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The robustness of proximal penalty algorithms in
restoration of noisy image

Sabrina Gheraibia∗†, Amar Guesmia‡ and Noureddine Daili§

Abstract

The nondifferentiable convex optimization has an importance crucial
in the image restoration for this and in this article we present the
performance of the Prox method adapted to the restoration of noisy
images. Following of our article ([12]), we illustrate in this work the
superior efficacy of this algorithm “Prox” ([12]) then we are comparing
the obtained numerical results with the algorithms of Wiener filtering
([7], [16]), total variation ([5]) and wavelet soft-thresholding denoising
([1], [12], [13]), in terms of image quality and convergence.
Our first experiments showed that by applying of Prox algorithm for
restoration of noised image by the white Gaussian noise we obtain a
top results of denosed image with high quality (net, not rehearsed and
unsmoothed; textures are preserved) in addition to the convergence of
the algorithm is ensured whatever the values of SNR.
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1. Problematic and Results
Let us given an original image u, we suppose that it was degraded by an additive

noise.
From the observed image Im (which is thus a degraded version of the original image

u), we try to reconstruct u. If we suppose that the additive noise is Gaussian, the
Maximum likelihood method leads us to look u as solution of the following problem of
optimization:

(P) α := Inf
u∈Uad

{
1

2
‖Im− u‖22

}
where

Uad = {u ∈ BV (Ω) : J(u) ≤ 0}
and J(u) here denotes the total variation of u

J(u) = Sup

{∫
Ω

u(x)div(ϕ(x))dx : ϕ ∈ C1
c (Ω, R2), ‖ϕ‖∞ ≤ 1

}
.

Our problem (P) is equivalent to the following unconstrained problem:

(P′
r) αr := inf

u∈BV

{
1

2
‖Im− u‖22 + r.max(0,ΠK(u))

}
.

where r > 0 and where ΠK(u) is the projection of u in K:

K =
{
div(ϕ(x)) : ϕ ∈ C1

c (Ω, R2), ‖ϕ‖∞ ≤ 1
}
.

so (r →∞) that when the solution u (r) obtained is a solution of (P).
By the Proximal method ([1], [2], [10]), we associate to the problem (P′

r) the following
problem :

(Pr) αr(w) := min
(u,w)∈BV 2

{
1

2
‖Im− u‖22 + r.max(0,ΠK(u)) +

1

2
‖u− w‖22

}
.

The algorithm applied to this problem engenders a sequence
{
uk, wk

}
k
such that uk+1

be a solution of the problem

(Pr) αr = Inf
u∈BV

{
1

2
‖Im− u‖22 + r.max(0,ΠK(u)) +

1

2

∥∥∥u− wk
∥∥∥2

2

}
and wk+1 be a solution of the problem

(Pr) αr = Inf
w∈BV

{
1

2
‖Im− u‖22 + r ∗max(0,ΠK(uk+1)) +

1

2

∥∥∥uk+1 − w
∥∥∥2

2

}
uk+1 be a solution of the problem

(Pr) αr = Inf
u∈BV

{
1

2
‖Im− u‖22 + rh(u) +

1

2

∥∥∥u− uk
∥∥∥2

2

}
.

We propose the following proximal-penalty algorithm (see [2], [8], [9], [10], [15], [18]):

Proximal Penalty Algorithm
Step 0: (k = 0)
Let u0 ∈ Rn, ε > 0 be a precision.
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Step 1:
We choose a penalty coefficient r0, a precision δ > 0.
Apply the minimization algorithm to find u1 solution of the problem

Inf
u∈Rn

{
1

2
‖Im− u‖22 + r0 max(0,ΠK(u)) +

1

2

∥∥u− u0
∥∥2
}

Step 2:
Let u1(r0) = u1 be the obtained solution.
If
∥∥u1 − u0

∥∥ < ε and r0h(u1(r0)) < δ, then u1 is the best and good approximation
of the optimum and the calculations end in the iteration k + 1.

Else, we choose a penalty coefficient r1 > r0, put r0 = r1 and u0 = u1; k = k + 1 and
return to the step 1.

2. Numerical results:

Figure 1. Original image



1046

[a] [b]

[c] [d]

Figure 2. The SNR of denosed images for segma 0.08
[a]:Denoised of noisy Image by generalized Wiener filtering.
[b]:Denoised of noisy Image by Total Variational.
[c]:Soft Denoising of noisy Image.
[d]:Denoised of noisy Image by Prox.
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[a] [b]

[c] [d]

Figure 3. The SNR of denosed images for segma 0.35
[a]:Denoised of noisy Image by generalized Wiener filtering.
[b]:Denoised of noisy Image by Total Variational.
[c]:Soft Denoising of noisy Image.
[d]:Denoised of noisy Image by Prox.
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[a] [b]

[c] [d]

Figure 4. The SNR of denosed images for segma 0.501
[a]:Denoised of noisy Image by generalized Wiener filtering.
[b]:Denoised of noisy Image by Total Variational.
[c]:Soft Denoising of noisy Image.
[d]:Denoised of noisy Image by Prox.
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[a] [b]

[c] [d]

Figure 5. The SNR of denosed images for segma 1
[a]:Denoised of noisy Image by generalized Wiener filtering.
[b]:Denoised of noisy Image by Total Variational.
[c]:Soft Denoising of noisy Image.
[d]:Denoised of noisy Image by Prox.
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Segma SNR Prox SNR TV SNR Soft SNR Wienerfiltre

0.08 21.4 12.5 14.7 13

0.15 25.1 9.28 9.89 9.47

0.25 20.4 5.68 5.76 5.68

0.35 21.9 3.01 2.98 2.98

0.5 24.1 0.17 0.0173 0.0075

0.501 21 0.126 0.008 /

0.5125 25.1 0.0956 / /

1 22.6 / / /

1.5 23.3 / / /

2 20.4 / / /

2.5 21.9 / / /

3 21.9 / / /

Table 1. The different values of SNR of denosed image by: Prox,
Wiener filtering, total variation and wavelet soft-thresholding denosing
methods

[a] [b]

[c] [d]

Figure 6. The curves of SNR of denosed images with segma of white noise
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[a]:The curve of SNR by generalized Wiener filtering
[b]:The curve of SNR by Total Variational
[c]:The curve of SNR by Soft
[d]:The curve of SNR by Prox

Comment:
We see from the results that the restoration with the total variation of denosed image

shows that the regularization term has more influence on energy and therefore on the
position of its minimizer. The reverse occurs when the regularization term is higher so
the restored image is smoother ([19]).

On the other hand the quality of images denosed with Prox stay fixed with the
increasing of the Lagrangian value of Prox wich keeps the performance of texture after
denoising.

Also the figures (2; 3; 4; 5; 6) illustrate that the different algorithms applied to restora-
tion image such the total variation, wavelet soft-thresholding, Wiener filtering are not
robust they find difficulties during the restoration. In other words, they diverge with
increasing of invariace of white noise (sigma), but this is not the case if we apply the
Prox algorithm. It seems that this last is very effective and strong. It gives whatever the
vriance Sigma high quality of denoised image from Table.1, the SNR of restored images
remains almost constant, that its average value is:

SNR(prox)db = 22.4250.

On the other hand the curve of SNR with SEGMA for other methods seems that it
varied under the form of exponential:

SNR = βEXP (−α.segma).

Conclusion
About the above results we can conclud that the Prox algorithm suitable for image

restoration is more effective in terms of the convergence to the solution (denoised image)
if we compared with an other methods. Therefore the results obtained by this method
confirms the validity and performance of our algorithm of Prox for restoration image.
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