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Abstract
We point out that some of the results in Kundu and Gupta [3] in
otherwise an excellent paper are incorrect. We propose a more general
class of distributions and illustrate its use with two real data sets.
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1. Introduction
Kundu and Gupta [3] proposed quite a novel bivariate distribution by compounding a

bivariate Weibull distribution with a geometric distribution. The proposal is based on the
following construction due to Marshall and Olkin [5]: Suppose {(X1,n, X2,n) , n = 1, 2, . . .}
are independent and identical random vectors with joint survival function FX1,X2 . Let N
be a geometric random variable independent of {(X1,n, X2,n) , n = 1, 2, . . .} with probabil-
ity mass function Pr(N = n) = θ(1−θ)n−1, n = 1, 2, . . .. Define Y1 = min (X1,1, . . . , X1,N )
and Y2 = min (X2,1, . . . , X2,N ). Marshall and Olkin [5] showed that the joint survival
function of Y1 and Y2 is

FY1,Y2 (y1, y2) = Pr (Y1 > y1, Y2 > y2) =
θFX1,X2 (y1, y2)

1− (1− θ)FX1,X2 (y1, y2)
(1.1)

for 0 < θ < 1.
Kundu and Gupta [3] studied the structural properties of (1.1) when FX1,X2 is the

joint survival function of Marshall and Olkin [4]’s bivariate Weibull distribution. Kundu
and Gupta [3] also showed how the parameters can be estimated by EM algorithm,
presented a simulation study and discussed a real data application.
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Marshall and Olkin [4]’s bivariate Weibull distribution has the joint survival and joint
probability density functions specified by

FX1,X2 (x1, x2) =


exp [− (λ0 + λ1)x

α
1 − λ2x

α
2 ] , if x1 ≥ x2,

exp [− (λ0 + λ2)x
α
2 − λ1x

α
1 ] , if x1 < x2

(1.2)

and

fX1,X2 (x1, x2)

=
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α
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α
2 ] ,

if x1 > x2,

α2λ1 (λ0 + λ2)x
α−1
1 xα−1

2 exp [− (λ0 + λ2)x
α
2 − λ1x

α
1 ] ,

if x1 < x2,

αλ0x
α−1 exp [− (λ0 + λ1 + λ2)x

α] ,
if x1 = x2 = x,

(1.3)

respectively, for x1 > 0, x2 > 0, α > 0, λ0 > 0, λ1 > 0 and λ2 > 0. Unfortunately, the
formula for the latter given in equations (9)-(12) in Kundu and Gupta [3] is

fX1,X2 (x1, x2) =



α2λ2 (λ0 + λ1)x
α−1
1 xα−1

2 exp [− (λ0 + λ1)x
α
1 − λ2x

α
2 ] ,

if x1 > x2,

α2λ1 (λ0 + λ2)x
α−1
1 xα−1

2 exp [− (λ0 + λ2)x
α
2 − λ1x

α
1 ] ,

if x1 < x2,

αλ0 (λ0 + λ1 + λ2)
−1 xα−1 exp [− (λ0 + λ1 + λ2)x

α] ,
if x1 = x2 = x,

which is not a valid joint pdf. This error might have been an oversight, but it appears to
affect the results in Kundu and Gupta [3] including the estimation procedure, simulation
study and real data application.

The aim of this note is not to correct the mistakes in Kundu and Gupta [3]. Instead
we present a class of bivariate distributions more general than that introduced in Kundu
and Gupta [3]. We show that this general class gives better fits to at least two real data
sets, including the data considered in Kundu and Gupta [3]. We also argue that there is
no real need for the EM algorithm considered in Kundu and Gupta [3].

The general class of bivariate distributions is proposed in Section 2. Estimation by
the method of maximum likelihood is also discussed in Section 2. A simulation study
comparing two different algorithms for computing the maximum likelihood estimates is
presented in Section 3. Finally, Section 4 presents two real data applications of the
general class.

2. New class of distributions
Marshall and Olkin [5] and Kundu and Gupta [3] restricted N to be a geometric

random variable. We take N to be a power series random variable (truncated at zero)
with probability mass function

Pr(N = n) =
anθ

n

C(θ)
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for n = 1, 2, . . . and 0 < θ < s for some s, where

C(θ) =

∞∑
n=1

anθ
n <∞

for some an and for all 0 < θ < s. The power series distribution (truncated at zero)
contains many of the standard discrete distributions as particular cases: the binomial
distribution (truncated at zero) for C(θ) = (θ + 1)m − 1 and θ > 0; the logarithmic
distribution for C(θ) = − ln(1 − θ) and 0 < θ < 1; the Poisson distribution (truncated
at zero) for C(θ) = exp(θ)− 1 and θ > 0; the negative binomial distribution for C(θ) =
(1− θ)−m − 1 and 0 < θ < 1; and so on.

If N is a power series random variable then (1.1) generalizes to

FY1,Y2 (y1, y2) =
C
(
θFX1,X2 (y1, y2)

)
C (θ)

.

If we take FX1,X2(·, ·) as that given by (1.2) then

FY1,Y2 (y1, y2) =


C (θ exp [− (λ0 + λ1) y

α
1 − λ2y

α
2 ]) /C(θ),

if y1 ≥ y2,

C (θ exp [− (λ0 + λ2) y
α
2 − λ1y

α
1 ]) /C(θ),

if y1 < y2.

(2.1)

The corresponding survival functions of Y1 and Y2 are

Pr (Y1 > y1) = C (θ exp [− (λ0 + λ1) y
α
1 ]) /C(θ)

and

Pr (Y2 > y2) = C (θ exp [− (λ0 + λ2) y
α
2 ]) /C(θ).

The corresponding survival function of min (Y1, Y2) is

Pr (Y1 > y, Y2 > y) = C (θ exp [− (λ0 + λ1 + λ2) y
α]) /C(θ).

The corresponding joint probability density function of (Y1, Y2) is

fY1,Y2 (y1, y2) =
θ2C

′′ (
θFX1,X2 (y1, y2)

)
C (θ)

∂FX1,X2 (y1, y2)

∂y1

∂FX1,X2 (y1, y2)

∂y2

+
θC
′ (
θFX1,X2 (y1, y2)

)
C (θ)

fX1,X2 (y1, y2) ,(2.2)

where C
′
(θ) = dC(θ)/dθ, C

′′
(θ) = d2C(θ)/dθ2, fX1,X2 (x1, x2) is given by (1.3),

∂FX1,X2 (x1, x2)

∂x1
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and

∂FX1,X2 (x1, x2)

∂x2
=
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Moreover, Pr (Y1 < Y2) = λ1/ (λ0 + λ1 + λ2), Pr (Y1 > Y2) = λ2/ (λ0 + λ1 + λ2) and
Pr (Y1 = Y2) = λ0 / (λ0 + λ1 + λ2). We shall refer to the distribution given by (2.1)
and (2.2) as the Marshall Olkin Weibull (MOW)-name distribution, where name is the
name of the distribution of N . For example, if N is a geometric random variable we shall
refer to the distribution given by (2.1) and (2.2) as the MOW-geometric distribution, the
distribution proposed in Kundu and Gupta [3].

If {(Y1,n, Y2,n) , n = 1, 2, . . . , n0} is a random sample on (Y1, Y2) then the log-likelihood
of (θ, α, λ0, λ1, λ2) can be expressed as
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where ωi = θFX1,X2 (y1,i, y1,i). The maximum likelihood estimators of
(
θ, α, λ0, λ1,

λ2

)
are the parameter values maximizing (2.3). The maximization was performed using

the nlm routine in the R software (R Development Core Team [6]). Extensive numerical
computations showed that the surface of (2.3) was smooth for given smooth functions
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C(·). The routine was able to locate the maximum of the likelihood surface for a wide
range of smooth functions. The routine converged all the time. The solution for the
maximum likelihood estimates was unique for a wide range of starting values. Hence, we
did not feel the need to use the EM algorithm to find the maximum likelihood estimates.

However, a comparison of the use of the nlm routine and the EM algorithm is made in
Section 3. Throughout Sections 3 and 4, the initial values for maximization were taken to
correspond to all possible combinations of α = 0.01, 0.02, . . . , 10, λ0 = 0.01, 0.02, . . . , 10,
λ1 = 0.01, 0.02, . . . , 10, λ2 = 0.01, 0.02, . . . , 10, θ = 0.01, 0.02, . . ., 10 for the Poisson and
binomial cases and θ = 0.01, 0.02, . . . , 0.99 for the geometric, logarithmic and negative
binomial cases.

3. A simulation study
Here, we assess the efficiency of the nlm routine in the R software in computing the

maximum likelihood estimates. We also compare the efficiency with that of using the EM
algorithm in Kundu and Gupta [3]. The efficiency is measured in terms of the central
processing unit time to compute the maximum likelihood estimates.

We simulated ten thousand samples of size n from each of the MOW-geometric, MOW-
Poisson, MOW-logarithmic, MOW-binomial and MOW-negative binomial distributions.
The following scheme was used:

(1) simulate n from the geometric, (truncated) Poisson, logarithmic, (truncated)
binomial or the negative binomial distribution;

(2) simulate independently U1, U2, . . . , Un from a Weibull distribution with shape
parameter α and scale parameter λ0, V1, V2, . . . , Vn from a Weibull distribution
with shape parameter α and scale parameter λ1 and W1, W2, . . ., Wn from a
Weibull distribution with shape parameter α and scale parameter λ2;

(3) set Pi = min (Ui, Vi) and Qi = min (Ui,Wi) for i = 1, 2, . . . , n;
(4) set Y1 = min (P1, P2, . . . , Pn) and Y2 = min (Q1, Q2, . . . , Qn).

The maximum likelihood estimates were computed for each of the ten thousand samples
by using the nlm routine and the EM algorithm. This process was repeated for n =
15, 16, . . . , 100.

The mean central processing unit time (over the ten thousand samples) versus n is
plotted in Figure 1 for each MOW type distribution. We see that the use of the nlm
routine is more efficient for every n and for every MOW type distribution. The relative
efficiency of using the nlm routine increases with increasing n.

In the simulations, we took the true parameter values to be: α = 2, λ0 = 1, λ1 = 1,
λ2 = 1 and θ = 0.5 for the MOW-geometric distribution; α = 2, λ0 = 1, λ1 = 1, λ2 = 1
and θ = 1 for the MOW-Poisson distribution; α = 2, λ0 = 1, λ1 = 1, λ2 = 1 and θ = 0.5
for the MOW-logarithmic distribution; α = 2, λ0 = 1, λ1 = 1, λ2 = 1, θ = 1 and m = 10
for the MOW-binomial distribution; α = 2, λ0 = 1, λ1 = 1, λ2 = 1, θ = 0.5 and m = 10
for the MOW-negative binomial distribution. But the pattern in Figure 1 was the same
for a wide range of other parameter values. In particular, the nlm routine was always
more efficient for every n and for every MOW type distribution and the relative efficiency
of using the nlm routine always increased with increasing n.

4. Data applications
Here, we use two real data sets to illustrate the fits of MOW type distributions. The

first data set is the same as that used in Kundu and Gupta [3]. The data are on two
variables: Y1 = the time in minutes of the first goal kick scored by any team and Y2 =
the time in minutes of the first goal scored by the home team. The data on Y1 are 26,
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Figure 1. The mean central processing unit time (over the ten thou-
sand samples) versus n for the MOW-geometric distribution (top left),
MOW-Poisson distribution (top middle), MOW-logarithmic distribu-
tion (top right), MOW-binomial distribution (bottom left) and the
MOW-negative binomial distribution (bottom middle).

63, 19, 66, 40, 49, 8, 69, 39, 82, 72, 66, 25, 41, 16, 18, 22, 42, 2, 36, 34, 53, 54, 51, 76, 64,
26, 16, 44, 25, 55, 49, 24, 44, 42, 27, 28. The data on Y2 are 20, 18, 19, 85, 40, 49, 8, 71,
39, 48, 72, 62, 9, 3, 75, 18, 14, 42, 2, 52, 34, 39, 7, 28, 64, 15, 48, 16, 13, 14, 11, 49, 24,
30, 3, 47, 28. See Kundu and Gupta [3] for details.

The following distributions were fitted to the data: MOW, MOW-geometric, MOW-
Poisson, MOW-logarithmic, MOW-binomial m for m = 2, 3, . . . , 15, MOW-negative bi-
nomial m for m = 2, 3, . . . , 15. Throughout, MOW refers to the distribution given by
(1.2) and (1.3). The method of maximum likelihood was used to fit each distribution,
i.e., the parameter values are those minimizing the negative of (2.3). Table 1 gives
the following for the fitted distributions: the negative log-likelihood, Akaike information
criterion (AIC) due to Akaike [1] and the Bayesian information criterion (BIC) due to
Schwarz [7]. Table 2 gives the following for the fitted distributions: the Kolmogorov-
Smirnov statistic comparing the fitted and empirical cumulative distribution functions
of Y1, the corresponding p-value, the Kolmogorov-Smirnov statistic comparing the fitted
and empirical cumulative distribution functions of Y2, the corresponding p-value, the
Kolmogorov-Smirnov statistic comparing the fitted and empirical cumulative distribu-
tion functions of min (Y1, Y2) and the corresponding p-value. The Kolmogorov-Smirnov
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Model − lnL AIC BIC
MOW 337.153 682.306 688.750
MOW-geo 305.172 620.344 628.399
MOW-Poisson 307.751 625.502 633.557
MOW-log 292.073 594.146 602.201
MOW-bin m = 2 310.037 630.074 638.129
MOW-bin m = 3 307.604 625.208 633.263
MOW-bin m = 4 284.022 578.044 586.099
MOW-bin m = 5 302.503 615.006 623.061
MOW-bin m = 6 297.923 605.846 613.901
MOW-bin m = 7 289.974 589.948 598.003
MOW-bin m = 8 288.967 587.934 595.989
MOW-bin m = 9 284.888 579.776 587.831
MOW-bin m = 10 273.864 557.728 565.783
MOW-bin m = 11 273.197 556.394 564.449
MOW-bin m = 12 263.481 536.962 545.017
MOW-bin m = 13 255.636 521.272 529.327
MOW-bin m = 14 252.354 514.708 522.763
MOW-bin m = 15 247.437 504.874 512.929
MOW-neg bin m = 2 307.033 624.066 632.121
MOW-neg bin m = 3 301.347 612.694 620.749
MOW-neg bin m = 4 299.947 609.894 617.949
MOW-neg bin m = 5 292.352 594.704 602.759
MOW-neg bin m = 6 283.846 577.692 585.747
MOW-neg bin m = 7 271.521 553.042 561.097
MOW-neg bin m = 8 262.389 534.778 542.833
MOW-neg bin m = 9 251.878 513.756 521.811
MOW-neg bin m = 10 238.214 486.428 494.483
MOW-neg bin m = 11 224.912 459.824 467.879
MOW-neg bin m = 12 214.145 438.29 446.345
MOW-neg bin m = 13 200.722 411.444 419.499
MOW-neg bin m = 14 192.481 394.962 403.017
MOW-neg bin m = 15 180.946 371.892 379.947

Table 1. Log-likelihood, AIC and BIC values for the MOW type dis-
tributions fitted to the data used in Kundu and Gupta (2014).

statistic was computed by

Dn =
√
n sup

x
|Fn(x)− F (x)| ,

where Fn denotes the empirical cumulative distribution function and F denotes the fitted
cumulative distribution function. The corresponding p-value was computed by using the
fact that Dn converges in distribution as n → ∞ to the random variable K with the
cumulative distribution function

Pr (K ≤ x) = 1− 2
∞∑
k=1

(−1)k−1 exp
(
−2k2x2

)
for x > 0.

