (-2.799,-1.317) (-2.967,-1.149)
θ2 − µ2 (0.501,2.354) (0.313,2.541) (0.061,2.793)

Volume 2.48 5.20 11.74

SFGCI
Parameters ααα=0.050 ααα=0.025 ααα=0.010

θ1 − µ1 (-1.571,-0.831) (-1.648,-0.754) (-1.754,-0.648)
θ2 − µ1 (1.465,3.103) (1.296,3.272) (1.062,3.506)
θ1 − µ2 (-2.709,-1.407) (-2.844,-1.272) (-3.030, -1.086)
θ2 − µ2 (0.448,2.406) (0.246,2.608) (-0.034,2.888)

Volume 3.09 6.56 15.35

M11
Parameters ααα=0.050 ααα=0.025 ααα=0.010

θ1 − µ1 (-2.200,-0.202) (-2.384,-0.018) (-2.635,0.233)
θ2 − µ1 (1.285,3.283) (1.101,3.467) (0.850,3.718)
θ1 − µ2 (-3.057,-1.059) (-3.241,-0.875) (-3.492,-0.624)
θ2 − µ2 (0.428,2.426) (0.244,2.610) (-0.007,2.861)

Volume 15.94 31.34 67.66

Our two-sided SCIs for comparing the test drugs with the best control, θi − µ[2] for
i = 1, 2, are shown in Table 5. For comparison, the SCIs obtained by Maurya et al. [12]
are also shown in this table. It is seen that our conclusion is di�erent from Maurya et
al. [12] at con�dence coe�cient 0.99: our SCIs show that the test drug 1 is worse than
the best control in contrast to Maurya's et al. [12] method. It is also seen that our SCIs
have much smaller volume than the SCIs that proposed by Maurya et al. [12].
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Table 5. The two-sided SCIs for comparing the test drugs with the
best control.

Our
Parameters ααα=0.050 ααα=0.025 ααα=0.010

θ1 − µ[2] (-2.362,-1.576) (-2.417,-1.645) (-2.494,-1.740)
θ2 − µ[2] (0.428,1.909) (0.244,1.840) (-0.007,1.746)

Volume 1.16 1.23 1.32

[12]
Parameters ααα=0.050 ααα=0.025 ααα=0.010

θ1 − µ[2] (-3.058,-0.201) (-3.242,-0.017) (-3.494,0.235)
θ2 − µ[2] (0.427,3.284) (0.243,3.648) (-0.009,3.720)

Volume 8.16 10.40 13.91
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Appendix. The proofs of theorems.

Proof of Theorem 3.1. We prove only part (a). Part (b) is proved similarly and part (c)
is proved by combining parts (a) and (b). For (a), we have

P = Pr
(
θi − µj ≤ X̃i − Ỹj + C̃Yj q

u
j , i = 1, . . . , I; j = 1, . . . , J

)
= Pr

(
SXi

Mi
W̃Xi ≥

SYj

Nj
W̃Yj − C̃Yj q

u
j , i = 1, . . . , I; j = 1, . . . , J

)
= Pr

(
SXi

Mi
W̃Xi ≥

SYj

Nj
W̃Yj −

SYj

Nj
quj , i = 1, . . . , I; j = 1, . . . , J

)
= ESX1

,...,SXI
,SY1

,...,SYJ

(
Pr

{
SXi

Mi
W̃Xi ≥

SYj

Nj
W̃Yj −

SYj

Nj
quj , i = 1, . . . , I; j = 1, . . . , J

})
,

where EX1,...,Xk (·) generally denotes the expectation over X1, . . . , Xk. Note that the
probability inside the expectation operator is actually conditional probability (given

SX1 , . . . , SXI , SY1 , . . . , SYJ ). Since W̃Xi 's and W̃Yj 's are independently distributed as
F distributions with 2 and 2mi − 2 and 2 and 2nj − 2 degrees of freedom, respectively,
by using Lemma 2.1, we have

P ≥ Pr
(
W̃Yj ≤ q

u
j , j = 1, . . . , J

)
= 1− α.

It completes the proof. �

Proof of Theorem 4.1. The proof is similar to the proof of Theorem 3.1. �

Proof of Theorem 5.1. We prove only part (a). Part (b) is proved similarly and part (c)
is proved by combining parts (a) and (b). Note that

θi − µ[J] ≤ Xi − min
j=1,...,J

{Yj}+ min
j=1,...,J

{
CYj q

u
j

}
, i = 1, . . . , I,

if and only if

θi − µ[J] ≤ Xi − min
j=1,...,J

{Yj}+ CYj q
u
j , i = 1, . . . , I; j = 1, . . . , J.

For i = 1, . . . , I; j = 1, . . . , J , let

Aij =

{(
θi, µ[J]

)
|θi − µ[J]∈ (−∞, Xi − min

j=1,...,J
{Yj}+ CYj q

u
j )

}
,

Cij =

{
(θi, µj) |θi − µj ∈ (−∞, Xi − min

j=1,...,J
{Yj}+ CYj q

u
j )

}
,

Bij =
{
(θi, µj) |θi − µj ∈ (−∞, Xi − Yj + CYj q

u
j )
}
.

Since µ[J] ≥ µj and Yj ≥ minj=1,...,J {Yj} for all j, we have Bij ⊆ Cij ⊆ Aij for all i and
j. Now, by using part (a) of Theorem 4.1, the proof is completed. �




