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On estimating a stress-strength type reliability

M. Mahdizadeh∗

Abstract

This article deals with estimating an extension of the well-known stress-
strength reliability in nonparametric setup. By means of Monte Carlo
simulations, the proposed estimator is compared with its parametric
analogs in the case of exponential distribution. The results show that
the estimator could be highly e�cient in many situations considered.
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1. Introduction

In the reliability literature, the stress-strength term refers to a component with random
strength Y which is subjected to random stress X. The component functions if the
strength exceeds the stress applied, while it fails otherwise. Thus, θ = P (X < Y ) is a
measure of component reliability.

The estimation of θ has been extensively investigated in the literature when X and Y
are independent variables belonging to the same univariate family of distributions. An
exhaustive account of this topic is given by [4].

Suppose Y1, . . . , Yn are random strength of n components which are subjected to
random stresses X1, . . . , Xm. It is further assumed that Xi's and Yj 's are independent
with density functions f and g, respectively. A generalized reliability measure can be
de�ned as

(1.1) θr,s = P (Xr:m < Ys:n),

where Xr:m (Ys:n) is the rth (sth) order statistic of X1, . . . , Xm (Y1, . . . , Yn). The stan-
dard stress-strength reliability θ is obtained when m = n = 1. Some other especial cases
are listed below:

• r = 1 and s = 1: minimum strength component is subjected to minimum stress
component.
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• r = 1 and s = n: maximum strength component is subjected to minimum stress
component.

• r = m and s = 1: minimum strength component is subjected to maximum stress
component.

• r = m and s = n: maximum strength component is subjected to maximum
stress component.

[7] considered estimation of θr,s when

f(x) = α exp{−αx}, x > 0,

and

g(y) = β exp{−βy}, y > 0.

This will be referred to as model I. Under this setup, it can be shown that
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Mathematical form of the exponential distribution allows one to derive maximum likeli-
hood estimator (MLE), uniformly minimum variance unbiased estimator (UMVUE) and
Bayesian estimator of θr,s. For example, MLE is given by
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where α̂ = m/
∑m
i=1Xi and β̂ = n/

∑n
i=1 Yi. Also, UMVUE is obtained as

(1.4) θ̃r,s = s

(
n

s

)
m∑
j=r

j∑
i=0

s−1∑
`=0

(
m

j

)(
j

i

)(
s− 1

`

)
(−1)i+`φ̂i,j,`(α, β),

where
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Even in this case the estimators have complicated form and their variances are computed
numerically. The reader is referred to [7] for details. There are similar concerns about
the Bayesian estimator. So we do not consider it in the sequel.

As mentioned before, the above developments are possible owing to the tractable
mathematical form of the exponential distribution. This is not an easy job for many
other distributions. Moreover, estimation in parametric settings is sensitive to violation of
distributional assumptions. In this work, nonparametric estimation of θr,s in an especial
case is studied. We consider the situation that Xr:m are Ys:n are extreme order statistics,
i.e. r = 1,m and s = 1, n. This setup is particularly important from practical point of
view. For example, information about θm,1 and θm,n are vital for planning a reliability
experiment.

Section 2 reviews the design under which we study nonparametric estimation of θr,s.
The estimator is presented in Section 3. Section 4 contains results of Monte Carlo
simulations conducted to compare our estimator with its parametric competitors in the
case of exponential distribution. We conclude the paper with a summary in Section 5.
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2. Sampling designs

Ranked set sampling (RSS), introduced by [6], is a technique designed for situations
where the sampling units are di�cult or expensive to measure, but can be easily ordered
by some means without actual quanti�cation. Inference procedures based on RSS are
often superior to their counterpart based on simple random sampling (SRS), given a �xed
sample size. Although McIntyre's work was motivated by the problem of estimating
the average yields from plots of cropland, RSS has also been applied in areas such as
environmental science, reliability and medicine. [1] provides a review of nonparametric
RSS methodology. For a book-length treatment of RSS and its applications, see [2].

To implement basic RSS scheme, a set size k and a number of cycles t are speci�ed at
�rst. Select k random samples of size k from the target population. The units within each
sample are (judgment) ranked with respect to the variable of interest without making any
formal quanti�cation. The ranking can be done based on expert opinion, concomitant
variable, or a combination of them. From the ith (i = 1, . . . , k) sample, actual measure-
ment is made from the unit with ith smallest rank. This forms a cycle of RSS which
yields k measured units. The cycle may be repeated t times to obtain tk units.

There is a connection between RSS and reliability theory. In each cycle of RSS, the ith
(i = 1, . . . , k) observation, measured from the ith sample, may be viewed as the lifetime
of a (k − i + 1)-out-of-k system consisting of k components. Recall that a `-out-of-k
system functions if at least ` (` = 1, . . . , k) of its components are working (see [5]). Two
recent papers in the context of reliability estimation from exponential populations based
on RSS are [9] and [3].

Many authors have introduced extensions of RSS to construct improved estimators
of di�erent population attributes. Extreme ranked set sampling (ERSS) is one such a
design proposed by [8]. In the ERSS, one only identi�es extreme order statistics, and
thereby errors in ranking process are reduced.

The ERSS procedure in a single cycle can be summarized as follows. First, draw k
random samples of size k from the target population. The units within each sample
are ranked with respect to the variable of interest. If the set size k is even, select the
smallest unit from k/2 samples, and the largest unit from the other k/2 samples, for actual
measurement. If the set size is odd, select the smallest unit from (k − 1)/2 samples, the
largest unit from the other (k − 1)/2 samples, and the median of the last sample, for
actual measurement. In the next section, we build on ERSS to construct an e�cient
estimator of (1.1).

3. Proposed estimator

Let θr,s be de�ned as in (1.1), r = 1,m and s = 1, n. Nonparametric estimation of
θr,s based on SRS involves drawing M samples of size m from f , and N samples of size
n from g. From each sample of size m(n), one measures rth (sth) order statistic. The
natural estimator is given by

θ̂SRSr,s =
1

MN

M∑
i=1

N∑
j=1

I(Xi
r:m < Y js:n),

where Xi
r:m(Y js:n) is the rth (sth) order statistic from the ith (jth) sample of size m(n).

In doing so, a total of mM + nN measurements are made which could be too large for
an accurate estimation. The situation will deteriorate if measurement is costly.

The above argument led us to resort to RSS. Particularly, we employ a modi�cation
of ERSS in which the �rst/last order statistic is quanti�ed from any sub-sample of size k.
SupposeX1

[r:m], . . . , X
m
[r:m] and Y

1
[s:n], . . . , Y

n
[s:n] are drawn from f and g using the aforesaid
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ERSS scheme with set sizes m and n, respectively. It is emphasized that r = 1,m and
s = 1, n. Then, we suggest to estimate θr,s by

(3.1) θ̂ERSSr,s =
1

mn

m∑
i=1

n∑
j=1

I(Xi
[r:m] < Y j[s:n]).

It is worth noting that the above mentioned variation of ERSS allows to draw m (n)

independent copies ofXi
[r:m](Y

j
[s:n]) only based onm+n actual quanti�cations. Therefore,

comparing (3.1) with (1.3) or (1.4) is meaningful. In simulation studies conducted, it is

assumed that judgment rankings needed to collect Xi
[r:m]'s and Y

j
[s:n]'s are free of errors.

This is not a strict assumption as one can identify the smallest/largest order statistic in
a sample of size m or n.

We close this section by a result concerning distributional properties of the proposed
estimator. Let Fr (Gs) be the distribution function of X1

r:m (Y 1
s:n), and Ḡs = 1−Gs.

Proposition 1 Suppose θ̂ERSSr,s is de�ned as in (3.1). Under perfect ranking assumption,
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Proof. The unbiasedness of θ̂ERSSr,s is readily veri�ed. To obtain the variance expression,
we have
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The result then follows from (3.2) and unbiasedness of θ̂ERSSr,s . 2

4. Numerical results

This section reports results of simulation studies carried out to compare the perfor-

mance of θ̂ERSSr,s with θ̂r,s and θ̃r,s. To this end, for some con�gurations of the involved
parameters, values of θr,s in (1.2) were computed that appear in Table 1. For each com-
bination of (m,n) and (r, s), four choices of β were used which are marked with asterisks.
The parameter α was always set to unity.

The e�ciency of θ̂ERSSr,s relative to the parametric rivals, de�ned as ratio of the corre-
sponding mean squared errors (MSEs), were estimated based on 5,000 replications. Also,
biases of the three estimators were computed. The results are given in Tables 2 and 3.

In each case, the three entries show bias of θ̂r,s or θ̃r,s, bias of θ̂
ERSS
r,s , and the relative

e�ciency (RE), respectively. For convenience, the REs are given in bold. The values of
β are not reported as they can be read from Table 1.
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Table 1. Values of θr,s under model I

(m,n) (r, s) β1 β2 β3 β4
(5,5) (5,1) 0.15* 0.1* 0.05* 0.02*

0.24345 0.36941 0.58838 0.80141
(5,5) 2* 1.5* 1* 0.7*

0.17682 0.29326 0.5 0.68388

(10,10) (10,1) 0.06* 0.04* 0.02* 0.01*
0.21428 0.34375 0.57257 0.75162

(10,10) 1.5* 1.3* 1* 0.9*
0.24371 0.32654 0.5 0.57163

(20,20) (20,1) 0.025* 0.015* 0.01* 0.005*
0.19455 0.36185 0.50135 0.70316

(20,20) 1.2* 1.1* 1* 0.95*
0.35044 0.42041 0.5 0.54303

Table 2. Monte Carlo biases of θ̂r,s and θ̂ERSSr,s , and the relative e�-
ciency under model I

(m,n) (r, s) β1 β2 β3 β4
(5,5) (5,1) 0.02586 0.00855 -0.0177 -0.02504

-0.001 -0.0011 -0.00359 -0.00241
1.151 1.01 0.859 0.635

(5,5) 0.06808 0.05059 0.00188 -0.04264
-0.00016 -0.00076 -0.00092 -0.00261
2.771 2.266 2.034 2.224

(10,10) (10,1) 0.01459 0.00373 -0.01144 -0.01454
-0.00126 -0.00222 -0.00204 -0.00093
1.354 1.187 0.915 0.654

(10,10) 0.04616 0.03265 -0.00241 -0.01736
0.00068 5e-04 0.00146 0.0014
4.118 3.726 3.507 3.563

(20,20) (20,1) 0.00805 6e-05 -0.00521 -0.00824
-0.00039 -0.00039 -0.00058 -0.00053
1.437 1.238 1.057 0.734

(20,20) 0.02157 0.01052 -0.00275 -0.00993
0.00068 0.00078 0.00062 0.00077
5.884 5.721 5.666 5.696

It is observed that θ̂ERSSr,s has less absolute bias than θ̂r,s and θ̃r,s. Also, there are
few cases that MLE or UMVUE is more e�cient than the new estimator. Most of the
RE values are in the range (1, 6) con�rming that the nonparametric estimator could be
highly e�cient in some cases.

To assess robustness properties of the parametric estimators, a partial simulation
study was conducted. To do so, we assume X has exponential distribution with mean
1/α, and Y has Weibull distribution with shape parameter γ, and scale parameter β.
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Table 3. Monte Carlo biases of θ̃r,s and θ̂ERSSr,s , and the relative e�-
ciency under model I

(m,n) (r, s) β1 β2 β3 β4
(5,5) (5,1) -0.04301 -0.06301 -0.09157 -0.10981

-0.001 -0.0011 -0.00359 -0.00241
1.131 1.111 1.046 1.004

(5,5) -0.03919 -0.06777 -0.12284 -0.17316
-0.00016 -0.00076 -0.00092 -0.00261
2.236 2.257 2.505 3.083

(10,10) (10,1) -0.03336 -0.04725 -0.06433 -0.07212
-0.00126 -0.00222 -0.00204 -0.00093
1.335 1.296 1.098 0.941

(10,10) -0.05565 -0.07792 -0.12749 -0.14893
0.00068 5e-04 0.00146 0.0014
3.398 3.428 3.832 4.164

(20,20) (20,1) -0.02031 -0.03044 -0.03624 -0.04139
-0.00039 -0.00039 -0.00058 -0.00053
1.424 1.329 1.175 0.905

(20,20) -0.06921 -0.08622 -0.10651 -0.11789
0.00068 0.00078 0.00062 0.00077
5.367 5.521 5.817 6.059

Table 4. Values of θr,s under model II

(m,n) (r, s) β1 β2 β3 β4
(5,5) (5,1) 0.15* 0.1* 0.05* 0.02*

0.5813 0.75631 0.92396 0.98686
(5,5) 2* 1.5* 1* 0.7*

0.04564 0.10536 0.27258 0.49585

(10,10) (10,1) 0.06* 0.04* 0.02* 0.01*
0.72634 0.85913 0.96098 0.98997

(10,10) 1.5* 1.3* 1* 0.9*
0.02907 0.03026 0.13985 0.17725

That is

f(x) = α exp{−αx}, x > 0,

and

g(y) = γβγyγ−1 exp{−(βy)γ}, y > 0.

This will be referred to as model II. Under this setup, it can be seen that

θr,s = s
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×
∫ ∞
0
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}
dy.(4.1)

It is to be noted that model I corresponds to the case γ = 1.
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Table 5. Monte Carlo biases and MSEs of θ̂r,s under models I and II

(m,n) (r, s) β1 β2 β3 β4
(5,5) (5,1) -0.33114 -0.39367 -0.35882 -0.20807

0.02586 0.00855 -0.0177 -0.02504

0.12987 0.1791 0.14965 0.05205
0.02899 0.03427 0.03228 0.01629

(5,5) 0.16638 0.20695 0.2084 0.1388
0.06808 0.05059 0.00188 -0.04264

0.06115 0.08834 0.09685 0.06571
0.05125 0.06389 0.07182 0.06776

(10,10) (10,1) -0.52309 -0.53737 -0.41914 -0.26433
0.01459 0.00373 -0.01144 -0.01454

0.28384 0.30226 0.1878 0.07625
0.01664 0.02076 0.01863 0.01027

(10,10) 0.21147 0.27871 0.31252 0.33599
0.04616 0.03265 -0.00241 -0.01736

0.0761 0.11583 0.14287 0.15799
0.05222 0.05855 0.06322 0.06235

Table 6. Monte Carlo biases and MSEs of θ̃r,s under models I and II

(m,n) (r, s) β1 β2 β3 β4
(5,5) (5,1) -0.40301 -0.46682 -0.43119 -0.29174

-0.04301 -0.06301 -0.09157 -0.10981

0.18196 0.24257 0.20613 0.09228
0.02887 0.03824 0.03982 0.02585

(5,5) 0.05398 0.07893 0.07933 0.01492
-0.03919 -0.06777 -0.12284 -0.17316

0.03031 0.05196 0.06745 0.04925
0.04178 0.0649 0.08957 0.09474

(10,10) (10,1) -0.57129 -0.58869 -0.47144 -0.3211
-0.03336 -0.04725 -0.06433 -0.07212

0.33582 0.35989 0.23411 0.10897
0.01617 0.02236 0.02209 0.0145

(10,10) 0.11092 0.16861 0.1913 0.21093
-0.05565 -0.07792 -0.12749 -0.14893

0.03718 0.06113 0.07711 0.08406
0.04242 0.05277 0.06741 0.07119

Again, for some con�gurations of the involved parameters, values of θr,s in (4.1) were
computed which are given in Table 4. The choices of (m,n), (r, s), α and β are nearly

as in Table 1. We only set γ = 2 to deviate from model I. Now, biases and MSEs for θ̂r,s
and θ̃r,s were estimated based on 5,000 replications. Tables 5 and 6 show the results. In
each case, the four entries are two biases, and then two MSEs. To facilitate comparisons,
the biases and MSEs under model I are given in bold.

With a few exceptions, the absolute biases, and MSEs of both estimators increase
under model II, as expected. The amount of increase will be more pronounced if the
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departure from model I is not so mild. This supports the use of nonparametric estimator
whenever possible.

Computer codes used to compare θ̂ERSSr,s with θ̂r,s are given in the appendix. They

can be easily modi�ed for comparing the suggested estimator and θ̃r,s.

5. Conclusion

This article attends to estimation of a reliability measure which extends the usual
stress-strength reliability. Estimating this index in parametric settings is generally a
di�cult task. Moreover, the resulting estimators are prone to violation of distributional
assumptions. Therefore, a nonparametric approach merits investigation. Toward this
end, we employ a variation of a sampling design which often leads to improved inference
procedures as compared with the usual SRS scheme. The aforesaid design called RSS
combines measurement with judgment ranking information for statistical inference pur-
pose. Monte Carlo simulations are conducted to compare the proposed estimator with its
parametric rivals in the case of exponential distribution. The results con�rm preference
of the estimator in many situations considered.

Acknowledgements The author wishes to thank the two anonymous referees for
constructive suggestions that have improved the article signi�cantly.
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Appendix

### R code used for computing entries of Table 2 ###

B=5000

m=5; n=5

r=m; s=1

alpha=1; beta=0.15

ML.srs=rss=c()

g=0

for(j in r:m){

for(i in 0:j){

for(k in 0:(s-1)){

g=g+choose(m,j)*choose(j,i)*choose(s-1,k)*(-1)^(i+k)/((n-s+1+k)+alpha/beta*(m+i-j))

}

}

}

theta=s*choose(n,s)*g

set.seed(1)

for(b in 1:B){

x=rexp(m,alpha); y=rexp(n,beta)

xh=1/mean(x); yh=1/mean(y)

h=0

for(j in r:m){

for(i in 0:j){

for(k in 0:(s-1)){

h=h+choose(m,j)*choose(j,i)*choose(s-1,k)*(-1)^(i+k)/((n-s+1+k)+xh/yh*(m+i-j))

}

}

}

ML.srs[b]=s*choose(n,s)*h

X=Y=c()

for(i in 1:m){

u=rexp(m,alpha); u=sort(u)

X[i]=u[r]

}

for(j in 1:n){

v=rexp(n,beta); v=sort(v)

Y[j]=v[s]

}

cn=0

for(i in 1:m){ cn=cn+sum(X[i]<Y) }

rss[b]=cn/(m*n)

}
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round(theta,5)

round(mean(ML.srs)-theta,5)

round(mean(rss)-theta,5)

N=mean((ML.srs-theta)^2); D=mean((rss-theta)^2)

round(N/D,3)

### R code used for computing entries of Table 5 ###

B=5000

m=5; n=5

r=m; s=1

alpha=1; c=2; beta=0.15

ML.srs=MLR.srs=c()

g=0

for(j in r:m){

for(i in 0:j){

for(k in 0:(s-1)){

g=g+choose(m,j)*choose(j,i)*choose(s-1,k)*(-1)^(i+k)/((n-s+1+k)+alpha/beta*(m+i-j))

}

}

}

theta=s*choose(n,s)*g

set.seed(1)

for(b in 1:B){

x=rexp(m,alpha); y=rexp(n,beta)

xh=1/mean(x); yh=1/mean(y)

h=0

for(j in r:m){

for(i in 0:j){

for(k in 0:(s-1)){

h=h+choose(m,j)*choose(j,i)*choose(s-1,k)*(-1)^(i+k)/((n-s+1+k)+xh/yh*(m+i-j))

}

}

}

ML.srs[b]=s*choose(n,s)*h

}

g=0

for(j in r:m){

for(i in 0:j){

for(k in 0:(s-1)){

g=g+choose(m,j)*choose(j,i)*choose(s-1,k)*(-1)^(i+k)*

integrate(function(t) t^(c-1)*exp(-alpha*(m+i-j)*t-(n-s+1+k)*(beta*t)^c),



253

lower=0,upper=Inf)$value

}

}

}

true=s*choose(n,s)*c*beta^c*g

for(b in 1:B){

x=rexp(m,alpha); y=rweibull(n,c,1/beta)

xh=1/mean(x); yh=1/mean(y)

h=0

for(j in r:m){

for(i in 0:j){

for(k in 0:(s-1)){

h=h+choose(m,j)*choose(j,i)*choose(s-1,k)*(-1)^(i+k)/((n-s+1+k)+xh/yh*(m+i-j))

}

}

}

MLR.srs[b]=s*choose(n,s)*h

}

round(theta,5)

round(true,5)

round(mean(MLR.srs)-true,5)

round(mean(ML.srs)-theta,5)

round(mean((MLR.srs-true)^2),5)

round(mean((ML.srs-theta)^2),5)