According to the p-values, none of the fitted distributions provide satisfactory fits.
However, the MOW type distributions improve substantially on the fit of the MOW and
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Y1 Y2 min (Y1, Y2)

Model K-S statisticp-valueK-S statisticp-valueK-S statisticp-value
MOW 0.449 0.000 0.646 0.000 0.646 0.000
MOW-geo 0.626 0.000 0.336 0.000 0.322 0.001
MOW-Poisson 0.604 0.000 0.341 0.000 0.312 0.001
MOW-log 0.611 0.000 0.343 0.000 0.310 0.001
MOW-bin m = 2 0.592 0.000 0.338 0.000 0.315 0.001
MOW-bin m = 3 0.565 0.000 0.320 0.001 0.337 0.000
MOW-bin m = 4 0.534 0.000 0.299 0.002 0.365 0.000
MOW-bin m = 5 0.567 0.000 0.304 0.002 0.582 0.000
MOW-bin m = 6 0.649 0.000 0.338 0.000 0.640 0.000
MOW-bin m = 7 0.577 0.000 0.328 0.000 0.425 0.000
MOW-bin m = 8 0.498 0.000 0.369 0.000 0.480 0.000
MOW-bin m = 9 0.558 0.000 0.406 0.000 0.495 0.000
MOW-bin m = 10 0.453 0.000 0.451 0.000 0.556 0.000
MOW-bin m = 11 0.454 0.000 0.493 0.000 0.588 0.000
MOW-bin m = 12 0.829 0.000 0.527 0.000 0.812 0.000
MOW-bin m = 13 0.418 0.000 0.575 0.000 0.658 0.000
MOW-bin m = 14 0.433 0.000 0.613 0.000 0.684 0.000
MOW-bin m = 15 0.362 0.000 0.649 0.000 0.721 0.000
MOW-neg bin m = 2 0.593 0.000 0.308 0.001 0.594 0.000
MOW-neg bin m = 3 0.591 0.000 0.297 0.002 0.393 0.000
MOW-neg bin m = 4 0.760 0.000 0.440 0.000 0.735 0.000
MOW-neg bin m = 5 0.593 0.000 0.409 0.000 0.485 0.000
MOW-neg bin m = 6 0.578 0.000 0.480 0.000 0.546 0.000
MOW-neg bin m = 7 0.574 0.000 0.556 0.000 0.608 0.000
MOW-neg bin m = 8 0.557 0.000 0.632 0.000 0.673 0.000
MOW-neg bin m = 9 0.489 0.000 0.705 0.000 0.740 0.000
MOW-neg bin m = 10 0.468 0.000 0.764 0.000 0.789 0.000
MOW-neg bin m = 11 0.421 0.000 0.814 0.000 0.839 0.000
MOW-neg bin m = 12 0.377 0.000 0.865 0.000 0.886 0.000
MOW-neg bin m = 13 0.413 0.000 0.904 0.000 0.919 0.000
MOW-neg bin m = 14 0.445 0.000 0.932 0.000 0.941 0.000
MOW-neg bin m = 15 0.522 0.000 0.951 0.000 0.957 0.000

Table 2. Goodness of fit measures for the MOW type distributions
fitted to the data used in Kundu and Gupta (2014).

MOW-geometric distributions with respect to likelihood and K-S statistic values: the
MOW-negative binomial m = 15 distribution gives the smallest negative log-likelihood
value, the smallest AIC value and the smallest BIC value; the MOW-binomial m =
15 distribution gives the smallest K-S statistic with respect to Y1; the MOW-negative
binomialm = 3 distribution gives the smallest K-S statistic with respect to Y2; the MOW-
logarithmic distribution gives the smallest K-S statistic with respect to min (Y1, Y2).

The values reported in Table 1 for the MOW-geometric distribution are different
from those reported in Kundu and Gupta [3]. Our parameter estimates for the MOW-
geometric distribution, θ̂ = 9.549×10−2,

(
8.453× 10−2

)
, α̂ = 4.061×10−1

(
4.775× 10−2

)
,

λ̂0 = 7.471 × 10−8
(
3.405× 10−2

)
, λ̂1 = 7.940 × 10−2

(
3.047× 10−2

)
and λ̂2 = 1.609 ×

10−1
(
4.324× 10−2

)
, where the numbers in parentheses are standard errors obtained by



1183

inverting the observed information matrix, are also different from the estimates reported
in Kundu and Gupta [3]. These discrepancies are probably due to the errors in Kundu
and Gupta [3] that we pointed out in Section 1.

The second data set is breaking strengths of fibers of lengths 12mm and 30mm. The
data were taken from Table 7.2, data set 3, page 144 of Crowder et al. [2]. The data
are on the two variables: Y1 = breaking strength for fibers of length 12mm and Y2 =
breaking strength for fibers of length 30mm. The data on Y1 are 4, 3.98, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 3.54, 3.4, 3.28, 3.02, 3.06, 3.2, 3.96, 3.73, 3.7, 4, 3.83, 3.92, 4, 4. The data
on Y2 are 4, 3.2, 4, 4, 4, 3.82, 3.4, 4, 3.65, 4, 4, 4, 3.09, 2.32, 2.18, 2.14, 2.14, 2.3, 3.18,
3.22, 3.28, 3.2, 3.16, 3.25, 2.16, 3.22. We have chosen this data in particular because
Weibull distributions are most popular models for breaking strength. The results of the
fit of the following distributions to this data are shown in Tables 3 and 4: MOW, MOW-
geometric, MOW-Poisson, MOW-logarithmic, MOW-binomial m for m = 2, 3, . . . , 15,
MOW-negative binomial m for m = 2, 3, . . . , 15. According to the p-values with respect
to Y1, none of these distributions provide satisfactory fits. According to the p-values with
respect to Y2 and min (Y1, Y2), all of these distributions provide satisfactory fits. Many
of the distributions improve on the fit of the MOW and MOW-geometric distributions:

• all of the fitted distributions have significantly smaller negative log-likelihood
values, smaller AIC values and smaller BIC values than those for MOW;

• MOW-logarithmic, MOW-binomial m for m = 4, 5, . . . , 15, MOW-negative bi-
nomial m for m = 2, 3, . . . , 15 all have smaller negative log-likelihood values,
smaller AIC values and smaller BIC values than those for MOW-geometric;

• MOW-geometric, MOW-Poisson, MOW-logarithmic, MOW-binomialm form =
2, 3, . . . , 6, MOW-negative binomial m for m = 2, 3, 4 all have larger p-values
with respect to Y1 than that for MOW;

• MOW-binomial m = 4, MOW-binomial m = 5 and MOW-negative binomial
m = 2 all have larger p-values with respect to Y1 than that for MOW-geometric;

• MOW-geometric, MOW-Poisson, MOW-logarithmic, MOW-binomialm form =
2, 3, . . . , 8, MOW-negative binomialm form = 2, 3, . . . , 6 all have larger p-values
with respect to Y2 than that for MOW;

• MOW-binomial m for m = 4, 5, . . . , 7, MOW-negative binomial m for m =
2, 3, . . . , 5 all have larger p-values with respect to Y2 than that for MOW-
geometric;

• MOW-geometric, MOW-Poisson, MOW-logarithmic, MOW-binomialm form =
2, 3, . . . , 6, MOW-negative binomial m for m = 2, 3, 4 all have larger p-values
with respect to min (Y1, Y2) than that for MOW;

• MOW-binomial m = 4, MOW-binomial m = 5, MOW-negative binomial m = 2
and MOW-negative binomial m = 3 all have larger p-values with respect to
min (Y1, Y2) than that for MOW-geometric.
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Model − lnL AIC BIC
MOW 52.385 112.77 117.802
MOW-geo -67.015 -124.03 -117.74
MOW-Poisson -21.945 -33.89 -27.560
MOW-log -21.945 -33.89 -27.560
MOW-bin m = 2 -21.945 -33.89 -27.560
MOW-bin m = 3 -66.057 -122.114 -115.824
MOW-bin m = 4 -70.257 -130.514 -124.224
MOW-bin m = 5 -70.978 -131.956 -125.666
MOW-bin m = 6 -71.02 -132.04 -125.75
MOW-bin m = 7 -71.048 -132.096 -125.806
MOW-bin m = 8 -71.067 -132.134 -125.844
MOW-bin m = 9 -71.081 -132.162 -125.872
MOW-bin m = 10 -71.094 -132.188 -125.898
MOW-bin m = 11 -71.102 -132.204 -125.914
MOW-bin m = 12 -71.111 -132.222 -125.932
MOW-bin m = 13 -71.118 -132.236 -125.946
MOW-bin m = 14 -71.124 -132.248 -125.958
MOW-bin m = 15 -71.129 -132.258 -125.968
MOW-neg bin m = 2 -71.293 -132.586 -126.296
MOW-neg bin m = 3 -71.399 -132.798 -126.508
MOW-neg bin m = 4 -71.357 -132.714 -126.424
MOW-neg bin m = 5 -71.328 -132.656 -126.366
MOW-neg bin m = 6 -71.308 -132.616 -126.326
MOW-neg bin m = 7 -71.291 -132.582 -126.292
MOW-neg bin m = 8 -71.282 -132.564 -126.274
MOW-neg bin m = 9 -71.271 -132.542 -126.252
MOW-neg bin m = 10 -71.266 -132.532 -126.242
MOW-neg bin m = 11 -71.256 -132.512 -126.222
MOW-neg bin m = 12 -71.254 -132.508 -126.218
MOW-neg bin m = 13 -71.247 -132.494 -126.204
MOW-neg bin m = 14 -71.243 -132.486 -126.196
MOW-neg bin m = 15 -71.238 -132.476 -126.186

Table 3. Log-likelihood, AIC and BIC values for the MOW type dis-
tributions fitted to the fiber data.
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Y1 Y2 min (Y1, Y2)

Model K-S statisticp-valueK-S statisticp-valueK-S statisticp-value
MOW 0.286 0.022 0.172 0.382 0.171 0.389
MOW-geo 0.278 0.029 0.170 0.398 0.169 0.406
MOW-Poisson 0.284 0.024 0.171 0.389 0.170 0.396
MOW-log 0.284 0.024 0.171 0.390 0.170 0.397
MOW-bin m = 2 0.284 0.024 0.171 0.389 0.170 0.396
MOW-bin m = 3 0.279 0.028 0.170 0.397 0.169 0.405
MOW-bin m = 4 0.273 0.033 0.169 0.406 0.168 0.414
MOW-bin m = 5 0.277 0.030 0.167 0.415 0.167 0.414
MOW-bin m = 6 0.282 0.025 0.166 0.424 0.170 0.394
MOW-bin m = 7 0.288 0.021 0.168 0.410 0.173 0.374
MOW-bin m = 8 0.294 0.018 0.171 0.390 0.176 0.356
MOW-bin m = 9 0.299 0.015 0.174 0.370 0.178 0.338
MOW-bin m = 10 0.304 0.012 0.176 0.352 0.181 0.321
MOW-bin m = 11 0.310 0.010 0.179 0.334 0.184 0.305
MOW-bin m = 12 0.315 0.009 0.182 0.318 0.186 0.290
MOW-bin m = 13 0.321 0.007 0.184 0.302 0.189 0.276
MOW-bin m = 14 0.326 0.006 0.187 0.287 0.191 0.262
MOW-bin m = 15 0.331 0.005 0.189 0.272 0.194 0.249
MOW-neg bin m = 2 0.272 0.034 0.168 0.408 0.167 0.415
MOW-neg bin m = 3 0.278 0.029 0.167 0.417 0.168 0.410
MOW-neg bin m = 4 0.284 0.024 0.166 0.427 0.171 0.390
MOW-neg bin m = 5 0.290 0.020 0.169 0.405 0.174 0.370
MOW-neg bin m = 6 0.295 0.017 0.172 0.384 0.177 0.351
MOW-neg bin m = 7 0.301 0.014 0.174 0.364 0.179 0.333
MOW-neg bin m = 8 0.307 0.011 0.177 0.346 0.182 0.316
MOW-neg bin m = 9 0.313 0.009 0.180 0.328 0.185 0.299
MOW-neg bin m = 10 0.318 0.008 0.183 0.310 0.187 0.284
MOW-neg bin m = 11 0.324 0.006 0.186 0.294 0.190 0.269
MOW-neg bin m = 12 0.329 0.005 0.188 0.279 0.193 0.255
MOW-neg bin m = 13 0.335 0.004 0.191 0.264 0.195 0.242
MOW-neg bin m = 14 0.340 0.003 0.193 0.251 0.198 0.229
MOW-neg bin m = 15 0.346 0.003 0.196 0.237 0.200 0.218

Table 4. Goodness of fit measures for the MOW type distributions
fitted to the fiber data.
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